Chemistry towards Biology-Instruct: Snapshot

. 2022 Nov 26 ; 23 (23) : . [epub] 20221126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499140

Grantová podpora
MR/V03958X/1 Medical Research Council - United Kingdom
100209/Z/12/Z, 223733/Z/21 Wellcome Trust - United Kingdom

The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.

Center of Experimental Medicine SAS and Department of Biochemical Pharmacology Institute of Experimental Pharmacology and Toxicology Slovak Academy of Sciences Dubravska cesta 9 841 04 Bratislava Slovakia

Department of Analytical Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6 842 15 Bratislava Slovakia

Department of Inorganic Chemistry Faculty of Science Palacký University Olomouc 17 listopadu 1192 12 771 46 Olomouc Czech Republic

Department of Materials Science Faculty of Materials Engineering and Physics Cracow University of Technology 37 Jana Pawła 2 Av 31 864 Krakow Poland

Department of Natural Sciences Eugenio María de Hostos Community College City University of New York 500 Grand Concourse Bronx NY 10451 USA

Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York NY 10029 USA

Department of Physical Chemistry and Biophysics Pharmaceutical Faculty Wroclaw Medical University Borowska 211A 50 556 Wrocław Poland

Division of Structural Biology The Wellcome Centre for Human Genetics University of Oxford Oxford OX3 7BN UK

Institute of Chemistry Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovakia

Institute of Chemistry University of Silesia Szkolna 9 40 007 Katowice Poland

Magnetic Resonance Center and Department of Chemistry Ugo Schiff University of Florence 50019 Sesto Fiorentino Italy

Structural Biology The Rosalind Franklin Institute Harwell Science Campus UK University of Oxford Oxford OX11 0QS UK

Zobrazit více v PubMed

Buehler L.K. An Introduction to Molecular Interaction in Biological Systems. [(accessed on 16 September 2022)]. Available online: http://www.whatislife.com/reader/interaction-reader.html.

Williams L.D. Molecular Interactions and the Behaviors of Biological Macromolecules. [(accessed on 16 September 2022)]. Available online: https://williams.chemistry.gatech.edu/structure/molecular_interactions/mol_int.html.

Chemistry towards Biology Conference Series. [(accessed on 16 September 2022)]. Available online: http://www-phch.chem.elte.hu.

The European Research Infrastructure Consortium for Structural Biology Research. [(accessed on 11 September 2022)]. Available online: www.instruct-eric.org.

Chemistry towards Biology 10—Instruct. [(accessed on 16 September 2022)]. Available online: https://www.instruct.sav.sk/index.html.

Bak A., Kozik V., Walczak M., Fraczyk J., Kaminski Z., Kolesinska B., Smolinski A., Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies. Molecules. 2018;23:1964. doi: 10.3390/molecules23081964. PubMed DOI PMC

Van de Waterbeemd H., Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI

Rykowski S., Gurda-Woźna D., Orlicka-Płocka M., Fedoruk-Wyszomirska A., Giel-Pietraszuk M., Wyszko E., Kowalczyk A., Stączek P., Bak A., Kiliszek A., et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 2021;22:2772. doi: 10.3390/ijms22052772. PubMed DOI PMC

Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC

Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC

Chrobak E., Marciniec K., Dąbrowska A., Pęcak P., Bębenek E., Kadela-Tomanek M., Bak A., Jastrzębska M., Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study. Int. J. Mol. Sci. 2019;20:5209. doi: 10.3390/ijms20205209. PubMed DOI PMC

Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed

Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC

Michnová H., Pospíšilová Š., Goněc T., Kapustíková I., Kollár P., Kozik V., Musioł R., Jendrzejewska I., Vančo J., Trávníček Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC

Polanski J., Bak A., Gieleciak R., Magdziarz T. Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors. Molecules. 2004;9:1148–1159. doi: 10.3390/91201148. PubMed DOI PMC

Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI

Potemkin V., Grishina M. Principles for 3D/4D QSAR classification of drugs. Drug Discov. Today. 2008;13:952–959. doi: 10.1016/j.drudis.2008.07.006. PubMed DOI

Polanski J., Bak A. Modeling steric and electronic effects in 3D- and 4D-QSAR schemes: Predicting benzoic pKa values and steroid CBG binding affinities. J. Chem. Inf. Comput. Sci. 2003;43:2081–2092. doi: 10.1021/ci034118l. PubMed DOI

Bak A., Polanski J. A 4D-QSAR study on anti-HIV HEPT analogues. Bioorg. Med. Chem. 2006;14:273–279. doi: 10.1016/j.bmc.2005.08.023. PubMed DOI

Bak A., Polanski J. Modeling Robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI

Bak A. Two Decades of 4D-QSAR: A dying art or staging a comeback? Int. J. Mol. Sci. 2021;22:5212. doi: 10.3390/ijms22105212. PubMed DOI PMC

Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC

Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Pedrosa M., Maldonado-Valderrama J., Gálvez-Ruiz M.J. Interactions between curcumin and cell membrane models by Langmuir monolayers. Colloids Surf. B Biointerfaces. 2022;217:112636. doi: 10.1016/j.colsurfb.2022.112636. PubMed DOI

Scholl F.A., Siqueira J.R., Caseli L. Graphene oxide modulating the bioelectronic properties of penicillinase immobilized in lipid Langmuir–Blodgett films. Langmuir. 2022;38:2372–2378. doi: 10.1021/acs.langmuir.1c03410. PubMed DOI

Peltonen L., Hirvonen J. Physicochemical characterization of nano-and microparticles. Curr. Nanosci. 2008;4:101–107. doi: 10.2174/157341308783591780. DOI

Havre T., Ese M.H., Sjöblom J., Blokhus A. Langmuir films of naphthenic acids at different pH and electrolyte concentrations. Colloid Polym. Sci. 2002;280:647–652. doi: 10.1007/s00396-002-0665-4. DOI

de Souza K.D., Perez K.R., Duran N., Justo G.Z., Caseli L. Interaction of violacein in models for cellular membranes: Regulation of the interaction by the lipid composition at the air-water interface. Colloids Surf. B Biointerfaces. 2017;160:247–253. doi: 10.1016/j.colsurfb.2017.09.027. PubMed DOI

Olżyńska A., Wizert A., Štefl M., Iskander D.R., Cwiklik L. Mixed polar-nonpolar lipid films as minimalistic models of tear film lipid layer: A Langmuir trough and fluorescence microscopy study. Biochim. Biophys. Acta Biomembr. 2020;1862:183300. doi: 10.1016/j.bbamem.2020.183300. PubMed DOI

Cañadas O., García-García A., Prieto M.A., Pérez-Gil J. Polyhydroxyalkanoate nanoparticles for pulmonary drug delivery: Interaction with lung surfactant. Nanomaterials. 2021;11:1482. doi: 10.3390/nano11061482. PubMed DOI PMC

Huo J., Le Bas A., Ruza R.R., Duyvesteyn H.M., Mikolajek H., Malinauskas T., Tan T.K., Rijal P., Dumoux M., Ward P.N., et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct Mol Biol. 2020;27:846–854. doi: 10.1038/s41594-020-0469-6. PubMed DOI

Mikolajek H., Weckner M., Brotzakis Z., Huo J., Dalietou E., Le Bas A., Sormanni P., Harrison P.J., Ward P.N., Truong S., et al. Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proc. Natl. Acad. Sci. USA. 2022;119:e2205412119. doi: 10.1073/pnas.2205412119. PubMed DOI PMC

Bonomi M., Pellarin R., Vendruscolo M. Simultaneous determination of protein structure and dynamics using cryo-electron microscopy. Biophys. J. 2018;114:1604–1613. doi: 10.1016/j.bpj.2018.02.028. PubMed DOI PMC

