Design, Synthesis and In Vitro Activity of Anticancer Styrylquinolines. The p53 Independent Mechanism of Action

. 2015 ; 10 (11) : e0142678. [epub] 20151123

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26599982

A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.

Zobrazit více v PubMed

Mekouar K, Mouscadet JF, Desmaële D, Subra F, Leh H, Savouré D, et al. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem. 1998;41: 2846–57. 10.1021/jm980043e PubMed DOI

Cieslik W, Musiol R, Nycz JE, Jampilek J, Vejsova M, Wolff M, et al. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg Med Chem. 2012;20: 6960–8. 10.1016/j.bmc.2012.10.027 PubMed DOI

Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, et al. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J Virol. 2004;78: 5728–36. 10.1128/JVI.78.11.5728-5736.2004 PubMed DOI PMC

Polanski J, Niedbala H, Musiol R, Tabak D, Podeszwa B, Gieleciak R, et al. Analogues of styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: design and synthetic problems. Acta Pol Pharm Drug Res. 2004;61: 3–4. PubMed

Solomon R, Lee H. Quinoline as a Privileged Scaffold in Cancer Drug Discovery. Curr Med Chem. 2011;18: 1488–1508. PubMed

Musiol R, Tabak D, Niedbala H, Podeszwa B, Jampilek J, Kralova K, et al. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorg Med Chem. 2008;16: 4490–9. 10.1016/j.bmc.2008.02.065 PubMed DOI

Musiol R, Jampilek J, Kralova K, Richardson DR, Kalinowski D, Podeszwa B, et al. Investigating biological activity spectrum for novel quinoline analogues. Bioorg Med Chem. 2007;15: 1280–8. 10.1016/j.bmc.2006.11.020 PubMed DOI

Podeszwa B, Niedbala H, Polanski J, Musiol R, Tabak D, Finster J, et al. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg Med Chem Lett. 2007;17: 6138–41. 10.1016/j.bmcl.2007.09.040 PubMed DOI

Mrozek-Wilczkiewicz A, Kalinowski DS, Musiol R, Finster J, Szurko A, Serafin K, et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg Med Chem. 2010;18: 2664–71. 10.1016/j.bmc.2010.02.025 PubMed DOI

Fang Y, Linardic CM, Richardson DA, Cai W, Behforouz M, Abraham RT. Characterization of the cytotoxic activities of novel analogues of the antitumor agent, lavendamycin. Mol Cancer Ther. 2003;2: 517–26. PubMed

Nycz JE, Malecki G, Ponikiewski L, Leboschka M, Nowak M, Kusz J. Synthesis, spectroscopy and computational studies of some novel phosphorylated derivatives of quinoline-5,8-diones. J Mol Struct. 2011;986: 39–48. 10.1016/j.molstruc.2010.11.032 DOI

Hassani M, Cai W, Holley DC, Lineswala JP, Maharjan BR, Ebrahimian GR, et al. Novel lavendamycin analogues as antitumor agents: synthesis, in vitro cytotoxicity, structure-metabolism, and computational molecular modeling studies with NAD(P)H:quinone oxidoreductase 1. J Med Chem. 2005;48: 7733–49. 10.1021/jm050758z PubMed DOI

Behforouz M, Cai W, Mohammadi F, Stocksdale MG, Gu Z, Ahmadian M, et al. Synthesis and evaluation of antitumor activity of novel N-acyllavendamycin analogues and quinoline-5,8-diones. Bioorg Med Chem. 2007;15: 495–510. 10.1016/j.bmc.2006.09.039 PubMed DOI PMC

Jiang JB, Hesson DP, Dusak BA, Dexter DL, Kang GJ, Hamel E. Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J Med Chem. 1990;33: 1721–8. PubMed

Staples OD, Steele RJC, Lain S. P53 as a therapeutic target. Surg. Royal College of Surgeons of Edinburgh and Royal College of Surgeons in Ireland; 2008;6: 240–243. 10.1016/S1479-666X(08)80034-0 PubMed DOI

Selivanova G. Therapeutic targeting of p53 by small molecules. Semin Cancer Biol. Elsevier Ltd; 2010;20: 46–56. 10.1016/j.semcancer.2010.02.006 PubMed DOI

Lain S. Drug discovery in the p53 field. Semin Cancer Biol. 2010;20: 1–2. 10.1016/j.semcancer.2010.03.003 PubMed DOI

Bykov VJN, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer. 2003;39: 1828–1834. 10.1016/S0959-8049(03)00454-4 PubMed DOI

Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 2002;1: 47–55. PubMed

Sahu U, Sidhar H, Ghate PS, Advirao GM, Raghavan SC, Giri RK. A novel anticancer agent, 8-methoxypyrimido [4’,5':4,5]thieno(2,3-b) quinoline-4(3H)-one induces neuro 2a neuroblastoma cell death through p53-dependent, caspase-dependent and -independent apoptotic pathways. PLoS One. 2013;8: e66430 10.1371/journal.pone.0066430 PubMed DOI PMC

Roh J-L, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. Elsevier Ltd; 2011;47: 8–15. 10.1016/j.oraloncology.2010.10.011 PubMed DOI PMC

Demma MJ, Wong S, Maxwell E, Dasmahapatra B. CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem. 2004;279: 45887–96. 10.1074/jbc.M401854200 PubMed DOI

Brown CJ, Cheok CF, Verma CS, Lane DP. Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci. Elsevier Ltd; 2011;32: 53–62. 10.1016/j.tips.2010.11.004 PubMed DOI

Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 2003;22: 8233–45. 10.1038/sj.onc.1207198 PubMed DOI

Sutherland HS, Hwang IY, Marshall ES, Lindsay BS, Denny WA, Gilchrist C, et al. Therapeutic reactivation of mutant p53 protein by quinazoline derivatives. Invest New Drugs. 2012;30: 2035–45. 10.1007/s10637-011-9744-z PubMed DOI

Luu Y, Bush J, Cheung K-J, Li G. The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res. 2002;276: 214–22. 10.1006/excr.2002.5526 PubMed DOI

Wang W, Takimoto R, Rastinejad F, El-Deiry WS. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 2003;23: 2171–2181. 10.1128/MCB.23.6.2171-2181.2003 PubMed DOI PMC

Polanski J, Kurczyk A, Bak A, Musiol R. Privileged structures—dream or reality: preferential organization of azanaphthalene scaffold. Curr Med Chem. 2012;19: 1921–45. PubMed

Musiol R, Jampilek J, Nycz JE, Pesko M, Carroll J, Kralova K, et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15: 288–304. 10.3390/molecules15010288 PubMed DOI PMC

Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B, et al. Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem. 2006;14: 3592–8. 10.1016/j.bmc.2006.01.016 PubMed DOI

Musiol R, Magdziarz T, Kurczyk A. Quinoline scaffold as a privileged substructure in antimicrobial drugs In: Mendez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz, Spain: Formatex; 2011. pp. 72–83.

Jampilek J, Musiol R, Finster J, Pesko M, Carroll J, Kralova K, et al. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14: 4246–4265. 10.3390/molecules14104246 PubMed DOI PMC

Cieslik W, Musiol R, Korzec M. Synthesis of alkyne-substituted quinolines as analogues of allylamines. Int Bull Pharm Sci. 2012;1: 3–9.

Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, et al. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett. 2013;4: 170–174. 10.1021/ml300238z PubMed DOI PMC

Musiol R, Jampilek J, Podeszwa B, Finster J, Tabak D, Dohnal J, et al. RP-HPLC determination of lipophilicity in series of quinoline derivatives. Cent Eur J Chem. 2009;7: 586–597. 10.2478/s11532-009-0059-2 DOI

Musiol R, Serda M, Hensel-Bielowka S, Polanski J. Quinoline-based antifungals. Curr Med Chem. 2010;17: 1960–73. PubMed

Rams-Baron M, Dulski M, Mrozek-Wilczkiewicz A, Korzec M, Cieslik W, Spaczyńska E, et al. Synthesis of new styrylquinoline cellular dyes, fluorescent properties, cellular localization and cytotoxic behavior. PLoS One. 2015;10: e0131210 10.1371/journal.pone.0131210 PubMed DOI PMC

Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev. 2007;59: 729–38. 10.1016/j.addr.2007.06.004 PubMed DOI PMC

Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144: 281–92. PubMed PMC

Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15: 725–31. PubMed

Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397: 441–6. 10.1038/17135 PubMed DOI

Ashley N, Poulton J. Anticancer DNA intercalators cause p53-dependent mitochondrial DNA nucleoid re-modelling. Oncogene. Nature Publishing Group; 2009;28: 3880–3891. 10.1038/onc.2009.242 PubMed DOI PMC

Ashley N, Poulton J. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun. 2009;378: 450–455. 10.1016/j.bbrc.2008.11.059 PubMed DOI

Lukin DJ, Carvajal LA, Liu WJ, Resnick-Silverman L, Manfredi JJ. P53 promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol Cancer Res. 2015;13: 16–28. 10.1158/1541-7786.MCR-14-0177 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...