Interleukin-1α associates with the tumor suppressor p53 following DNA damage
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32332775
PubMed Central
PMC7181607
DOI
10.1038/s41598-020-63779-x
PII: 10.1038/s41598-020-63779-x
Knihovny.cz E-zdroje
- MeSH
- cytoplazma metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- fluorescenční mikroskopie MeSH
- HeLa buňky MeSH
- imunoprecipitace MeSH
- interleukin-1alfa genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- poškození DNA genetika fyziologie MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-1alfa MeSH
- nádorový supresorový protein p53 MeSH
Interleukin-1α (IL-1α) is a dual-function proinflammatory mediator. In addition to its role in the canonical IL-1 signaling pathway, which employs membrane-bound receptors, a growing body of evidence shows that IL-1α has some additional intracellular functions. We identified the interaction of IL-1α with the tumor suppressor p53 in the nuclei and cytoplasm of both malignant and noncancerous mammalian cell lines using immunoprecipitation and the in situ proximity ligation assay (PLA). This interaction was enhanced by treatment with the antineoplastic drug etoposide, which suggests a role for the IL-1α•p53 interaction in genotoxic stress.
Zobrazit více v PubMed
Marchenko ND, et al. Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell death and differentiation. 2010;17:255–267. doi: 10.1038/cdd.2009.173. PubMed DOI PMC
Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene. 1993;8:307–318. PubMed
Yonish-Rouach E, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352:345–347. doi: 10.1038/352345a0. PubMed DOI
Livingstone LR, et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992;70:923–935. doi: 10.1016/0092-8674(92)90243-6. PubMed DOI
Smith ML, Chen IT, Zhan Q, O’Connor PM, Fornace AJ., Jr. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene. 1995;10:1053–1059. PubMed
Matoba S, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650–1653. doi: 10.1126/science.1126863. PubMed DOI
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. doi: 10.1038/387296a0. PubMed DOI
Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303. doi: 10.1038/387299a0. PubMed DOI
Grandela C, Pera MF, Grimmond SM, Kolle G, Wolvetang EJ. p53 is required for etoposide-induced apoptosis of human embryonic stem cells. Stem Cell Res. 2007;1:116–128. doi: 10.1016/j.scr.2007.10.003. PubMed DOI
Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molecular and cellular biology. 1994;14:1815–1823. doi: 10.1128/MCB.14.3.1815. PubMed DOI PMC
Arriola EL, Lopez AR, Chresta CM. Differential regulation of p21waf-1/cip-1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory feedback loop. Oncogene. 1999;18:1081–1091. doi: 10.1038/sj.onc.1202391. PubMed DOI
Solyakov L, Sayan E, Riley J, Pointon A, Tobin AB. Regulation of p53 expression, phosphorylation and subcellular localization by a G-protein-coupled receptor. Oncogene. 2009;28:3619–3630. doi: 10.1038/onc.2009.225. PubMed DOI PMC
Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. The Journal of biological chemistry. 2002;277:16547–16552. doi: 10.1074/jbc.M110629200. PubMed DOI
Wessendorf JH, Garfinkel S, Zhan X, Brown S, Maciag T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. The Journal of biological chemistry. 1993;268:22100–22104. PubMed
Rivers-Auty J, Daniels MJD, Colliver I, Robertson DL, Brough D. Redefining the ancestral origins of the interleukin-1 superfamily. Nature communications. 2018;9:1156. doi: 10.1038/s41467-018-03362-1. PubMed DOI PMC
Hu B, et al. A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci USA. 2003;100:10008–10013. doi: 10.1073/pnas.1737765100. PubMed DOI PMC
Pollock AS, Turck J, Lovett DH. The prodomain of interleukin 1alpha interacts with elements of the RNA processing apparatus and induces apoptosis in malignant cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2003;17:203–213. doi: 10.1096/fj.02-0602com. PubMed DOI