Bonomi M., Vendruscolo M. Determination of protein structural ensembles usingcryo-electron microscopy. Curr.Opin. Struct. Biol. 2019;56:37–45. doi: 10.1016/j.sbi.2018.10.006. PubMed DOI

Girt G.C., Lakshminarayan A., Huo J., Dormon J., Norman C., Afrough B., Harding A., James W., Owens R.J., Naismith J.H. The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein R. Soc. Open Sci. 2021;8:211016. doi: 10.1098/rsos.211016. PubMed DOI PMC

Huo J., Mikolajek H., Le Bas A., Clark J.L., Sharma P., Kipar A., Dormon J., Norman C., Weckener M., Clare D.K., et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat. Commun. 2021;12:5469. doi: 10.1038/s41467-021-25480-z. PubMed DOI PMC

Dyson H.J., Wright P.E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding Protein (CBP) and p300. J. Biol. Chem. 2016;291:6714–6722. doi: 10.1074/jbc.R115.692020. PubMed DOI PMC

The IntFOLD Integrated Protein Structure and Function Prediction Server. [(accessed on 16 September 2022)]. Available online: https://www.reading.ac.uk/bioinf/IntFOLD/

Gunasekaran K., Tsai C.J., Kumar S., Zanuy D., Nussinov R. Extended disordered proteins: Targeting function with less scaffold. Trends Biochem. Sci. 2005;28:81–85. doi: 10.1016/S0968-0004(03)00003-3. PubMed DOI

Piai A., Calçada E.O., Tarenzi T., del Grande A., Varadi M., Tompa P., Felli I.C., Pierattelli R. Just a Flexible Linker? The structural and dynamic properties of CBP-ID4 revealed by NMR spectroscopy. Biophys. J. 2016;110:372–381. doi: 10.1016/j.bpj.2015.11.3516. PubMed DOI PMC

Contreras-Martos S., Piai A., Kosol S., Varadi M., Bekesi A., Lebrun P., Volkov A.N., Gevaert K., Pierattelli R., Felli I.C., et al. Linking functions: An additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci. Rep. 2017;7:4676. doi: 10.1038/s41598-017-04611-x. PubMed DOI PMC

Kosol S., Contreras-Martos S., Piai A., Varadi M., Lazar T., Bekesi A., Lebrun P., Felli I.C., Pierattelli R., Tompa P. Interaction between the scaffold proteins CBP by IQGAP1 provides an interface between gene expression and cytoskeletal activity. Sci. Rep. 2020;10:5753. doi: 10.1038/s41598-020-62069-w. PubMed DOI PMC

Murrali M.G., Felli I.C., Pierattelli R. Adenoviral E1A exploits flexibility and disorder to target cellular proteins. Biomolecules. 2020;10:1541. doi: 10.3390/biom10111541. PubMed DOI PMC

Habchi J., Tompa P., Longhi S., Uversky V.N. Introducing protein intrinsic disorder. Chem. Rev. 2014;114:6561–6588. doi: 10.1021/cr400514h. PubMed DOI

Marsh J.A., Singh V.K., Jia Z., Forman-Kay J.D. Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: Implications for fibrillation. Protein Sci. 2006;15:2795–2804. doi: 10.1110/ps.062465306. PubMed DOI PMC

Neighbor Corrected Structural Propensity Calculator. [(accessed on 16 September 2022)]. Available online: https://st-protein02.chem.au.dk/ncSPC/

Periasamy M., Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve. 2007;35:430–442. doi: 10.1002/mus.20745. PubMed DOI

Ikeda Y. Modification of sarco-endoplasmic reticulum Ca(2+)-ATPase in the failing cardiomyocyte. Clin. Calcium. 2013;23:535–542. PubMed

Brini M., Calì T., Ottolini D., Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J. 2013;280:5385–5397. doi: 10.1111/febs.12193. PubMed DOI

Marambaud P., Dreses-Werringloer U., Vingtdeux V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 2009;4:20–28. doi: 10.1186/1750-1326-4-20. PubMed DOI PMC

