Chemistry towards Biology-Instruct: Snapshot
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MR/V03958X/1
Medical Research Council - United Kingdom
100209/Z/12/Z, 223733/Z/21
Wellcome Trust - United Kingdom
PubMed
36499140
PubMed Central
PMC9739621
DOI
10.3390/ijms232314815
PII: ijms232314815
Knihovny.cz E-zdroje
- Klíčová slova
- biological chemistry, biomaterials, biomolecules, chemical biology, molecular interactions, natural compounds, proteins and nucleic acids, structure and dynamics, targeting, virtual screening,
- MeSH
- molekulární biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.
Institute of Chemistry Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovakia
Institute of Chemistry University of Silesia Szkolna 9 40 007 Katowice Poland
Zobrazit více v PubMed
Buehler L.K. An Introduction to Molecular Interaction in Biological Systems. [(accessed on 16 September 2022)]. Available online: http://www.whatislife.com/reader/interaction-reader.html.
Williams L.D. Molecular Interactions and the Behaviors of Biological Macromolecules. [(accessed on 16 September 2022)]. Available online: https://williams.chemistry.gatech.edu/structure/molecular_interactions/mol_int.html.
Chemistry towards Biology Conference Series. [(accessed on 16 September 2022)]. Available online: http://www-phch.chem.elte.hu.
The European Research Infrastructure Consortium for Structural Biology Research. [(accessed on 11 September 2022)]. Available online: www.instruct-eric.org.
Chemistry towards Biology 10—Instruct. [(accessed on 16 September 2022)]. Available online: https://www.instruct.sav.sk/index.html.
Bak A., Kozik V., Walczak M., Fraczyk J., Kaminski Z., Kolesinska B., Smolinski A., Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies. Molecules. 2018;23:1964. doi: 10.3390/molecules23081964. PubMed DOI PMC
Van de Waterbeemd H., Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI
Rykowski S., Gurda-Woźna D., Orlicka-Płocka M., Fedoruk-Wyszomirska A., Giel-Pietraszuk M., Wyszko E., Kowalczyk A., Stączek P., Bak A., Kiliszek A., et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 2021;22:2772. doi: 10.3390/ijms22052772. PubMed DOI PMC
Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI
Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC
Kos J., Bak A., Kozik V., Jankech T., Strharsky T., Swietlicka A., Michnova H., Hosek J., Smolinski A., Oravec M., et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules. 2020;25:4121. doi: 10.3390/molecules25184121. PubMed DOI PMC
Chrobak E., Marciniec K., Dąbrowska A., Pęcak P., Bębenek E., Kadela-Tomanek M., Bak A., Jastrzębska M., Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study. Int. J. Mol. Sci. 2019;20:5209. doi: 10.3390/ijms20205209. PubMed DOI PMC
Maggiora G.M., Shanmugasundaram V. Molecular similarity measures. Methods Mol. Biol. 2011;672:39–100. PubMed
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC
Michnová H., Pospíšilová Š., Goněc T., Kapustíková I., Kollár P., Kozik V., Musioł R., Jendrzejewska I., Vančo J., Trávníček Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC
Polanski J., Bak A., Gieleciak R., Magdziarz T. Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors. Molecules. 2004;9:1148–1159. doi: 10.3390/91201148. PubMed DOI PMC
Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Model. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI
Potemkin V., Grishina M. Principles for 3D/4D QSAR classification of drugs. Drug Discov. Today. 2008;13:952–959. doi: 10.1016/j.drudis.2008.07.006. PubMed DOI