Buryskova M, Pospisek M, Grothey A, Simmet T, Burysek L. Intracellular interleukin-1alpha functionally interacts with histone acetyltransferase complexes. The Journal of biological chemistry. 2004;279:4017–4026. doi: 10.1074/jbc.M306342200. PubMed DOI
Zamostna B, et al. N-terminal domain of nuclear IL-1alpha shows structural similarity to the C-terminal domain of Snf1 and binds to the HAT/core module of the SAGA complex. PloS one. 2012;7:e41801. doi: 10.1371/journal.pone.0041801. PubMed DOI PMC
McCarthy DA, Clark RR, Bartling TR, Trebak M, Melendez JA. Redox control of the senescence regulator interleukin-1alpha and the secretory phenotype. The Journal of biological chemistry. 2013;288:32149–32159. doi: 10.1074/jbc.M113.493841. PubMed DOI PMC
Cohen I, et al. Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:2574–2579. doi: 10.1073/pnas.0915018107. PubMed DOI PMC
Werman A, et al. The precursor form of IL-1alpha is an intracrine proinflammatory activator of transcription. Proc Natl Acad Sci USA. 2004;101:2434–2439. doi: 10.1073/pnas.0308705101. PubMed DOI PMC
Cheng W, et al. Intracellular interleukin-1alpha mediates interleukin-8 production induced by Chlamydia trachomatis infection via a mechanism independent of type I interleukin-1 receptor. Infect Immun. 2008;76:942–951. doi: 10.1128/IAI.01313-07. PubMed DOI PMC
Zhang Y, et al. Propiece IL-1alpha facilitates the growth of acute T-lymphocytic leukemia cells through the activation of NF-kappaB and SP1. Oncotarget. 2017;8:15677–15688. doi: 10.18632/oncotarget.14934. PubMed DOI PMC
Bendtzen K, et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science. 1986;232:1545–1547. doi: 10.1126/science.3086977. PubMed DOI
Kawaguchi Y. IL-1 alpha gene expression and protein production by fibroblasts from patients with systemic sclerosis. Clin Exp Immunol. 1994;97:445–450. doi: 10.1111/j.1365-2249.1994.tb06108.x. PubMed DOI PMC
Nicoll JA, et al. Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol. 2000;47:365–368. doi: 10.1002/1531-8249(200003)47:3<365::AID-ANA13>3.0.CO;2-G. PubMed DOI PMC
Rainero I, et al. Association between the interleukin-1alpha gene and Alzheimer’s disease: a meta-analysis. Neurobiol Aging. 2004;25:1293–1298. doi: 10.1016/j.neurobiolaging.2004.02.011. PubMed DOI
Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203:1685–1691. doi: 10.1084/jem.20060285. PubMed DOI PMC
Vicenova B, Vopalensky V, Burysek L, Pospisek M. Emerging role of interleukin-1 in cardiovascular diseases. Physiol Res. 2009;58:481–498. PubMed
Mandrup-Poulsen T, Pickersgill L, Donath MY. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6:158–166. doi: 10.1038/nrendo.2009.271. PubMed DOI
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Medicinal research reviews. 2017;37:180–216. doi: 10.1002/med.21406. PubMed DOI
Cohen I, et al. IL-1alpha is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Scientific reports. 2015;5:14756. doi: 10.1038/srep14756. PubMed DOI PMC
Armstrong CA, et al. Heterogeneity of cytokine production by human malignant melanoma cells. Exp Dermatol. 1992;1:37–45. doi: 10.1111/j.1600-0625.1992.tb00070.x. PubMed DOI
Mayo LD, et al. Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. The Journal of biological chemistry. 2005;280:25953–25959. doi: 10.1074/jbc.M503026200. PubMed DOI
Smeenk L, et al. Role of p53 serine 46 in p53 target gene regulation. PloS one. 2011;6:e17574. doi: 10.1371/journal.pone.0017574. PubMed DOI PMC
Montecucco, A., Zanetta, F. & Biamonti, G. Molecular mechanisms of etoposide. EXCLI J14, 95–108, 10.17179/excli2015-561 2014-561 [pii]Doc95 [pii] (2015). PubMed PMC
Nakai S, Mizuno K, Kaneta M, Hirai Y. A simple, sensitive bioassay for the detection of interleukin-1 using human melanoma A375 cell line. Biochemical and biophysical research communications. 1988;154:1189–1196. doi: 10.1016/0006-291X(88)90266-5. PubMed DOI