Viskupicova J., Majekova M., Horakova L. Inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA1) by rutin derivatives. J. Muscle Res. Cell Motil. 2015;36:183–194. doi: 10.1007/s10974-014-9402-0. PubMed DOI

Kang S., Dahl R., Hsieh W., Shin A., Zsebo K.M., Buettner C., Hajjar R.J., Lebeche D. Small molecular allosteric activator of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J. Biol. Chem. 2016;291:5185–5198. doi: 10.1074/jbc.M115.705012. PubMed DOI PMC

YASARA Biosciences GmbH, Vienna, Austria. [(accessed on 16 September 2022)]. Available online: www.yasara.org.

Rodríguez Y., Májeková M. Structural changes of sarco/endoplasmic reticulum Ca2+-ATPase induced by rutin arachidonate: A molecular dynamics study. Biomolecules. 2020;10:214. doi: 10.3390/biom10020214. PubMed DOI PMC

Clausen J.D., McIntosh D.B., Woolley D.G., Andersen J.P. Modulatory ATP binding affinity in intermediate 978 states of E2P dephosphorylation of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 2011;286:11792–11802. doi: 10.1074/jbc.M110.206094. PubMed DOI PMC

Clausen J.D., Andersen J.P. Glutamate 90 at the luminal ion gate of sarcoplasmic reticulum Ca2+-ATPase is 981 critical for Ca2+ binding on both sides of the membrane. J. Biol. Chem. 2010;285:20780–20792. doi: 10.1074/jbc.M110.116459. PubMed DOI PMC

Mrozek-Wilczkiewicz A., Spaczynska E., Malarz K., Cieslik W., Rams-Baron M., Krystof V., Musiol R. Design, Synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS ONE. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC

Krawczyk M., Pastuch-Gawolek G., Mrozek-Wilczkiewicz A., Kuczak M., Skonieczna M., Musiol R. Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their beta1,4-GalT inhibitory and anti-cancer properties. Bioorg. Chem. 2019;84:326–338. doi: 10.1016/j.bioorg.2018.11.047. PubMed DOI

Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI

Mularski J., Malarz K., Pacholczyk M., Musiol R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur. J. Med. Chem. 2019;163:610–625. doi: 10.1016/j.ejmech.2018.12.012. PubMed DOI

Malarz K., Mularski J., Pacholczyk M., Musiol R. The landscape of the anti-kinase activity of the IDH1 inhibitors. Cancers. 2020;12:536. doi: 10.3390/cancers12030536. PubMed DOI PMC

Malarz K., Mularski J., Kuczak M., Mrozek-Wilczkiewicz A., Musiol R. Novel benzenesulfonate scaffolds with a high anticancer activity and G2/M cell cycle arrest. Cancers. 2021;13:1790. doi: 10.3390/cancers13081790. PubMed DOI PMC

Serda M., Kalinowski D.S., Rasko N., Potuckova E., Mrozek-Wilczkiewicz A., Musiol R., Malecki J.G., Sajewicz M., Ratuszna A., Muchowicz A., et al. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: Dissection of critical structure-activity relationships. PLoS ONE. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC

Malarz K., Mrozek-Wilczkiewicz A., Serda M., Rejmund M., Polanski J., Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget. 2018;9:17689–17710. doi: 10.18632/oncotarget.24844. PubMed DOI PMC

Rejmund M., Mrozek-Wilczkiewicz A., Malarz K., Pyrkosz-Bulska M., Gajcy K., Sajewicz M., Musiol R., Polanski J. Piperazinyl fragment improves anticancer activity of triapine. PLoS ONE. 2018;13:e0188767. doi: 10.1371/journal.pone.0188767. PubMed DOI PMC

Mrozek-Wilczkiewicz A., Malarz K., Rejmund M., Polanski J., Musiol R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem. 2019;171:180–194. doi: 10.1016/j.ejmech.2019.03.027. PubMed DOI

