Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32362075
DOI
10.1002/wrna.1596
Knihovny.cz E-zdroje
- Klíčová slova
- SGs, aberrant granules, heat stress, neurodegenerative diseases, sodium arsenite stress, stress granules,
- MeSH
- arsenitany metabolismus MeSH
- cytoplazmatická granula metabolismus MeSH
- fyziologický stres MeSH
- lidé MeSH
- posttranslační úpravy proteinů MeSH
- vysoká teplota * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- arsenitany MeSH
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Zobrazit více v PubMed
Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., & Fowler, B. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Environmental Health Perspectives, 107(7), 593-597. https://doi.org/10.1289/ehp.99107593
Alberti, S., & Hyman, A. A. (2016). Are aberrant phase transitions a driver of cellular aging? BioEssays, 38(10), 959-968. https://doi.org/10.1002/bies.201600042
Anders, M., Chelysheva, I., Goebel, I., Trenkner, T., Zhou, J., & Mao, Y. (2018). Dynamic m6A methylation facilitates mRNA triaging to stress granules. Life Science Alliance, 1(4), e201800113. https://doi.org/10.26508/lsa.201800113
Anderson, P., & Kedersha, N. (2002). Stressful initiations. Journal of Cell Science, 115(Pt 16), 3227-3234.
Anderson, P., & Kedersha, N. (2008). Stress granules: The Tao of RNA triage. Trends Biochemical Sciences, 33(3), 141-150. https://doi.org/10.1016/j.tibs.2007.12.003
Anderson, P., Kedersha, N., & Ivanov, P. (2015). Stress granules, P-bodies and cancer. Biochimica et Biophysica Acta, 1849(7), 861-870. https://doi.org/10.1016/j.bbagrm.2014.11.009
Apicco, D. J., Ash, P. E. A., Maziuk, B., LeBlang, C., Medalla, M., & Al Abdullatif, A. (2018). Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nature Neuroscience, 21(1), 72-80. https://doi.org/10.1038/s41593-017-0022-z
Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., & Takekawa, M. (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. [Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(11), 1324-1332. https://doi.org/10.1038/ncb1791
Ash, P. E. A., Vanderweyde, T. E., Youmans, K. L., Apicco, D. J., & Wolozin, B. (2014). Pathological stress granules in Alzheimer's disease. Brain Research, 1584, 52-58. https://doi.org/10.1016/j.brainres.2014.05.052
Athanasopoulos, V., Barker, A., Yu, D., Tan, A. H., Srivastava, M., & Contreras, N. (2010). The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. [Research Support, Non-U.S. Gov't]. The FEBS Journal, 277(9), 2109-2127. https://doi.org/10.1111/j.1742-4658.2010.07628.x
Atkin, G., & Paulson, H. (2014). Ubiquitin pathways in neurodegenerative disease. [Review]. Frontiers in Molecular Neuroscience, 7, 63. https://doi.org/10.3389/fnmol.2014.00063
Aulas, A., Fay, M. M., Lyons, S. M., Achorn, C. A., Kedersha, N., & Anderson, P. (2017). Stress-specific differences in assembly and composition of stress granules and related foci. [Research Support, N.I.H., Extramural]. Journal of Cell Science, 130(5), 927-937. https://doi.org/10.1242/jcs.199240
Aulas, A., Stabile, S., & Velde, C. (2012). Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Molecular Neurodegeneration, 7(54), 1-15.
Aulas, A., & Vande Velde, C. (2015). Alterations in stress granule dynamics driven by TDP-43 and FUS: A link to pathological inclusions in ALS? [Review]. Frontiers in Cellular Neuroscience, 9, 423. https://doi.org/10.3389/fncel.2015.00423
Baguet, A., Degot, S., Cougot, N., Bertrand, E., Chenard, M. P., & Wendling, C. (2007). The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 120(Pt 16), 2774-2784. https://doi.org/10.1242/jcs.009225
Baler, R. (1992). Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. The Journal of Cell Biology, 117(6), 1151-1159. https://doi.org/10.1083/jcb.117.6.1151
Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: Organizers of cellular biochemistry. [Review Research Support, Non-U.S. Gov't]. Nature Reviews. Molecular Cell Biology, 18(5), 285-298. https://doi.org/10.1038/nrm.2017.7
Banerji, S. S., Theodorakis, N. G., & Morimoto, R. I. (1984). Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. [Comparative Study Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 4(11), 2437-2448.