Polanski J., Bak A. Modeling steric and electronic effects in 3D- and 4D-QSAR schemes: Predicting benzoic pKa values and steroid CBG binding affinities. J. Chem. Inf. Comput. Sci. 2003;43:2081–2092. doi: 10.1021/ci034118l. PubMed DOI
Bak A., Polanski J. A 4D-QSAR study on anti-HIV HEPT analogues. Bioorg. Med. Chem. 2006;14:273–279. doi: 10.1016/j.bmc.2005.08.023. PubMed DOI
Bak A., Polanski J. Modeling Robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI
Bak A. Two Decades of 4D-QSAR: A dying art or staging a comeback? Int. J. Mol. Sci. 2021;22:5212. doi: 10.3390/ijms22105212. PubMed DOI PMC
Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC
Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Pedrosa M., Maldonado-Valderrama J., Gálvez-Ruiz M.J. Interactions between curcumin and cell membrane models by Langmuir monolayers. Colloids Surf. B Biointerfaces. 2022;217:112636. doi: 10.1016/j.colsurfb.2022.112636. PubMed DOI
Scholl F.A., Siqueira J.R., Caseli L. Graphene oxide modulating the bioelectronic properties of penicillinase immobilized in lipid Langmuir–Blodgett films. Langmuir. 2022;38:2372–2378. doi: 10.1021/acs.langmuir.1c03410. PubMed DOI
Peltonen L., Hirvonen J. Physicochemical characterization of nano-and microparticles. Curr. Nanosci. 2008;4:101–107. doi: 10.2174/157341308783591780. DOI
Havre T., Ese M.H., Sjöblom J., Blokhus A. Langmuir films of naphthenic acids at different pH and electrolyte concentrations. Colloid Polym. Sci. 2002;280:647–652. doi: 10.1007/s00396-002-0665-4. DOI
de Souza K.D., Perez K.R., Duran N., Justo G.Z., Caseli L. Interaction of violacein in models for cellular membranes: Regulation of the interaction by the lipid composition at the air-water interface. Colloids Surf. B Biointerfaces. 2017;160:247–253. doi: 10.1016/j.colsurfb.2017.09.027. PubMed DOI
Olżyńska A., Wizert A., Štefl M., Iskander D.R., Cwiklik L. Mixed polar-nonpolar lipid films as minimalistic models of tear film lipid layer: A Langmuir trough and fluorescence microscopy study. Biochim. Biophys. Acta Biomembr. 2020;1862:183300. doi: 10.1016/j.bbamem.2020.183300. PubMed DOI
Cañadas O., García-García A., Prieto M.A., Pérez-Gil J. Polyhydroxyalkanoate nanoparticles for pulmonary drug delivery: Interaction with lung surfactant. Nanomaterials. 2021;11:1482. doi: 10.3390/nano11061482. PubMed DOI PMC
Huo J., Le Bas A., Ruza R.R., Duyvesteyn H.M., Mikolajek H., Malinauskas T., Tan T.K., Rijal P., Dumoux M., Ward P.N., et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct Mol Biol. 2020;27:846–854. doi: 10.1038/s41594-020-0469-6. PubMed DOI
Mikolajek H., Weckner M., Brotzakis Z., Huo J., Dalietou E., Le Bas A., Sormanni P., Harrison P.J., Ward P.N., Truong S., et al. Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proc. Natl. Acad. Sci. USA. 2022;119:e2205412119. doi: 10.1073/pnas.2205412119. PubMed DOI PMC
Bonomi M., Pellarin R., Vendruscolo M. Simultaneous determination of protein structure and dynamics using cryo-electron microscopy. Biophys. J. 2018;114:1604–1613. doi: 10.1016/j.bpj.2018.02.028. PubMed DOI PMC
Bonomi M., Vendruscolo M. Determination of protein structural ensembles usingcryo-electron microscopy. Curr.Opin. Struct. Biol. 2019;56:37–45. doi: 10.1016/j.sbi.2018.10.006. PubMed DOI
Girt G.C., Lakshminarayan A., Huo J., Dormon J., Norman C., Afrough B., Harding A., James W., Owens R.J., Naismith J.H. The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein R. Soc. Open Sci. 2021;8:211016. doi: 10.1098/rsos.211016. PubMed DOI PMC