Musiol R., Malecki P., Pacholczyk M., Mularski J. Terpyridines as promising antitumor agents: An overview of their discovery and development. Expert Opin. Drug Discov. 2022;17:259–271. doi: 10.1080/17460441.2022.2017877. PubMed DOI

Wei C., He Y., Shi X., Song Z. Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. Coord. Chem. Rev. 2019;385:1–19. doi: 10.1016/j.ccr.2019.01.005. PubMed DOI PMC

Schwarz G., Hasslauer I., Kurth D.G. From terpyridine-based assemblies to metallo-supramolecular polyelectrolytes (MEPEs) Adv. Colloid. Interface Sci. 2014;207:107–120. doi: 10.1016/j.cis.2013.12.010. PubMed DOI

Saccone D., Magistris C., Barbero N., Quagliotto P., Barolo C., Viscardi G. Terpyridine and quaterpyridine complexes as sensitizers for photovoltaic applications. Materials. 2016;9:137. doi: 10.3390/ma9030137. PubMed DOI PMC

Monro S., Colon K.L., Yin H., Roque J., Konda P., Gujar S., Thummel R.P., Lilge L., Cameron C.G., McFarland S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC

Beller G., Lente G., Fabian I. Kinetics and mechanism of the autocatalytic oxidation of bis(terpyridine)iron(II) by peroxomonosulfate ion (oxone) in acidic medium. Inorg. Chem. 2017;56:8270–8277. doi: 10.1021/acs.inorgchem.7b00981. PubMed DOI

Delgado G.Y.S., Paschoal D., de Oliveira M.A.L., Dos Santos H.F. Structure and redox stability of [Au(III)(X^N^X)PR3] complexes (X=C or N) in aqueous solution: The role of phosphine auxiliary ligand. J. Inorg. Biochem. 2019;200:110804. doi: 10.1016/j.jinorgbio.2019.110804. PubMed DOI

Grau J., Caubet A., Roubeau O., Montpeyo D., Lorenzo J., Gamez P. Time-dependent cytotoxic properties of terpyridine-based copper complexes. Chembiochem. 2020;21:2348–2355. doi: 10.1002/cbic.202000154. PubMed DOI

Miller C.J., Rose A.L., Waite T.D. Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Front. Mar. Sci. 2016;3:134. doi: 10.3389/fmars.2016.00134. DOI

Malarz K., Zych D., Gawecki R., Kuczak M., Musiol R., Mrozek-Wilczkiewicz A. New derivatives of 4’-phenyl-2,2’:6’,2’’-terpyridine as promising anticancer agents. Eur. J. Med. Chem. 2021;212:113032. doi: 10.1016/j.ejmech.2020.113032. PubMed DOI

Malarz K., Zych D., Kuczak M., Musiol R., Mrozek-Wilczkiewicz A. Anticancer activity of 4’-phenyl-2,2’:6’,2’’-terpyridines—Behind the metal complexation. Eur. J. Med. Chem. 2020;189:112039. doi: 10.1016/j.ejmech.2020.112039. PubMed DOI

Zych D., Slodek A., Krompiec S., Malarz K., Mrozek-Wilczkiewicz A., Musiol R. 4′-Phenyl-2,2′:6′,2″-terpyridine Derivatives Containing 1-Substituted-2,3-Triazole Ring: Synthesis, Characterization and Anticancer Activity. ChemistrySelect. 2018;3:7009–7017. doi: 10.1002/slct.201801204. DOI

Rosenberg B., Van Camp L., Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–699. doi: 10.1038/205698a0. PubMed DOI

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Anthony E.J., Bolitho E.M., Bridgewater H.E., Carter O.W.L., Donnelly J.M., Imberti C., Lant E.C., Lermyte F., Needham R.J., Palau M., et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020;11:12888–12917. doi: 10.1039/D0SC04082G. PubMed DOI PMC