Bentmann, E., Neumann, M., Tahirovic, S., Rodde, R., Dormann, D., & Haass, C. (2012). Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). [Research Support, Non-U.S. Gov't]. The Journal of Biological Chemistry, 287(27), 23079-23094. https://doi.org/10.1074/jbc.M111.328757
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., & Filipowicz, W. (2006). Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harbor Symposia on Quantitative Biology, 71, 513-521. https://doi.org/10.1101/sqb.2006.71.038
Boyault, C., Zhang, Y., Fritah, S., Caron, C., Gilquin, B., & Kwon, S. H. (2007). HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. [Research Support, Non-U.S. Gov't]. Genes & Development, 21(17), 2172-2181. https://doi.org/10.1101/gad.436407
Brengues, M., Teixeira, D., & Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 310(5747), 486-489. https://doi.org/10.1126/science.1115791
Brown, J. A., Roberts, T. L., Richards, R., Woods, R., Birrell, G., & Lim, Y. C. (2011). A novel role for hSMG-1 in stress granule formation. Molecular and Cellular Biology, 31(22), 4417-4429. https://doi.org/10.1128/mcb.05987-11
Bu, X., Haas, D. W., & Hagedorn, C. H. (1993). Novel phosphorylation sites of eukaryotic initiation factor-4F and evidence that phosphorylation stabilizes interactions of the p25 and p220 subunits. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 268(7), 4975-4978.
Buchan, J. R., Kolaitis, R. M., Taylor, J. P., & Parker, R. (2013). Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell, 153(7), 1461-1474. https://doi.org/10.1016/j.cell.2013.05.037
Buchan, J. R., & Parker, R. (2009). Eukaryotic stress granules: The ins and outs of translation. Molecular Cell, 36(6), 932-941. https://doi.org/10.1016/j.molcel.2009.11.020
Campisi, J. (2008). Aging and cancer cell biology. Aging Cell, 7, 281-284.
Cargnello, M., Tcherkezian, J., Dorn, J. F., Huttlin, E. L., Maddox, P. S., & Gygi, S. P. (2012). Phosphorylation of the eukaryotic translation initiation factor 4E-transporter (4E-T) by c-Jun N-terminal kinase promotes stress-dependent P-body assembly. Molecular and Cellular Biology, 32(22), 4572-4584. https://doi.org/10.1128/MCB.00544-12
Chapat, C., Jafarnejad, S. M., Matta-Camacho, E., Hesketh, G. G., Gelbart, I. A., & Attig, J. (2017). Cap-binding protein 4EHP effects translation silencing by microRNAs. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 114(21), 5425-5430. https://doi.org/10.1073/pnas.1701488114
Chen, S., & Gao, G. (2017). MicroRNAs recruit eIF4E2 to repress translation of target mRNAs. Protein & Cell, 8(10), 750-761. https://doi.org/10.1007/s13238-017-0444-0
Cherkasov, V., Grousl, T., Theer, P., Vainshtein, Y., Glasser, C., & Mongis, C. (2015). Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. [Research Support, Non-U.S. Gov't]. FEBS Letters, 589(23), 3654-3664. https://doi.org/10.1016/j.febslet.2015.10.010
Cherkasov, V., Hofmann, S., Druffel-Augustin, S., Mogk, A., Tyedmers, J., & Stoecklin, G. (2013). Coordination of translational control and protein homeostasis during severe heat stress. [Research Support, Non-U.S. Gov't]. Current Biology, 23(24), 2452-2462. https://doi.org/10.1016/j.cub.2013.09.058
Cirillo, L., Cieren, A., Barbieri, S., Khong, A., Schwager, F., & Parker, R. (2020). UBAP2L forms distinct cores that act in nucleating stress granules upstream of G3BP1. Current Biology, 30(4), 698, e696-707. https://doi.org/10.1016/j.cub.2019.12.020
Cohen, T. J., Hwang, A. W., Restrepo, C. R., Yuan, C. X., Trojanowski, J. Q., & Lee, V. M. (2015). An acetylation switch controls TDP-43 function and aggregation propensity. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Nature Communications, 6, 5845. https://doi.org/10.1038/ncomms6845
