Design, Synthesis and In Vitro Activity of Anticancer Styrylquinolines. The p53 Independent Mechanism of Action
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26599982
PubMed Central
PMC4657899
DOI
10.1371/journal.pone.0142678
PII: PONE-D-15-33613
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- chinoliny chemie MeSH
- DNA chemie MeSH
- doxorubicin chemie MeSH
- fibroblasty metabolismus MeSH
- HCT116 buňky účinky léků MeSH
- hydrolýza MeSH
- inhibiční koncentrace 50 MeSH
- interkalátory chemie MeSH
- karcinom farmakoterapie genetika MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- mutace MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- nádory tračníku farmakoterapie genetika MeSH
- proliferace buněk MeSH
- protinádorové látky chemická syntéza chemie MeSH
- racionální návrh léčiv * MeSH
- screeningové testy protinádorových léčiv MeSH
- spektrofotometrie ultrafialová MeSH
- tubulin chemie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chinoliny MeSH
- DNA MeSH
- doxorubicin MeSH
- interkalátory MeSH
- kaspasy MeSH
- nádorový supresorový protein p53 MeSH
- protinádorové látky MeSH
- styrylquinoline MeSH Prohlížeč
- TP53 protein, human MeSH Prohlížeč
- tubulin MeSH
A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.
A Chełkowski Institute of Physics University of Silesia Katowice Poland
Institute of Chemistry University of Silesia Katowice Poland
Silesian Center for Education and Interdisciplinary Research University of Silesia Chorzów Poland
Zobrazit více v PubMed
Mekouar K, Mouscadet JF, Desmaële D, Subra F, Leh H, Savouré D, et al. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem. 1998;41: 2846–57. 10.1021/jm980043e PubMed DOI
Cieslik W, Musiol R, Nycz JE, Jampilek J, Vejsova M, Wolff M, et al. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg Med Chem. 2012;20: 6960–8. 10.1016/j.bmc.2012.10.027 PubMed DOI
Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, et al. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J Virol. 2004;78: 5728–36. 10.1128/JVI.78.11.5728-5736.2004 PubMed DOI PMC
Polanski J, Niedbala H, Musiol R, Tabak D, Podeszwa B, Gieleciak R, et al. Analogues of styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: design and synthetic problems. Acta Pol Pharm Drug Res. 2004;61: 3–4. PubMed
Solomon R, Lee H. Quinoline as a Privileged Scaffold in Cancer Drug Discovery. Curr Med Chem. 2011;18: 1488–1508. PubMed
Musiol R, Tabak D, Niedbala H, Podeszwa B, Jampilek J, Kralova K, et al. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorg Med Chem. 2008;16: 4490–9. 10.1016/j.bmc.2008.02.065 PubMed DOI
Musiol R, Jampilek J, Kralova K, Richardson DR, Kalinowski D, Podeszwa B, et al. Investigating biological activity spectrum for novel quinoline analogues. Bioorg Med Chem. 2007;15: 1280–8. 10.1016/j.bmc.2006.11.020 PubMed DOI
Podeszwa B, Niedbala H, Polanski J, Musiol R, Tabak D, Finster J, et al. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg Med Chem Lett. 2007;17: 6138–41. 10.1016/j.bmcl.2007.09.040 PubMed DOI
Mrozek-Wilczkiewicz A, Kalinowski DS, Musiol R, Finster J, Szurko A, Serafin K, et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg Med Chem. 2010;18: 2664–71. 10.1016/j.bmc.2010.02.025 PubMed DOI
Fang Y, Linardic CM, Richardson DA, Cai W, Behforouz M, Abraham RT. Characterization of the cytotoxic activities of novel analogues of the antitumor agent, lavendamycin. Mol Cancer Ther. 2003;2: 517–26. PubMed
Nycz JE, Malecki G, Ponikiewski L, Leboschka M, Nowak M, Kusz J. Synthesis, spectroscopy and computational studies of some novel phosphorylated derivatives of quinoline-5,8-diones. J Mol Struct. 2011;986: 39–48. 10.1016/j.molstruc.2010.11.032 DOI
Hassani M, Cai W, Holley DC, Lineswala JP, Maharjan BR, Ebrahimian GR, et al. Novel lavendamycin analogues as antitumor agents: synthesis, in vitro cytotoxicity, structure-metabolism, and computational molecular modeling studies with NAD(P)H:quinone oxidoreductase 1. J Med Chem. 2005;48: 7733–49. 10.1021/jm050758z PubMed DOI
Behforouz M, Cai W, Mohammadi F, Stocksdale MG, Gu Z, Ahmadian M, et al. Synthesis and evaluation of antitumor activity of novel N-acyllavendamycin analogues and quinoline-5,8-diones. Bioorg Med Chem. 2007;15: 495–510. 10.1016/j.bmc.2006.09.039 PubMed DOI PMC
Jiang JB, Hesson DP, Dusak BA, Dexter DL, Kang GJ, Hamel E. Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J Med Chem. 1990;33: 1721–8. PubMed
Staples OD, Steele RJC, Lain S. P53 as a therapeutic target. Surg. Royal College of Surgeons of Edinburgh and Royal College of Surgeons in Ireland; 2008;6: 240–243. 10.1016/S1479-666X(08)80034-0 PubMed DOI
Selivanova G. Therapeutic targeting of p53 by small molecules. Semin Cancer Biol. Elsevier Ltd; 2010;20: 46–56. 10.1016/j.semcancer.2010.02.006 PubMed DOI