Berger M.R., Garzon F.T., Keppler B.K., Schmahl D. Efficacy of new ruthenium complexes against chemically induced autochthonous colorectal carcinoma in rats. Anticancer Res. 1989;9:761–765. PubMed

Štarha P., Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev. 2019;395:130–145. doi: 10.1016/j.ccr.2019.06.001. DOI

Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC

Štarha P., Trávníček Z., Vančo J., Dvořák Z. Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules. 2018;23:420. doi: 10.3390/molecules23020420. PubMed DOI PMC

Madhok B.M., Yeluri S., Perry S.L., Hughes T.A., Jayne D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer. 2010;102:1746–1752. doi: 10.1038/sj.bjc.6605701. PubMed DOI PMC

Pracharova J., Novohradsky V., Kostrhunova H., Štarha P., Trávníček Z., Kasparkova J., Brabec V. Half-sandwich Os(II) and Ru(II) bathophenanthroline complexes: Anticancer drug candidates with unusual potency and a cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans. 2018;47:12197–12208. doi: 10.1039/C8DT02236D. PubMed DOI

Novohradsky V., Markova L., Kostrhunova H., Trávníček Z., Brabec V., Kasparkova J. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Sci. Rep. 2019;9:13327. doi: 10.1038/s41598-019-49774-x. PubMed DOI PMC

Masaryk L., Nemec I., Kašpárková J., Brabec V., Štarha P. Unexpected solution behaviour of ester-functionalized half-sandwich Ru(II) and Ir(III) complexes. Dalton Trans. 2021;50:8017–8028. doi: 10.1039/D1DT00466B. PubMed DOI

Masaryk L., Muthná D., Halaš P., Zoufalý P., Peterová E., Havelek R., Drahoš B., Milde D., Mrkvicová A., Štarha P. Stability of a half-sandwich Os(II) complex with indomethacin-functionalized ligand in the presence of carboxypeptidase A. Dalton Trans. 2022;51:9213–9217. doi: 10.1039/D2DT01085B. PubMed DOI

Masaryk L., Orvoš J., Słoczyńska K., Herchel R., Moncol J., Milde D., Halaš P., Křikavová R., Koczurkiewicz-Adamczyk P., Pękala E., et al. Anticancer half-sandwich Ir(III) complex and its interaction with various biomolecules and their mixtures—A case study with ascorbic acid. Inorg. Chem. Front. 2022;9:3758–3770. doi: 10.1039/D2QI00535B. DOI

Štarha P., Trávníček Z., Dvořák Z. A cytotoxic tantalum(V) half-sandwich complex: A new challenge for metal-based anticancer agents. Chem. Commun. 2018;54:9533–9536. doi: 10.1039/C8CC05223A. PubMed DOI

Kulkarni A.P., Kong X., Jenekhe S.A. High-performance organic light-emitting diodes based on intramolecular charge-transfer emission from donor–acceptor molecules: Significance of electron- donor strength and molecular geometry. Adv. Funct. Mater. 2006;16:1057–1066. doi: 10.1002/adfm.200500722. DOI

Tacca A., Po R., Caldararo M., Chiaberge S., Gila L., Longo L., Mussini P.R., Pellegrino A., Perin N., Salvalaggio M., et al. Ternary thiophene-X-thiophene semiconductor building blocks (X = fluorene, carbazole, phenothiazine): Modulating electronic properties and electropolymerization ability by tuning the X core. Electrochim. Acta. 2011;56:6638–6653. doi: 10.1016/j.electacta.2011.05.036. DOI

Slodek A., Zych D., Kotowicz S., Szafraniec-Gorol G., Zimosz S., Schab-Balcerzak E., Siwy M., Grzelak J., Maćkowski S. “Small in size but mighty in force”—The first principle study of the impact of A/D units in A/D-phenyl-π-phenothiazine-π-dicyanovinyl systems on photophysical and optoelectronic properties. Dye. Pigment. 2021;189:109248. doi: 10.1016/j.dyepig.2021.109248. DOI