Cohen, T. J., Hwang, A. W., Unger, T., Trojanowski, J. Q., & Lee, V. M. (2012). Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. The EMBO Journal, 31(5), 1241-1252. https://doi.org/10.1038/emboj.2011.471
Colombrita, C., Zennaro, E., Fallini, C., Weber, M., Sommacal, A., & Buratti, E. (2009). TDP-43 is recruited to stress granules in conditions of oxidative insult. Journal of Neurochemistry, 111(4), 1051-1061. https://doi.org/10.1111/j.1471-4159.2009.06383.x
De Leeuw, F., Zhang, T., Wauquier, C., Huez, G., Kruys, V., & Gueydan, C. (2007). The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Experimental Cell Research, 313(20), 4130-4144. https://doi.org/10.1016/j.yexcr.2007.09.017
Didiot, M. C., Subramanian, M., Flatter, E., Mandel, J. L., & Moine, H. (2009). Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular Biology of the Cell, 20(1), 428-437. https://doi.org/10.1091/mbc.E08-07-0737
Dimri, G. P. (2005). What has senescence got to do with cancer? Cancer Cell, 7(6), 505-512.
Ditlev, J. A., Case, L. B., & Rosen, M. K. (2018). Who's in and who's out-compositional control of biomolecular condensates. [Review]. Journal of Molecular Biology, 430(23), 4666-4684. https://doi.org/10.1016/j.jmb.2018.08.003
Dolzhanskaya, N., Merz, G., Aletta, J. M., & Denman, R. B. (2006). Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cell Science, 119(Pt 9), 1933-1946. https://doi.org/10.1242/jcs.02882
Duan, Y., Du, A., Gu, J., Duan, G., Wang, C., & Gui, X. (2019). PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res, 29(3), 233-247. https://doi.org/10.1038/s41422-019-0141-z
Eisinger-Mathason, T. S., Andrade, J., Groehler, A. L., Clark, D. E., Muratore-Schroeder, T. L., & Pasic, L. (2008). Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular Cell, 31(5), 722-736. https://doi.org/10.1016/j.molcel.2008.06.025
Emara, M. M., Fujimura, K., Sciaranghella, D., Ivanova, V., Ivanov, P., & Anderson, P. (2012). Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochemical and Biophysical Research Communications, 423(4), 763-769. https://doi.org/10.1016/j.bbrc.2012.06.033
Emara, M. M., Ivanov, P., Hickman, T., Dawra, N., Tisdale, S., & Kedersha, N. (2010). Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 285(14), 10959-10968. https://doi.org/10.1074/jbc.M109.077560
Fournier, M. J., Coudert, L., Mellaoui, S., Adjibade, P., Gareau, C., & Cote, M. F. (2013). Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Molecular and Cellular Biology, 33(11), 2285-2301. https://doi.org/10.1128/MCB.01517-12
Frydryskova, K., Masek, T., Borcin, K., Mrvova, S., Venturi, V., & Pospisek, M. (2016). Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. [Research Support, Non-U.S. Gov't]. BMC Molecular Biology, 17(1), 21. https://doi.org/10.1186/s12867-016-0072-x
Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., & Zhu, J. (2009). Stress induces tRNA cleavage by angiogenin in mammalian cells. [Research Support, Non-U.S. Gov't]. FEBS Letters, 583(2), 437-442. https://doi.org/10.1016/j.febslet.2008.12.043
Fujimura, K., Sasaki, A. T., & Anderson, P. (2012). Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Research, 40(16), 8099-8110. https://doi.org/10.1093/nar/gks566
Ganassi, M., Mateju, D., Bigi, I., Mediani, L., Poser, I., & Lee, H. O. (2016). A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. [Research Support, Non-U.S. Gov't]. Molecular Cell, 63(5), 796-810. https://doi.org/10.1016/j.molcel.2016.07.021
Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., & Dember, L. M. (2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Molecular Biology of the Cell, 15(12), 5383-5398. https://doi.org/10.1091/mbc.E04-08-0715
Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., & Nakamura, A. (2009). System-wide changes to SUMO modifications in response to heat shock. [Research Support, Non-U.S. Gov't Validation Studies]. Science Signaling, 2(72), ra24. https://doi.org/10.1126/scisignal.2000282
Grousl, T., Ivanov, P., Frydlova, I., Vasicova, P., Janda, F., & Vojtova, J. (2009). Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. Journal of Cell Science, 122(Pt 12), 2078-2088. https://doi.org/10.1242/jcs.045104
Grousl, T., Opekarova, M., Stradalova, V., Hasek, J., & Malinsky, J. (2015). Evolutionarily conserved 5′-3′ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. [Research Support, Non-U.S. Gov't]. PLoS One, 10(3), e0122770. https://doi.org/10.1371/journal.pone.0122770
Gu, Z. T., Li, L., Wu, F., Zhao, P., Yang, H., & Liu, Y. S. (2015). Heat stress induced apoptosis is triggered by transcription-independent p53, Ca(2+) dyshomeostasis and the subsequent Bax mitochondrial translocation. [Research Support, Non-U.S. Gov't]. Scientific Reports, 5, 11497. https://doi.org/10.1038/srep11497
Guil, S., Long, J. C., & Caceres, J. F. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 26(15), 5744-5758. https://doi.org/10.1128/MCB.00224-06
Guzikowski, A. R., Chen, Y. S., & Zid, B. M. (2019). Stress-induced mRNP granules: Form and function of processing bodies and stress granules. [Review]. WIREs RNA, 10(3), e1524. https://doi.org/10.1002/wrna.1524
Hans, F., Glasebach, H., & Kahle, P. J. (2020). Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. The Journal of Biological Chemistry, 295(3), 673-689. https://doi.org/10.1074/jbc.RA119.010617
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular Cell, 5(5), 897-904.
Haslbeck, M., Weinkauf, S., & Buchner, J. (2019). Small heat shock proteins: Simplicity meets complexity. [Research Support, Non-U.S. Gov't Review]. The Journal of Biological Chemistry, 294(6), 2121-2132. https://doi.org/10.1074/jbc.REV118.002809
Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614-636. https://doi.org/10.1016/0014-4827(65)90211-9
Heberle, A. M., Razquin Navas, P., Langelaar-Makkinje, M., Kasack, K., Sadik, A., & Faessler, E. (2019). The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance, 2(2), 1-22. https://doi.org/10.26508/lsa.201800257
Hinton, S. D., Myers, M. P., Roggero, V. R., Allison, L. A., & Tonks, N. K. (2010). The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. The Biochemical Journal, 427(3), 349-357. https://doi.org/10.1042/BJ20091383
Hofweber, M., & Dormann, D. (2019). Friend or foe-post-translational modifications as regulators of phase separation and RNP granule dynamics. The Journal of Biological Chemistry, 294(18), 7137-7150. https://doi.org/10.1074/jbc.TM118.001189
Hu, Y., Li, J., Lou, B., Wu, R., Wang, G., & Lu, C. (2020). The role of reactive oxygen species in arsenic toxicity. Biomolecules, 10(2), 1-30. https://doi.org/10.3390/biom10020240
Hubstenberger, A., Noble, S. L., Cameron, C., & Evans, T. C. (2013). Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Developmental Cell, 27(2), 161-173. https://doi.org/10.1016/j.devcel.2013.09.024
Hyman, A. A., Weber, C. A., & Julicher, F. (2014). Liquid-liquid phase separation in biology. [Review]. Annual Review of Cell and Developmental Biology, 30, 39-58. https://doi.org/10.1146/annurev-cellbio-100913-013325
IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. (2012). Arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100C (pp. 11-465).