Lain S. Drug discovery in the p53 field. Semin Cancer Biol. 2010;20: 1–2. 10.1016/j.semcancer.2010.03.003 PubMed DOI
Bykov VJN, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer. 2003;39: 1828–1834. 10.1016/S0959-8049(03)00454-4 PubMed DOI
Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 2002;1: 47–55. PubMed
Sahu U, Sidhar H, Ghate PS, Advirao GM, Raghavan SC, Giri RK. A novel anticancer agent, 8-methoxypyrimido [4’,5':4,5]thieno(2,3-b) quinoline-4(3H)-one induces neuro 2a neuroblastoma cell death through p53-dependent, caspase-dependent and -independent apoptotic pathways. PLoS One. 2013;8: e66430 10.1371/journal.pone.0066430 PubMed DOI PMC
Roh J-L, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. Elsevier Ltd; 2011;47: 8–15. 10.1016/j.oraloncology.2010.10.011 PubMed DOI PMC
Demma MJ, Wong S, Maxwell E, Dasmahapatra B. CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem. 2004;279: 45887–96. 10.1074/jbc.M401854200 PubMed DOI
Brown CJ, Cheok CF, Verma CS, Lane DP. Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci. Elsevier Ltd; 2011;32: 53–62. 10.1016/j.tips.2010.11.004 PubMed DOI
Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 2003;22: 8233–45. 10.1038/sj.onc.1207198 PubMed DOI
Sutherland HS, Hwang IY, Marshall ES, Lindsay BS, Denny WA, Gilchrist C, et al. Therapeutic reactivation of mutant p53 protein by quinazoline derivatives. Invest New Drugs. 2012;30: 2035–45. 10.1007/s10637-011-9744-z PubMed DOI
Luu Y, Bush J, Cheung K-J, Li G. The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res. 2002;276: 214–22. 10.1006/excr.2002.5526 PubMed DOI
Wang W, Takimoto R, Rastinejad F, El-Deiry WS. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 2003;23: 2171–2181. 10.1128/MCB.23.6.2171-2181.2003 PubMed DOI PMC
Polanski J, Kurczyk A, Bak A, Musiol R. Privileged structures—dream or reality: preferential organization of azanaphthalene scaffold. Curr Med Chem. 2012;19: 1921–45. PubMed
Musiol R, Jampilek J, Nycz JE, Pesko M, Carroll J, Kralova K, et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15: 288–304. 10.3390/molecules15010288 PubMed DOI PMC
Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B, et al. Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem. 2006;14: 3592–8. 10.1016/j.bmc.2006.01.016 PubMed DOI
Musiol R, Magdziarz T, Kurczyk A. Quinoline scaffold as a privileged substructure in antimicrobial drugs In: Mendez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz, Spain: Formatex; 2011. pp. 72–83.
Jampilek J, Musiol R, Finster J, Pesko M, Carroll J, Kralova K, et al. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14: 4246–4265. 10.3390/molecules14104246 PubMed DOI PMC
Cieslik W, Musiol R, Korzec M. Synthesis of alkyne-substituted quinolines as analogues of allylamines. Int Bull Pharm Sci. 2012;1: 3–9.
Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, et al. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett. 2013;4: 170–174. 10.1021/ml300238z PubMed DOI PMC
Musiol R, Jampilek J, Podeszwa B, Finster J, Tabak D, Dohnal J, et al. RP-HPLC determination of lipophilicity in series of quinoline derivatives. Cent Eur J Chem. 2009;7: 586–597. 10.2478/s11532-009-0059-2 DOI
Musiol R, Serda M, Hensel-Bielowka S, Polanski J. Quinoline-based antifungals. Curr Med Chem. 2010;17: 1960–73. PubMed
Rams-Baron M, Dulski M, Mrozek-Wilczkiewicz A, Korzec M, Cieslik W, Spaczyńska E, et al. Synthesis of new styrylquinoline cellular dyes, fluorescent properties, cellular localization and cytotoxic behavior. PLoS One. 2015;10: e0131210 10.1371/journal.pone.0131210 PubMed DOI PMC
Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev. 2007;59: 729–38. 10.1016/j.addr.2007.06.004 PubMed DOI PMC
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144: 281–92. PubMed PMC
Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15: 725–31. PubMed
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397: 441–6. 10.1038/17135 PubMed DOI
Ashley N, Poulton J. Anticancer DNA intercalators cause p53-dependent mitochondrial DNA nucleoid re-modelling. Oncogene. Nature Publishing Group; 2009;28: 3880–3891. 10.1038/onc.2009.242 PubMed DOI PMC
Ashley N, Poulton J. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun. 2009;378: 450–455. 10.1016/j.bbrc.2008.11.059 PubMed DOI
Lukin DJ, Carvajal LA, Liu WJ, Resnick-Silverman L, Manfredi JJ. P53 promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol Cancer Res. 2015;13: 16–28. 10.1158/1541-7786.MCR-14-0177 PubMed DOI PMC
Chemistry towards Biology-Instruct: Snapshot
The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †
The Eighth Central European Conference "Chemistry towards Biology": Snapshot