Huo J., Mikolajek H., Le Bas A., Clark J.L., Sharma P., Kipar A., Dormon J., Norman C., Weckener M., Clare D.K., et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat. Commun. 2021;12:5469. doi: 10.1038/s41467-021-25480-z. PubMed DOI PMC
Dyson H.J., Wright P.E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding Protein (CBP) and p300. J. Biol. Chem. 2016;291:6714–6722. doi: 10.1074/jbc.R115.692020. PubMed DOI PMC
The IntFOLD Integrated Protein Structure and Function Prediction Server. [(accessed on 16 September 2022)]. Available online: https://www.reading.ac.uk/bioinf/IntFOLD/
Gunasekaran K., Tsai C.J., Kumar S., Zanuy D., Nussinov R. Extended disordered proteins: Targeting function with less scaffold. Trends Biochem. Sci. 2005;28:81–85. doi: 10.1016/S0968-0004(03)00003-3. PubMed DOI
Piai A., Calçada E.O., Tarenzi T., del Grande A., Varadi M., Tompa P., Felli I.C., Pierattelli R. Just a Flexible Linker? The structural and dynamic properties of CBP-ID4 revealed by NMR spectroscopy. Biophys. J. 2016;110:372–381. doi: 10.1016/j.bpj.2015.11.3516. PubMed DOI PMC
Contreras-Martos S., Piai A., Kosol S., Varadi M., Bekesi A., Lebrun P., Volkov A.N., Gevaert K., Pierattelli R., Felli I.C., et al. Linking functions: An additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci. Rep. 2017;7:4676. doi: 10.1038/s41598-017-04611-x. PubMed DOI PMC
Kosol S., Contreras-Martos S., Piai A., Varadi M., Lazar T., Bekesi A., Lebrun P., Felli I.C., Pierattelli R., Tompa P. Interaction between the scaffold proteins CBP by IQGAP1 provides an interface between gene expression and cytoskeletal activity. Sci. Rep. 2020;10:5753. doi: 10.1038/s41598-020-62069-w. PubMed DOI PMC
Murrali M.G., Felli I.C., Pierattelli R. Adenoviral E1A exploits flexibility and disorder to target cellular proteins. Biomolecules. 2020;10:1541. doi: 10.3390/biom10111541. PubMed DOI PMC
Habchi J., Tompa P., Longhi S., Uversky V.N. Introducing protein intrinsic disorder. Chem. Rev. 2014;114:6561–6588. doi: 10.1021/cr400514h. PubMed DOI
Marsh J.A., Singh V.K., Jia Z., Forman-Kay J.D. Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: Implications for fibrillation. Protein Sci. 2006;15:2795–2804. doi: 10.1110/ps.062465306. PubMed DOI PMC
Neighbor Corrected Structural Propensity Calculator. [(accessed on 16 September 2022)]. Available online: https://st-protein02.chem.au.dk/ncSPC/
Periasamy M., Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve. 2007;35:430–442. doi: 10.1002/mus.20745. PubMed DOI
Ikeda Y. Modification of sarco-endoplasmic reticulum Ca(2+)-ATPase in the failing cardiomyocyte. Clin. Calcium. 2013;23:535–542. PubMed
Brini M., Calì T., Ottolini D., Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J. 2013;280:5385–5397. doi: 10.1111/febs.12193. PubMed DOI
Marambaud P., Dreses-Werringloer U., Vingtdeux V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 2009;4:20–28. doi: 10.1186/1750-1326-4-20. PubMed DOI PMC
Viskupicova J., Majekova M., Horakova L. Inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA1) by rutin derivatives. J. Muscle Res. Cell Motil. 2015;36:183–194. doi: 10.1007/s10974-014-9402-0. PubMed DOI
Kang S., Dahl R., Hsieh W., Shin A., Zsebo K.M., Buettner C., Hajjar R.J., Lebeche D. Small molecular allosteric activator of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J. Biol. Chem. 2016;291:5185–5198. doi: 10.1074/jbc.M115.705012. PubMed DOI PMC
YASARA Biosciences GmbH, Vienna, Austria. [(accessed on 16 September 2022)]. Available online: www.yasara.org.