Iwasaki, S., Floor, S. N., & Ingolia, N. T. (2016). Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature, 534(7608), 558-561. https://doi.org/10.1038/nature17978
Jain, S., Wheeler, J. R., Walters, R. W., Agrawal, A., Barsic, A., & Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell, 164(3), 487-498. https://doi.org/10.1016/j.cell.2015.12.038
Jayabalan, A. K., Sanchez, A., Park, R. Y., Yoon, S. P., Kang, G. Y., & Baek, J. H. (2016). NEDDylation promotes stress granule assembly. [Research Support, Non-U.S. Gov't]. Nature Communications, 7, 12125. https://doi.org/10.1038/ncomms12125
Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., & Hudecova, D. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95-107. https://doi.org/10.1002/jat.1649
Jongjitwimol, J., Baldock, R. A., Morley, S. J., & Watts, F. Z. (2016). Sumoylation of eIF4A2 affects stress granule formation. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 129(12), 2407-2415. https://doi.org/10.1242/jcs.184614
Kampinga, H. H., Brunsting, J. F., Stege, G. J., Burgman, P. W., & Konings, A. W. (1995). Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: Role of heat shock proteins. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 219(2), 536-546. https://doi.org/10.1006/excr.1995.1262
Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., & Wu, L. C. (2012). Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149(4), 753-767. https://doi.org/10.1016/j.cell.2012.04.017
Kazemi, Z., Chang, H., Haserodt, S., McKen, C., & Zachara, N. E. (2010). O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. [Research Support, Non-U.S. Gov't]. The Journal of Biological Chemistry, 285(50), 39096-39107. https://doi.org/10.1074/jbc.M110.131102
Kedersha, N., & Anderson, P. (2002). Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. [Review]. Biochemical Society Transactions, 30(Pt 6), 963-969.
Kedersha, N., & Anderson, P. (2009). Regulation of translation by stress granules and processing bodies. [Review]. Progress in Molecular Biology and Translational Science, 90, 155-185. https://doi.org/10.1016/S1877-1173(09)90004-7
Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I. J., & Stahl, J. (2002). Evidence that ternary complex (eIF2-GTP-tRNA(i)(met))-deficient preinitiation complexes are core constituents of mammalian stress granules. [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 13(1), 195-210. https://doi.org/10.1091/mbc.01-05-0221
Kedersha, N., Cho, M. R., Li, W., Yacono, P. W., Chen, S., & Gilks, N. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. The Journal of Cell Biology, 151(6), 1257-1268.
Kedersha, N., Ivanov, P., & Anderson, P. (2013). Stress granules and cell signaling: More than just a passing phase? [Review]. Trends in Biochemical Sciences, 38(10), 494-506. https://doi.org/10.1016/j.tibs.2013.07.004
Kedersha, N., Panas, M. D., Achorn, C. A., Lyons, S., Tisdale, S., & Hickman, T. (2016). G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Video-Audio Media]. Journal of Cell Biology, 212(7), 845-860. https://doi.org/10.1083/jcb.201508028
Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., & Fritzler, M. J. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. Journal of Cell Biology, 169(6), 871-884. https://doi.org/10.1083/jcb.200502088
Kedersha, N. L., Gupta, M., Li, W., Miller, I., & Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. The Journal of Cell Biology, 147(7), 1431-1442.
Khalfallah, Y., Kuta, R., Grasmuck, C., Prat, A., Durham, H. D., & Vande Velde, C. (2018). TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Scientific Reports, 8(1), 7551. https://doi.org/10.1038/s41598-018-25767-0
Kim, H. J., Kim, N. C., Wang, Y. D., Scarborough, E. A., Moore, J., & Diaz, Z. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Nature, 495(7442), 467-473. https://doi.org/10.1038/nature11922
Kobayashi, T., Winslow, S., Sunesson, L., Hellman, U., & Larsson, C. (2012). PKCalpha binds G3BP2 and regulates stress granule formation following cellular stress. [Research Support, Non-U.S. Gov't]. PLoS One, 7(4), e35820. https://doi.org/10.1371/journal.pone.0035820
Krisenko, M. O., Higgins, R. L., Ghosh, S., Zhou, Q., Trybula, J. S., & Wang, W. H. (2015). Syk is recruited to stress granules and promotes their clearance through autophagy. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 290(46), 27803-27815. https://doi.org/10.1074/jbc.M115.642900
Kroschwald, S., Maharana, S., Mateju, D., Malinovska, L., Nuske, E., & Poser, I. (2015). Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. [Research Support, Non-U.S. Gov't]. Elife, 4, e06807. https://doi.org/10.7554/eLife.06807
Kubacka, D., Kamenska, A., Broomhead, H., Minshall, N., Darzynkiewicz, E., & Standart, N. (2013). Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells. PLoS One, 8(8), e72761. https://doi.org/10.1371/journal.pone.0072761
Kulathu, Y., & Komander, D. (2012). Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. [Review]. Nature Reviews. Molecular Cell Biology, 13(8), 508-523. https://doi.org/10.1038/nrm3394
Kwon, S., Zhang, Y., & Matthias, P. (2007). The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. [Research Support, Non-U.S. Gov't]. Genes & Development, 21(24), 3381-3394. https://doi.org/10.1101/gad.461107
Lechler, M. C., Crawford, E. D., Groh, N., Widmaier, K., Jung, R., & Kirstein, J. (2017). Reduced insulin/IGF-1 signaling restores the dynamic properties of key stress granule proteins during aging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cell Reports, 18(2), 454-467. https://doi.org/10.1016/j.celrep.2016.12.033
Lee, F. S., Shapiro, R., & Vallee, B. L. (1989). Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Biochemistry, 28(1), 225-230.