Soderberg O, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature methods. 2006;3:995–1000. doi: 10.1038/nmeth947. PubMed DOI
Nahalkova J. Novel protein-protein interactions of TPPII, p53, and SIRT7. Molecular and cellular biochemistry. 2015;409:13–22. doi: 10.1007/s11010-015-2507-y. PubMed DOI
Kang MA, et al. A novel pyrido-thieno-pyrimidine derivative activates p53 through induction of phosphorylation and acetylation in colorectal cancer cells. International journal of oncology. 2015;46:342–350. doi: 10.3892/ijo.2014.2720. PubMed DOI
Tembe V, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cellular signalling. 2015;27:1763–1771. doi: 10.1016/j.cellsig.2015.05.011. PubMed DOI
Ivanschitz L, et al. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:14278–14283. doi: 10.1073/pnas.1507540112. PubMed DOI PMC
Pruszko M, et al. The mutant p53-ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO reports. 2017;18:1331–1351. doi: 10.15252/embr.201643370. PubMed DOI PMC
Chan C, et al. Global re-wiring of p53 transcription regulation by the hepatitis B virus X protein. Molecular oncology. 2016;10:1183–1195. doi: 10.1016/j.molonc.2016.05.006. PubMed DOI PMC
Burzynski LC, Humphry M, Bennett MR, Clarke MC. Interleukin-1alpha Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2: IMPLICATIONS FOR ALLOGRAFT REJECTION. The Journal of biological chemistry. 2015;290:25188–25196. doi: 10.1074/jbc.M115.667915. PubMed DOI PMC
Adey A, et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013;500:207–211. doi: 10.1038/nature12064. PubMed DOI PMC
Trave G, Zanier K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle. 2016;15:2231–2232. doi: 10.1080/15384101.2016.1191257. PubMed DOI PMC
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–1136. doi: 10.1016/0092-8674(90)90409-8. PubMed DOI
Ajay AK, Meena AS, Bhat MK. Human papillomavirus 18 E6 inhibits phosphorylation of p53 expressed in HeLa cells. Cell Biosci. 2012;2:2. doi: 10.1186/2045-3701-2-2. PubMed DOI PMC
Thomas MC, Chiang CM. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Molecular cell. 2005;17:251–264. doi: 10.1016/j.molcel.2004.12.016. PubMed DOI
McCarthy DA, et al. Redox-control of the alarmin, Interleukin-1alpha. Redox biology. 2013;1:218–225. doi: 10.1016/j.redox.2013.03.001. PubMed DOI PMC
Teufel DP, Freund SM, Bycroft M, Fersht AR. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 2007;104:7009–7014. doi: 10.1073/pnas.0702010104. PubMed DOI PMC
Gamper AM, Roeder RG. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Molecular and cellular biology. 2008;28:2517–2527. doi: 10.1128/MCB.01461-07. PubMed DOI PMC
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers. 2014;7:30–69. doi: 10.3390/cancers7010030. PubMed DOI PMC
Zhang J, Shen L, Sun LQ. The regulation of radiosensitivity by p53 and its acetylation. Cancer letters. 2015;363:108–118. doi: 10.1016/j.canlet.2015.04.015. PubMed DOI
Liu L, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Molecular and cellular biology. 1999;19:1202–1209. doi: 10.1128/MCB.19.2.1202. PubMed DOI PMC
Sakaguchi K, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes & development. 1998;12:2831–2841. doi: 10.1101/gad.12.18.2831. PubMed DOI PMC
Kawaguchi Y, Ito A, Appella E, Yao TP. Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. The Journal of biological chemistry. 2006;281:1394–1400. doi: 10.1074/jbc.M505772200. PubMed DOI
Knights CD, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. The Journal of cell biology. 2006;173:533–544. doi: 10.1083/jcb.200512059. PubMed DOI PMC
Sadoul K, Wang J, Diagouraga B, Khochbin S. The tale of protein lysine acetylation in the cytoplasm. Journal of biomedicine & biotechnology. 2011;2011:970382. doi: 10.1155/2011/970382. PubMed DOI PMC
Martinez E, et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Molecular and cellular biology. 2001;21:6782–6795. doi: 10.1128/MCB.21.20.6782-6795.2001. PubMed DOI PMC
Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. The EMBO journal. 2010;29:1434–1445. doi: 10.1038/emboj.2010.27. PubMed DOI PMC
Bennett G, Peterson CL. SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases. DNA repair. 2015;30:38–45. doi: 10.1016/j.dnarep.2015.03.006. PubMed DOI PMC
Ramachandran S, et al. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated gammaH2AX Formation. Cell reports. 2016;15:1554–1565. doi: 10.1016/j.celrep.2016.04.041. PubMed DOI PMC
Ogiwara H, et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011;30:2135–2146. doi: 10.1038/onc.2010.592. PubMed DOI
Wilson, M. D. & Durocher, D. Reading chromatin signatures after DNA double-strand breaks. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 372, 10.1098/rstb.2016.0280 (2017). PubMed PMC
Muslimovic A, Nystrom S, Gao Y, Hammarsten O. Numerical analysis of etoposide induced DNA breaks. PloS one. 2009;4:e5859. doi: 10.1371/journal.pone.0005859. PubMed DOI PMC
Rybak P, et al. Low level phosphorylation of histone H2AX on serine 139 (gammaH2AX) is not associated with DNA double-strand breaks. Oncotarget. 2016;7:49574–49587. doi: 10.18632/oncotarget.10411. PubMed DOI PMC
Al Rashid ST, et al. Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer research. 2005;65:10810–10821. doi: 10.1158/0008-5472.CAN-05-0729. PubMed DOI
Frydryskova, K., Masek, T. & Pospisek, M. Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules. WIREs RNA,10.1002/wrna.1596 (2020). PubMed
Shin HJ, Kwon HK, Lee JH, Anwar MA, Choi S. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Scientific reports. 2016;6:34064. doi: 10.1038/srep34064. PubMed DOI PMC
Chamani E, Rabbani-Chadegani A, Zahraei Z. Spectroscopic detection of etoposide binding to chromatin components: the role of histone proteins. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2014;133:292–299. doi: 10.1016/j.saa.2014.05.068. PubMed DOI
Gudkov AV, Gurova KV, Komarova EA. Inflammation and p53: A Tale of Two Stresses. Genes & cancer. 2011;2:503–516. doi: 10.1177/1947601911409747. PubMed DOI PMC
Uehara, I. & Tanaka, N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers10, 10.3390/cancers10070219 (2018). PubMed PMC
Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53. Molecular and cellular biology. 1999;19:3485–3495. doi: 10.1128/mcb.19.5.3485. PubMed DOI PMC
Wadgaonkar R, et al. CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. The Journal of biological chemistry. 1999;274:1879–1882. doi: 10.1074/jbc.274.4.1879. PubMed DOI
Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunological reviews. 2018;281:57–61. doi: 10.1111/imr.12614. PubMed DOI PMC
Stevenson FT, Turck J, Locksley RM, Lovett DH. The N-terminal propiece of interleukin 1 alpha is a transforming nuclear oncoprotein. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:508–513. doi: 10.1073/pnas.94.2.508. PubMed DOI PMC
Wolf JS, et al. IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clinical cancer research: an official journal of the American Association for Cancer Research. 2001;7:1812–1820. PubMed
Palmer G, et al. Pre-interleukin-1alpha expression reduces cell growth and increases interleukin-6 production in SaOS-2 osteosarcoma cells: Differential inhibitory effect of interleukin-1 receptor antagonist (icIL-1Ra1) Cytokine. 2005;31:153–160. doi: 10.1016/j.cyto.2005.03.007. PubMed DOI
Xie L, et al. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells. PLoS genetics. 2012;8:e1003151. doi: 10.1371/journal.pgen.1003151. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Rueden CT, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC bioinformatics. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Stommel JM, et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. The EMBO journal. 1999;18:1660–1672. doi: 10.1093/emboj/18.6.1660. PubMed DOI PMC
Zamostna, B. Elucidating the interactions of interleukin-1α with components of the eukaryotic transcription machinery. Ph.D. thesis, Charles University (2013).