Slodek A., Zych D., Golba S., Zimosz S., Gnida P., Schab-Balcerzak E. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. J. Mat. Chem. C. 2019;7:5830–5840. doi: 10.1039/C9TC01727E. DOI

Slodek A., Zych D., Szafraniec-Gorol G., Gnida P., Vasylieva M., Schab-Balcerzak E. Investigations of new phenothiazine-based compounds for dye-sensitized solar cells with theoretical insight. Materials. 2020;13:2292. doi: 10.3390/ma13102292. PubMed DOI PMC

Zimosz S., Slodek A., Gnida P., Glinka A., Ziółek M., Zych D., Pająk A.K., Vasylieva M., Schab-Balcerzak E. New D−π–D−π–A systems based on phenothiazine derivatives with imidazole structures for photovoltaics. J. Phys. Chem. C. 2022;126:8986–8999. doi: 10.1021/acs.jpcc.2c01697. DOI

Pluta K., Morak-Mlodawska B., Jelen M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011;46:3179–3189. doi: 10.1016/j.ejmech.2011.05.013. PubMed DOI

Matada M.N., Jathi K., Rangappa M.M., Geoffry K., Kumar S.R., Nagarajappa R.B., Zahara F.N. A new sulphur containing heterocycles having azo linkage: Synthesis, structural characterization and biological evaluation. J. King Saud Univ. Sci. 2020;32:3313–3320. doi: 10.1016/j.jksus.2020.09.016. DOI

Zimosz S., Zych D., Szafraniec-Gorol G., Kotowicz S., Malarz K., Musioł R., Slodek A. Does the change in the length of the alkyl chain bring us closer to the compounds with the expected photophysical and biological properties?—Studies based on D-π-D-A imidazole-phenothiazine system. J. Mol. Liq. 2022;365:120076. doi: 10.1016/j.molliq.2022.120076. DOI

Slodek A., Zych D., Maroń A., Gawecki R., Mrozek-Wilczkiewicz A., Malarz K., Musioł R. Phenothiazine derivatives—Synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties. J. Mol. Liq. 2019;285:515–525. doi: 10.1016/j.molliq.2019.04.102. DOI

Kraemer C.S., Zeitler K., Mueller T.J.J. Synthesis of functionalized ethynylphenothiazine fluorophores. Org. Lett. 2000;2:3723–3726. doi: 10.1021/ol0066328. PubMed DOI

Qiu X., Lu R., Zhou H., Zhang X., Xu T., Liu X., Zhao Y. Synthesis of linear monodisperse vinylene-linked phenothiazine oligomers. Tetrahedron Lett. 2007;48:7582–7585. doi: 10.1016/j.tetlet.2007.09.002. DOI

Zhou N., Wang L., Thompson D.W., Zhao Y. OPE/OPV H-mers: Synthesis, electronic properties, and spectroscopic responses to binding with transition metal ions. Tetrahedron. 2011;67:125–143. doi: 10.1016/j.tet.2010.11.012. DOI

Wan W., Wang H., Lin H., Wang J., Jiang Y., Jiang H., Zhu S., Wang Z., Hao J. Synthesis, electrochemical, photophysical, and electroluminescent properties of organic dyes containing pyrazolo [3,4-b]quinoline chromophores. Dyes Pigment. 2015;121:138–146. doi: 10.1016/j.dyepig.2015.05.002. DOI

Kraemer C.S., Mueller T.J.J. Synthesis and electronic properties of alkynylated phenothiazines. Eur. J. Org. Chem. 2003;18:3534–3548. doi: 10.1002/ejoc.200300250. DOI

Chen F.M., Liu X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016;53:86–168. PubMed PMC

Othman Z., Cillero Pastor B., van Rijt S., Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 2018;167:191–204. doi: 10.1016/j.biomaterials.2018.03.020. PubMed DOI

Jurczyk M., Jakubowicz J. Bionanomateriały. Wydawnictwo Politechniki Poznańskiej; Poznań, Poland: 2008.