Rodríguez Y., Májeková M. Structural changes of sarco/endoplasmic reticulum Ca2+-ATPase induced by rutin arachidonate: A molecular dynamics study. Biomolecules. 2020;10:214. doi: 10.3390/biom10020214. PubMed DOI PMC
Clausen J.D., McIntosh D.B., Woolley D.G., Andersen J.P. Modulatory ATP binding affinity in intermediate 978 states of E2P dephosphorylation of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 2011;286:11792–11802. doi: 10.1074/jbc.M110.206094. PubMed DOI PMC
Clausen J.D., Andersen J.P. Glutamate 90 at the luminal ion gate of sarcoplasmic reticulum Ca2+-ATPase is 981 critical for Ca2+ binding on both sides of the membrane. J. Biol. Chem. 2010;285:20780–20792. doi: 10.1074/jbc.M110.116459. PubMed DOI PMC
Mrozek-Wilczkiewicz A., Spaczynska E., Malarz K., Cieslik W., Rams-Baron M., Krystof V., Musiol R. Design, Synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS ONE. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC
Krawczyk M., Pastuch-Gawolek G., Mrozek-Wilczkiewicz A., Kuczak M., Skonieczna M., Musiol R. Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their beta1,4-GalT inhibitory and anti-cancer properties. Bioorg. Chem. 2019;84:326–338. doi: 10.1016/j.bioorg.2018.11.047. PubMed DOI
Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI
Mularski J., Malarz K., Pacholczyk M., Musiol R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur. J. Med. Chem. 2019;163:610–625. doi: 10.1016/j.ejmech.2018.12.012. PubMed DOI
Malarz K., Mularski J., Pacholczyk M., Musiol R. The landscape of the anti-kinase activity of the IDH1 inhibitors. Cancers. 2020;12:536. doi: 10.3390/cancers12030536. PubMed DOI PMC
Malarz K., Mularski J., Kuczak M., Mrozek-Wilczkiewicz A., Musiol R. Novel benzenesulfonate scaffolds with a high anticancer activity and G2/M cell cycle arrest. Cancers. 2021;13:1790. doi: 10.3390/cancers13081790. PubMed DOI PMC
Serda M., Kalinowski D.S., Rasko N., Potuckova E., Mrozek-Wilczkiewicz A., Musiol R., Malecki J.G., Sajewicz M., Ratuszna A., Muchowicz A., et al. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: Dissection of critical structure-activity relationships. PLoS ONE. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC
Malarz K., Mrozek-Wilczkiewicz A., Serda M., Rejmund M., Polanski J., Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget. 2018;9:17689–17710. doi: 10.18632/oncotarget.24844. PubMed DOI PMC
Rejmund M., Mrozek-Wilczkiewicz A., Malarz K., Pyrkosz-Bulska M., Gajcy K., Sajewicz M., Musiol R., Polanski J. Piperazinyl fragment improves anticancer activity of triapine. PLoS ONE. 2018;13:e0188767. doi: 10.1371/journal.pone.0188767. PubMed DOI PMC
Mrozek-Wilczkiewicz A., Malarz K., Rejmund M., Polanski J., Musiol R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem. 2019;171:180–194. doi: 10.1016/j.ejmech.2019.03.027. PubMed DOI
Musiol R., Malecki P., Pacholczyk M., Mularski J. Terpyridines as promising antitumor agents: An overview of their discovery and development. Expert Opin. Drug Discov. 2022;17:259–271. doi: 10.1080/17460441.2022.2017877. PubMed DOI
