An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis

. 2019 Sep 16 ; 9 (1) : 13327. [epub] 20190916

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31527683
Odkazy

PubMed 31527683
PubMed Central PMC6746710
DOI 10.1038/s41598-019-49774-x
PII: 10.1038/s41598-019-49774-x
Knihovny.cz E-zdroje

Conventional chemotherapy is mostly effective in the treatment of rapidly-dividing differentiated tumor cells but has limited application toward eliminating cancer stem cell (CSC) population. The presence of a very small number of CSCs may contribute to the development of therapeutic resistance, metastases, and relapse. Thus, treatment failure by developing novel anticancer drugs capable of effective targeting of CSCs is at present a major challenge for research focused on chemotherapy of cancer. Here, we show that Os(II) complex 2 [Os(η6-pcym)(bphen)(dca)]PF6 (pcym = p-cymene, bphen = bathophenanthroline, and dca = dichloroacetate), is capable of efficient and selective killing CSCs in heterogeneous populations of human breast cancer cells MCF-7 and SKBR-3. Notably, its remarkable submicromolar potency to kill CSCs is considerably higher than that of its Ru analog, [Ru(η6-pcym)(bphen)(dca)]PF6 (complex 1) and salinomycin, one of the most selective CSC-targeting compounds hitherto identified. Furthermore, Os(II) complex 2 reduces the formation, size, and viability of three-dimensional mammospheres which more closely reflect the tumor microenvironment than cells in traditional two-dimensional cultures. The antiproliferation studies and propidium iodide staining using flow cytometry suggest that Os(II) complex 2 induces human breast cancer stem cell death predominantly by necroptosis, a programmed form of necrosis. The results of this study demonstrate the promise of Os(II) complex 2 in treating human breast tumors. They also represent the foundation for further preclinical and clinical studies and applications of Os(II) complex 2 to comply with the emergent need for human breast CSCs-specific chemotherapeutics capable to treat chemotherapy-resistant and relapsed human breast tumors.

Zobrazit více v PubMed

Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55. doi: 10.1016/j.cell.2013.03.008. PubMed DOI PMC

Christophersen NS, Helin K. Epigenetic control of embryonic stem cell fate. J. Exp. Med. 2010;207:2287–2295. doi: 10.1084/jem.20101438. PubMed DOI PMC

Kuhlmann JD, Hein L, Kurth I, Wimberger P, Dubrovska A. Targeting cancer stem cells: Promises and challenges. Anti-Cancer Agents Med. Chem. 2015;16:38–58. doi: 10.2174/1871520615666150716104152. PubMed DOI

Cheung SKC, et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc. Natl. Acad. Sci. USA. 2016;113:960–965. doi: 10.1073/pnas.1522602113. PubMed DOI PMC

Park J-H, Chung S, Matsuo Y, Nakamura Y. Development of small molecular compounds targeting cancer stem cells. MedChemComm. 2017;8:73–80. doi: 10.1039/C6MD00385K. PubMed DOI PMC

Laws K, Suntharalingam K. The next generation of anticancer metallopharmaceuticals: cancer stem cell-active inorganics. ChemBioChem. 2018;19:2246–2253. doi: 10.1002/cbic.201800358. PubMed DOI

Miklášová N, et al. Antiproliferative effect of novel platinum(II) and palladium(II) complexes on hepatic tumor stem cells in vitro. Eur. J. Med. Chem. 2012;49:41–47. doi: 10.1016/j.ejmech.2011.12.001. PubMed DOI

Suntharalingam K, et al. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc. 2014;136:14413–14416. doi: 10.1021/ja508808v. PubMed DOI PMC

Štarha P, Trávníček Z, Vančo J, Dvořák Z. Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules. 2018;23:420. doi: 10.3390/molecules23020420. PubMed DOI PMC

Pracharova J, et al. Half-sandwich Os(II) and Ru(II) bathophenanthroline complexes: anticancer drug candidates with unusual potency and cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans. 2018;47:12197–12208. doi: 10.1039/C8DT02236D. PubMed DOI

Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol. 2012;2012:1–17. doi: 10.1155/2012/950658. PubMed DOI PMC

Zhou S, et al. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 2013;20:4095–4101. doi: 10.2174/15672050113109990199. PubMed DOI PMC

Gupta PB, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–659. doi: 10.1016/j.cell.2009.06.034. PubMed DOI PMC

Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10 (2008). PubMed PMC

Lu C, Eskandari A, Cressey PB, Suntharalingam K. Cancer stem cell and bulk cancer cell active copper(II) complexes with vanillin Schiff base derivatives and naproxen. Chem. Eur. J. 2017;23:11366–11374. doi: 10.1002/chem.201701939. PubMed DOI

Ponti D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–5511. doi: 10.1158/0008-5472.CAN-05-0626. PubMed DOI