Mosas K.K.A., Chandrasekar A.R., Dasan A., Pakseresht A., Galusek D. Recent advancements in materials and coatings for biomedical implants. Gels. 2022;8:323. doi: 10.3390/gels8050323. PubMed DOI PMC

Gloria A., De Santis R., Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomater. Biomech. 2010;8:57–67. PubMed

Świeczko-Żurek B. Biomateriały. Wydawnicwo Politech Gdańskiej; Gdańsk, Poland: 2009. pp. 32–45.

Boanini E., Silingardi F., Gazzano M., Bigi A. Synthesis and hydrolysis of brushite (DCPD): The role of ionic substitution. Cryst. Growth Des. 2021;21:1689–1697. doi: 10.1021/acs.cgd.0c01569. DOI

Singh S., Singh V., Aggarwal S., Mandal U.K. Synthesis of brushite nanoparticles at different temperatures. Chem. Pap. 2010;64:491–498. doi: 10.2478/s11696-010-0032-8. DOI

Grover L.M., Knowles J.C., Fleming G.J.P., Barralet J.E. In vitro ageing of brushite calcium phosphate cement. Biomaterials. 2003;24:4133–4141. doi: 10.1016/S0142-9612(03)00293-X. PubMed DOI

Penel G., Leroy N., Van Landuyt P., Flautre B., Hardouin P., Lemaître J., Leroy G. Raman microspectrometry studies of brushite cement: In vivo evolution in a sheep model. Bone. 1999;25((Suppl. S1)):81–84. doi: 10.1016/S8756-3282(99)00139-8. PubMed DOI

Pina S., Ferreira J.M.F. Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials. 2010;3:519–535. doi: 10.3390/ma3010519. DOI

Tamimi F., Kumarasami B., Doillon C., Gbureck U., Le Nihouannen D., Cabarcos E.L., Barralet J.E. Brushite-collagen composites for bone regeneration. Acta Biomater. 2008;4:1315–1321. doi: 10.1016/j.actbio.2008.04.003. PubMed DOI

Altundal S., Gross K.A. Key Engineering Materials. Volume 800. Trans Tech Publications Ltd.; Wallerau, Switzerland: 2019. Production of a brushite/silk composite powder for coatings; pp. 75–79.

Słota D., Florkiewicz W., Sobczak-Kupiec A. Ceramic-polymer coatings on Ti-6Al-4V alloy modified with L-cysteine in biomedical applications. Mater Today Commun. 2020;25:101301. doi: 10.1016/j.mtcomm.2020.101301. DOI

Cateni F., Zacchigna M., Procida G. Synthesis and Controlled Drug Delivery Studies Of A Novel Ubiquinol-Polyethylene Glycol-Vitamin E adduct. Bioorg. Chem. 2020;105:104329. doi: 10.1016/j.bioorg.2020.104329. PubMed DOI

Tyliszczak B., Pielichowski K. Charakterystyka matryc hydrożelowych—Zastosowania biomedyczne superabsorbentów polimerowych. Czas Tech. 2007;1:160–167.

Zhang X., Qiao J., Zhao H., Huang Z., Liu Y., Fang M., Wu X., Mina X. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning. Chem. Phys. Lett. 2018;691:314–318. doi: 10.1016/j.cplett.2017.11.041. DOI

Arora A., Sharma P., Katti D.S. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization. Carbohydr. Polym. 2015;123:180–189. PubMed

Cheng K.C., Demirci A., Catchmark J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011;92:29–44. doi: 10.1007/s00253-011-3477-y. PubMed DOI

Ritz U., Kögler P., Höfer I., Frank P., Klees S., Gebhard S., Brendel C., Kaufmann K., Hofmann A., Rommens P.M., et al. Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan-amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells. J. Mater. Chem. B. 2016;4:6552–6564. doi: 10.1039/C6TB00654J. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chemistry towards Biology

. 2023 Feb 16 ; 24 (4) : . [epub] 20230216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...