Wei C., He Y., Shi X., Song Z. Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. Coord. Chem. Rev. 2019;385:1–19. doi: 10.1016/j.ccr.2019.01.005. PubMed DOI PMC
Schwarz G., Hasslauer I., Kurth D.G. From terpyridine-based assemblies to metallo-supramolecular polyelectrolytes (MEPEs) Adv. Colloid. Interface Sci. 2014;207:107–120. doi: 10.1016/j.cis.2013.12.010. PubMed DOI
Saccone D., Magistris C., Barbero N., Quagliotto P., Barolo C., Viscardi G. Terpyridine and quaterpyridine complexes as sensitizers for photovoltaic applications. Materials. 2016;9:137. doi: 10.3390/ma9030137. PubMed DOI PMC
Monro S., Colon K.L., Yin H., Roque J., Konda P., Gujar S., Thummel R.P., Lilge L., Cameron C.G., McFarland S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC
Beller G., Lente G., Fabian I. Kinetics and mechanism of the autocatalytic oxidation of bis(terpyridine)iron(II) by peroxomonosulfate ion (oxone) in acidic medium. Inorg. Chem. 2017;56:8270–8277. doi: 10.1021/acs.inorgchem.7b00981. PubMed DOI
Delgado G.Y.S., Paschoal D., de Oliveira M.A.L., Dos Santos H.F. Structure and redox stability of [Au(III)(X^N^X)PR3] complexes (X=C or N) in aqueous solution: The role of phosphine auxiliary ligand. J. Inorg. Biochem. 2019;200:110804. doi: 10.1016/j.jinorgbio.2019.110804. PubMed DOI
Grau J., Caubet A., Roubeau O., Montpeyo D., Lorenzo J., Gamez P. Time-dependent cytotoxic properties of terpyridine-based copper complexes. Chembiochem. 2020;21:2348–2355. doi: 10.1002/cbic.202000154. PubMed DOI
Miller C.J., Rose A.L., Waite T.D. Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Front. Mar. Sci. 2016;3:134. doi: 10.3389/fmars.2016.00134. DOI
Malarz K., Zych D., Gawecki R., Kuczak M., Musiol R., Mrozek-Wilczkiewicz A. New derivatives of 4’-phenyl-2,2’:6’,2’’-terpyridine as promising anticancer agents. Eur. J. Med. Chem. 2021;212:113032. doi: 10.1016/j.ejmech.2020.113032. PubMed DOI
Malarz K., Zych D., Kuczak M., Musiol R., Mrozek-Wilczkiewicz A. Anticancer activity of 4’-phenyl-2,2’:6’,2’’-terpyridines—Behind the metal complexation. Eur. J. Med. Chem. 2020;189:112039. doi: 10.1016/j.ejmech.2020.112039. PubMed DOI
Zych D., Slodek A., Krompiec S., Malarz K., Mrozek-Wilczkiewicz A., Musiol R. 4′-Phenyl-2,2′:6′,2″-terpyridine Derivatives Containing 1-Substituted-2,3-Triazole Ring: Synthesis, Characterization and Anticancer Activity. ChemistrySelect. 2018;3:7009–7017. doi: 10.1002/slct.201801204. DOI
Rosenberg B., Van Camp L., Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–699. doi: 10.1038/205698a0. PubMed DOI
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Anthony E.J., Bolitho E.M., Bridgewater H.E., Carter O.W.L., Donnelly J.M., Imberti C., Lant E.C., Lermyte F., Needham R.J., Palau M., et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020;11:12888–12917. doi: 10.1039/D0SC04082G. PubMed DOI PMC
Berger M.R., Garzon F.T., Keppler B.K., Schmahl D. Efficacy of new ruthenium complexes against chemically induced autochthonous colorectal carcinoma in rats. Anticancer Res. 1989;9:761–765. PubMed
Štarha P., Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev. 2019;395:130–145. doi: 10.1016/j.ccr.2019.06.001. DOI