Lee, K.-H., Zhang, P., Kim, H. J., Mitrea, D. M., Sarkar, M., & Freibaum, B. D. (2016). C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell, 167(3), 774-788.e717. https://doi.org/10.1016/j.cell.2016.10.002
Leung, A. K., Vyas, S., Rood, J. E., Bhutkar, A., Sharp, P. A., & Chang, P. (2011). Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. [Research Support, N.I.H., Extramural]. Molecular Cell, 42(4), 489-499. https://doi.org/10.1016/j.molcel.2011.04.015
Lian, X. J., & Gallouzi, I.-E. (2009). Oxidative stress increases the number of stress granules in senescent cells and triggers a rapid decrease in p21waf1/cip1Translation. Journal of Biological Chemistry, 284(13), 8877-8887. https://doi.org/10.1074/jbc.M806372200
Lin, Y., Protter, D. S., Rosen, M. K., & Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular Cell, 60(2), 208-219. https://doi.org/10.1016/j.molcel.2015.08.018
Lindquist, S. (1986). The heat-shock response. [Comparative Study Review]. Annual Review of Biochemistry, 55, 1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
Lu, L., Han, A. P., & Chen, J. J. (2001). Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Molecular and Cellular Biology, 21(23), 7971-7980. https://doi.org/10.1128/MCB.21.23.7971-7980.2001
Luo, Y., Na, Z., & Slavoff, S. A. (2018). P-bodies: Composition, properties, and functions. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Biochemistry, 57(17), 2424-2431. https://doi.org/10.1021/acs.biochem.7b01162
Maghames, C. M., Lobato-Gil, S., Perrin, A., Trauchessec, H., Rodriguez, M. S., & Urbach, S. (2018). NEDDylation promotes nuclear protein aggregation and protects the ubiquitin proteasome system upon proteotoxic stress. [Research Support, Non-U.S. Gov't]. Nature Communications, 9(1), 4376. https://doi.org/10.1038/s41467-018-06365-0
Mahboubi, H., Barise, R., & Stochaj, U. (2015). 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1853(7), 1725-1737. https://doi.org/10.1016/j.bbamcr.2015.03.015
Mahboubi, H., & Stochaj, U. (2017). Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. [Review Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(4), 884-895. https://doi.org/10.1016/j.bbadis.2016.12.022
Markmiller, S., Fulzele, A., Higgins, R., Leonard, M., Yeo, G. W., & Bennett, E. J. (2019). Active protein Neddylation or Ubiquitylation is dispensable for stress granule dynamics. Cell Reports, 27(5), 1356-1363 e1353. https://doi.org/10.1016/j.celrep.2019.04.015
Markmiller, S., Soltanieh, S., Server, K. L., Mak, R., Jin, W., & Fang, M. Y. (2018). Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172(3), 590-604 e513. https://doi.org/10.1016/j.cell.2017.12.032
Mateju, D., Franzmann, T. M., Patel, A., Kopach, A., Boczek, E. E., & Maharana, S. (2017). An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. [Research Support, Non-U.S. Gov't]. The EMBO Journal, 36(12), 1669-1687. https://doi.org/10.15252/embj.201695957
Matsuki, H., Takahashi, M., Higuchi, M., Makokha, G. N., Oie, M., & Fujii, M. (2013). Both G3BP1 and G3BP2 contribute to stress granule formation. Genes to Cells, 18(2), 135-146. https://doi.org/10.1111/gtc.12023
McDonald, K. K., Aulas, A., Destroismaisons, L., Pickles, S., Beleac, E., & Camu, W. (2011). TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. [Research Support, Non-U.S. Gov't]. Human Molecular Genetics, 20(7), 1400-1410. https://doi.org/10.1093/hmg/ddr021
McEwen, E., Kedersha, N., Song, B., Scheuner, D., Gilks, N., & Han, A. (2005). Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. Journal of Biological Chemistry, 280(17), 16925-16933. https://doi.org/10.1074/jbc.M412882200
McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., & Kalb, R. G. (2018). Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid Demixing and stress granule localization. Molecular Cell, 71(5), 703, e709-717. https://doi.org/10.1016/j.molcel.2018.07.002
Mei, N., Kunugita, N., Hirano, T., & Kasai, H. (2002). Acute arsenite-induced 8-hydroxyguanine is associated with inhibition of repair activity in cultured human cells. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 297(4), 924-930.
Miller, S. B. M., Mogk, A., & Bukau, B. (2015). Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. Journal of Molecular Biology, 427(7), 1564-1574. https://doi.org/10.1016/j.jmb.2015.02.006
Mokas, S., Mills, J. R., Garreau, C., Fournier, M. J., Robert, F., & Arya, P. (2009). Uncoupling stress granule assembly and translation initiation inhibition. Molecular Biology of the Cell, 20(11), 2673-2683. https://doi.org/10.1091/mbc.E08-10-1061
Moon, S. L., Morisaki, T., Khong, A., Lyon, K., Parker, R., & Stasevich, T. J. (2019). Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology, 21(2), 162-168. https://doi.org/10.1038/s41556-018-0263-4
Morimoto, R. I. (2011). The heat shock response: Systems biology of proteotoxic stress in aging and disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cold Spring Harbor Symposia on Quantitative Biology, 76, 91-99. https://doi.org/10.1101/sqb.2012.76.010637
Moujaber, O., Mahboubi, H., Kodiha, M., Bouttier, M., Bednarz, K., & Bakshi, R. (2017). Dissecting the molecular mechanisms that impair stress granule formation in aging cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(3), 475-486. https://doi.org/10.1016/j.bbamcr.2016.12.008
Murakami, T., Qamar, S., Lin, J. Q., Schierle, G. S., Rees, E., & Miyashita, A. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neuron, 88(4), 678-690. https://doi.org/10.1016/j.neuron.2015.10.030
Neumann, M., Kwong, L. K., Lee, E. B., Kremmer, E., Flatley, A., & Xu, Y. (2009). Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Acta Neuropathologica, 117(2), 137-149. https://doi.org/10.1007/s00401-008-0477-9
Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., & Chou, T. T. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Science, 314(5796), 130-133. https://doi.org/10.1126/science.1134108
Niewidok, B., Igaev, M., Pereira da Graca, A., Strassner, A., Lenzen, C., & Richter, C. P. (2018). Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules. The Journal of Cell Biology, 217(4), 1303-1318. https://doi.org/10.1083/jcb.201709007
Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., & Yaspo, M.-L. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Molecular Biology of the Cell, 18(4), 1385-1396. https://doi.org/10.1091/mbc.e06-12-1120
Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., & Anderson, P. (2008). A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. [Research Support, N.I.H., Extramural]. Nature Cell Biology, 10(10), 1224-1231. https://doi.org/10.1038/ncb1783
Omer, A., Patel, D., Lian, X. J., Sadek, J., Di Marco, S., & Pause, A. (2018). Stress granules counteract senescence by sequestration of PAI-1. EMBO Reports, 19(5), 1-16. https://doi.org/10.15252/embr.201744722
Panas, M. D., Ivanov, P., & Anderson, P. (2016). Mechanistic insights into mammalian stress granule dynamics. The Journal of Cell Biology, 215(3), 313-323. doi: jcb.201609081 [pii]. https://doi.org/10.1083/jcb.201609081