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. doi: 10.1073/pnas.0530291100. PubMed DOI PMC

Liu S, Wicha MS. Targeting breast cancer stem cells. J. Clin. Oncol. 2010;28:4006–4012. doi: 10.1200/JCO.2009.27.5388. PubMed DOI PMC

Dontu G, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–1270. doi: 10.1101/gad.1061803. PubMed DOI PMC

Crouch SPM, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods. 1993;160:81–88. doi: 10.1016/0022-1759(93)90011-U. PubMed DOI

Iglesias JM, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS ONE. 2013;8:e77281. doi: 10.1371/journal.pone.0077281. PubMed DOI PMC

Boodram JN, et al. Breast cancer stem cell potent copper(II)–non-steroidal anti-inflammatory drug complexes. Angew. Chem. Int. Ed. 2016;55:2845–2850. doi: 10.1002/anie.201510443. PubMed DOI

Marcato P, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45. doi: 10.1002/stem.563. PubMed DOI

Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. doi: 10.1016/j.stem.2007.08.014. PubMed DOI PMC

Ginestier C, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8:3297–3302. doi: 10.4161/cc.8.20.9761. PubMed DOI PMC

Balvan J, et al. Multimodal holographic microscopy: Distinction between apoptosis and oncosis. PlosOne. 2015;10:e0121674. doi: 10.1371/journal.pone.0121674. PubMed DOI PMC

Van Cruchten S, Van den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anatomia, Histologia, Embryologia. 2002;31:214–223. doi: 10.1046/j.1439-0264.2002.00398.x. PubMed DOI

Cooley-Andrade O, Goh WX, Connor DE, Ma DDF, Parsi K. Detergent sclerosants stimulate leukocyte apoptosis and oncosis. Eur. J. Vascul. Endovascul. Surg. 2016;51:846–856. doi: 10.1016/j.ejvs.2016.03.008. PubMed DOI

Weerasinghe P, Hallock S, Brown RE, Loose DS, Buja LM. A model for cardiomyocyte cell death: Insights into mechanisms of oncosis. Exp. Mol. Pathol. 2013;94:289–300. doi: 10.1016/j.yexmp.2012.04.022. PubMed DOI

Flamme M, et al. Induction of necroptosis in cancer stem cells using a nickel(II)-dithiocarbamate phenanthroline complex. Chem. Eur. J. 2017;23:9674–9682. doi: 10.1002/chem.201701837. PubMed DOI

Zhang CG, Xu YH, Gu JJ, Schlossman SF. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proc. Natl. Acad. Sci. USA. 1998;95:6290–6295. doi: 10.1073/pnas.95.11.6290. PubMed DOI PMC

Liu LF, et al. Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet. Mol. Res. 2015;14:7481–7489. doi: 10.4238/2015.July.3.24. PubMed DOI

Ma FR, Zhang CH, Prasad KVS, Freeman GJ, Schlossman SF. Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death. Proc. Natl. Acad. Sci. USA. 2001;98:9778–9783. doi: 10.1073/pnas.171322898. PubMed DOI PMC

Ros U, et al. Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep. 2017;19:175–187. doi: 10.1016/j.celrep.2017.03.024. PubMed DOI PMC

Cai Z, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 2013;16:55. doi: 10.1038/ncb2883. PubMed DOI PMC

Dodo K, Katoh M, Shimizu T, Takahashi M, Sodeoka M. Inhibition of hydrogen peroxide-induced necrotic cell death with 3-amino-2-indolylmaleimide derivatives. Bioorg. Med. Chem. Lett. 2005;15:3114–3118. doi: 10.1016/j.bmcl.2005.04.016. PubMed DOI

Degterev A, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 2008;4:313–321. doi: 10.1038/nchembio.83. PubMed DOI PMC

Li J-X, Feng J-M, Wang Y, Li X-H, Chen X-X, Su Y, Shen Y-Y, Chen Y, Xiong B, Yang C-H, Ding J, Miao Z-H. The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death & Disease. 2014;5(6):e1278–e1278. doi: 10.1038/cddis.2014.241. PubMed DOI PMC

Sun LM, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–227. doi: 10.1016/j.cell.2011.11.031. PubMed DOI

Wang HY, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell. 2014;54:133–146. doi: 10.1016/j.molcel.2014.03.003. PubMed DOI

Starha P, Travnicek Z, Herchel R, Jewula P, Dvorak Z. A potential method to improve the in vitro cytotoxicity of half-sandwich Os(II) complexes against A2780 cells. Dalton Trans. 2018;47:5714–5724. doi: 10.1039/C8DT00193F. PubMed DOI

Pacini N, Borziani F. Cancer stem cell theory and the Warburg effect, two sides of the same coin? Int. J. Mol. Sci. 2014;15:8893. doi: 10.3390/ijms15058893. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...