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Štarha P., Trávníček Z., Vančo J., Dvořák Z. Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules. 2018;23:420. doi: 10.3390/molecules23020420. PubMed DOI PMC
Madhok B.M., Yeluri S., Perry S.L., Hughes T.A., Jayne D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer. 2010;102:1746–1752. doi: 10.1038/sj.bjc.6605701. PubMed DOI PMC
Pracharova J., Novohradsky V., Kostrhunova H., Štarha P., Trávníček Z., Kasparkova J., Brabec V. Half-sandwich Os(II) and Ru(II) bathophenanthroline complexes: Anticancer drug candidates with unusual potency and a cellular activity profile in highly invasive triple-negative breast cancer cells. Dalton Trans. 2018;47:12197–12208. doi: 10.1039/C8DT02236D. PubMed DOI
Novohradsky V., Markova L., Kostrhunova H., Trávníček Z., Brabec V., Kasparkova J. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Sci. Rep. 2019;9:13327. doi: 10.1038/s41598-019-49774-x. PubMed DOI PMC
Masaryk L., Nemec I., Kašpárková J., Brabec V., Štarha P. Unexpected solution behaviour of ester-functionalized half-sandwich Ru(II) and Ir(III) complexes. Dalton Trans. 2021;50:8017–8028. doi: 10.1039/D1DT00466B. PubMed DOI
Masaryk L., Muthná D., Halaš P., Zoufalý P., Peterová E., Havelek R., Drahoš B., Milde D., Mrkvicová A., Štarha P. Stability of a half-sandwich Os(II) complex with indomethacin-functionalized ligand in the presence of carboxypeptidase A. Dalton Trans. 2022;51:9213–9217. doi: 10.1039/D2DT01085B. PubMed DOI
Masaryk L., Orvoš J., Słoczyńska K., Herchel R., Moncol J., Milde D., Halaš P., Křikavová R., Koczurkiewicz-Adamczyk P., Pękala E., et al. Anticancer half-sandwich Ir(III) complex and its interaction with various biomolecules and their mixtures—A case study with ascorbic acid. Inorg. Chem. Front. 2022;9:3758–3770. doi: 10.1039/D2QI00535B. DOI
Štarha P., Trávníček Z., Dvořák Z. A cytotoxic tantalum(V) half-sandwich complex: A new challenge for metal-based anticancer agents. Chem. Commun. 2018;54:9533–9536. doi: 10.1039/C8CC05223A. PubMed DOI
Kulkarni A.P., Kong X., Jenekhe S.A. High-performance organic light-emitting diodes based on intramolecular charge-transfer emission from donor–acceptor molecules: Significance of electron- donor strength and molecular geometry. Adv. Funct. Mater. 2006;16:1057–1066. doi: 10.1002/adfm.200500722. DOI
Tacca A., Po R., Caldararo M., Chiaberge S., Gila L., Longo L., Mussini P.R., Pellegrino A., Perin N., Salvalaggio M., et al. Ternary thiophene-X-thiophene semiconductor building blocks (X = fluorene, carbazole, phenothiazine): Modulating electronic properties and electropolymerization ability by tuning the X core. Electrochim. Acta. 2011;56:6638–6653. doi: 10.1016/j.electacta.2011.05.036. DOI
Slodek A., Zych D., Kotowicz S., Szafraniec-Gorol G., Zimosz S., Schab-Balcerzak E., Siwy M., Grzelak J., Maćkowski S. “Small in size but mighty in force”—The first principle study of the impact of A/D units in A/D-phenyl-π-phenothiazine-π-dicyanovinyl systems on photophysical and optoelectronic properties. Dye. Pigment. 2021;189:109248. doi: 10.1016/j.dyepig.2021.109248. DOI
Slodek A., Zych D., Golba S., Zimosz S., Gnida P., Schab-Balcerzak E. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. J. Mat. Chem. C. 2019;7:5830–5840. doi: 10.1039/C9TC01727E. DOI
Slodek A., Zych D., Szafraniec-Gorol G., Gnida P., Vasylieva M., Schab-Balcerzak E. Investigations of new phenothiazine-based compounds for dye-sensitized solar cells with theoretical insight. Materials. 2020;13:2292. doi: 10.3390/ma13102292. PubMed DOI PMC
Zimosz S., Slodek A., Gnida P., Glinka A., Ziółek M., Zych D., Pająk A.K., Vasylieva M., Schab-Balcerzak E. New D−π–D−π–A systems based on phenothiazine derivatives with imidazole structures for photovoltaics. J. Phys. Chem. C. 2022;126:8986–8999. doi: 10.1021/acs.jpcc.2c01697. DOI
Pluta K., Morak-Mlodawska B., Jelen M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011;46:3179–3189. doi: 10.1016/j.ejmech.2011.05.013. PubMed DOI
Matada M.N., Jathi K., Rangappa M.M., Geoffry K., Kumar S.R., Nagarajappa R.B., Zahara F.N. A new sulphur containing heterocycles having azo linkage: Synthesis, structural characterization and biological evaluation. J. King Saud Univ. Sci. 2020;32:3313–3320. doi: 10.1016/j.jksus.2020.09.016. DOI
Zimosz S., Zych D., Szafraniec-Gorol G., Kotowicz S., Malarz K., Musioł R., Slodek A. Does the change in the length of the alkyl chain bring us closer to the compounds with the expected photophysical and biological properties?—Studies based on D-π-D-A imidazole-phenothiazine system. J. Mol. Liq. 2022;365:120076. doi: 10.1016/j.molliq.2022.120076. DOI
Slodek A., Zych D., Maroń A., Gawecki R., Mrozek-Wilczkiewicz A., Malarz K., Musioł R. Phenothiazine derivatives—Synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties. J. Mol. Liq. 2019;285:515–525. doi: 10.1016/j.molliq.2019.04.102. DOI
Kraemer C.S., Zeitler K., Mueller T.J.J. Synthesis of functionalized ethynylphenothiazine fluorophores. Org. Lett. 2000;2:3723–3726. doi: 10.1021/ol0066328. PubMed DOI
Qiu X., Lu R., Zhou H., Zhang X., Xu T., Liu X., Zhao Y. Synthesis of linear monodisperse vinylene-linked phenothiazine oligomers. Tetrahedron Lett. 2007;48:7582–7585. doi: 10.1016/j.tetlet.2007.09.002. DOI
Zhou N., Wang L., Thompson D.W., Zhao Y. OPE/OPV H-mers: Synthesis, electronic properties, and spectroscopic responses to binding with transition metal ions. Tetrahedron. 2011;67:125–143. doi: 10.1016/j.tet.2010.11.012. DOI
Wan W., Wang H., Lin H., Wang J., Jiang Y., Jiang H., Zhu S., Wang Z., Hao J. Synthesis, electrochemical, photophysical, and electroluminescent properties of organic dyes containing pyrazolo [3,4-b]quinoline chromophores. Dyes Pigment. 2015;121:138–146. doi: 10.1016/j.dyepig.2015.05.002. DOI
Kraemer C.S., Mueller T.J.J. Synthesis and electronic properties of alkynylated phenothiazines. Eur. J. Org. Chem. 2003;18:3534–3548. doi: 10.1002/ejoc.200300250. DOI
Chen F.M., Liu X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016;53:86–168. PubMed PMC
Othman Z., Cillero Pastor B., van Rijt S., Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 2018;167:191–204. doi: 10.1016/j.biomaterials.2018.03.020. PubMed DOI
Jurczyk M., Jakubowicz J. Bionanomateriały. Wydawnictwo Politechniki Poznańskiej; Poznań, Poland: 2008.
Mosas K.K.A., Chandrasekar A.R., Dasan A., Pakseresht A., Galusek D. Recent advancements in materials and coatings for biomedical implants. Gels. 2022;8:323. doi: 10.3390/gels8050323. PubMed DOI PMC
Gloria A., De Santis R., Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomater. Biomech. 2010;8:57–67. PubMed
Świeczko-Żurek B. Biomateriały. Wydawnicwo Politech Gdańskiej; Gdańsk, Poland: 2009. pp. 32–45.
Boanini E., Silingardi F., Gazzano M., Bigi A. Synthesis and hydrolysis of brushite (DCPD): The role of ionic substitution. Cryst. Growth Des. 2021;21:1689–1697. doi: 10.1021/acs.cgd.0c01569. DOI
Singh S., Singh V., Aggarwal S., Mandal U.K. Synthesis of brushite nanoparticles at different temperatures. Chem. Pap. 2010;64:491–498. doi: 10.2478/s11696-010-0032-8. DOI
Grover L.M., Knowles J.C., Fleming G.J.P., Barralet J.E. In vitro ageing of brushite calcium phosphate cement. Biomaterials. 2003;24:4133–4141. doi: 10.1016/S0142-9612(03)00293-X. PubMed DOI
Penel G., Leroy N., Van Landuyt P., Flautre B., Hardouin P., Lemaître J., Leroy G. Raman microspectrometry studies of brushite cement: In vivo evolution in a sheep model. Bone. 1999;25((Suppl. S1)):81–84. doi: 10.1016/S8756-3282(99)00139-8. PubMed DOI
Pina S., Ferreira J.M.F. Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials. 2010;3:519–535. doi: 10.3390/ma3010519. DOI
Tamimi F., Kumarasami B., Doillon C., Gbureck U., Le Nihouannen D., Cabarcos E.L., Barralet J.E. Brushite-collagen composites for bone regeneration. Acta Biomater. 2008;4:1315–1321. doi: 10.1016/j.actbio.2008.04.003. PubMed DOI
Altundal S., Gross K.A. Key Engineering Materials. Volume 800. Trans Tech Publications Ltd.; Wallerau, Switzerland: 2019. Production of a brushite/silk composite powder for coatings; pp. 75–79.
Słota D., Florkiewicz W., Sobczak-Kupiec A. Ceramic-polymer coatings on Ti-6Al-4V alloy modified with L-cysteine in biomedical applications. Mater Today Commun. 2020;25:101301. doi: 10.1016/j.mtcomm.2020.101301. DOI
Cateni F., Zacchigna M., Procida G. Synthesis and Controlled Drug Delivery Studies Of A Novel Ubiquinol-Polyethylene Glycol-Vitamin E adduct. Bioorg. Chem. 2020;105:104329. doi: 10.1016/j.bioorg.2020.104329. PubMed DOI
Tyliszczak B., Pielichowski K. Charakterystyka matryc hydrożelowych—Zastosowania biomedyczne superabsorbentów polimerowych. Czas Tech. 2007;1:160–167.
Zhang X., Qiao J., Zhao H., Huang Z., Liu Y., Fang M., Wu X., Mina X. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning. Chem. Phys. Lett. 2018;691:314–318. doi: 10.1016/j.cplett.2017.11.041. DOI
Arora A., Sharma P., Katti D.S. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization. Carbohydr. Polym. 2015;123:180–189. PubMed
Cheng K.C., Demirci A., Catchmark J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011;92:29–44. doi: 10.1007/s00253-011-3477-y. PubMed DOI
Ritz U., Kögler P., Höfer I., Frank P., Klees S., Gebhard S., Brendel C., Kaufmann K., Hofmann A., Rommens P.M., et al. Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan-amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells. J. Mater. Chem. B. 2016;4:6552–6564. doi: 10.1039/C6TB00654J. PubMed DOI