Panas, M. D., Kedersha, N., Schulte, T., Branca, R. M., Ivanov, P., & Anderson, P. (2019). Phosphorylation of G3BP1-S149 does not influence stress granule assembly. Journal of Cell Biology, 218, 2425-2432. https://doi.org/10.1083/jcb.201801214
Parker, S. J., Meyerowitz, J., James, J. L., Liddell, J. R., Crouch, P. J., & Kanninen, K. M. (2012). Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochemistry International, 60(4), 415-424. https://doi.org/10.1016/j.neuint.2012.01.019
Phatak, P., Dai, F., Butler, M., Nandakumar, M. P., Gutierrez, P. L., & Edelman, M. J. (2008). KML001 cytotoxic activity is associated with its binding to telomeric sequences and telomere erosion in prostate cancer cells. [Research Support, Non-U.S. Gov't]. Clinical Cancer Research, 14(14), 4593-4602. https://doi.org/10.1158/1078-0432.CCR-07-4572
Pizzo, E., Sarcinelli, C., Sheng, J., Fusco, S., Formiggini, F., & Netti, P. (2013). Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cell Science, 126(Pt 18), 4308-4319. https://doi.org/10.1242/jcs.134551
Protter, D. S., & Parker, R. (2016). Principles and properties of stress granules. Trends in Cell Biology, 26(9), 668-679. https://doi.org/10.1016/j.tcb.2016.05.004
Ramaswami, M., Taylor, J. P., & Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell, 154(4), 727-736. https://doi.org/10.1016/j.cell.2013.07.038
Reineke, L. C., & Neilson, J. R. (2019). Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochemical Pharmacology, 162, 123-131. doi: S0006-2952(18)30430-1 [pii]. https://doi.org/10.1016/j.bcp.2018.10.009
Reineke, L. C., Tsai, W. C., Jain, A., Kaelber, J. T., Jung, S. Y., & Lloyd, R. E. (2017). Casein kinase 2 is linked to stress granule dynamics through phosphorylation of the stress granule nucleating protein G3BP1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 37(4), 1-19. https://doi.org/10.1128/MCB.00596-16
Rollins, M., Huard, S., Morettin, A., Takuski, J., Pham, T. T., & Fullerton, M. D. (2017). Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae. [Research Support, Non-U.S. Gov't]. PLOS Genetics, 13(2), e1006626. https://doi.org/10.1371/journal.pgen.1006626
Rowlands, A. G., Panniers, R., & Henshaw, E. C. (1988). The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 263(12), 5526-5533.
Sahoo, P. K., Murawala, P., Sawale, P. T., Sahoo, M. R., Tripathi, M. M., & Gaikwad, S. R. (2012). Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism. Biology Open, 1(2), 109-119. https://doi.org/10.1242/bio.2011023
Sama, R. R., Ward, C. L., Kaushansky, L. J., Lemay, N., Ishigaki, S., & Urano, F. (2013). FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular Physiology, 228(11), 2222-2231. https://doi.org/10.1002/jcp.24395
Sfakianos, A. P., Mellor, L. E., Pang, Y. F., Kritsiligkou, P., Needs, H., & Abou-Hamdan, H. (2018). The mTOR-S6 kinase pathway promotes stress granule assembly. Cell Death and Differentiation, 25, 1766-1780. https://doi.org/10.1038/s41418-018-0076-9
Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic binding to proteins. Chemical Reviews, 113(10), 7769-7792. https://doi.org/10.1021/cr300015c
Shen, Z. X., Chen, G. Q., Ni, J. H., Li, X. S., Xiong, S. M., & Qiu, Q. Y. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. [Clinical Trial Multicenter Study Research Support, Non-U.S. Gov't]. Blood, 89(9), 3354-3360.
Sidibe, H., & Vande Velde, C. (2019). RNA granules and their role in neurodegenerative diseases. Advances in Experimental Medicine and Biology, 1203, 195-245. https://doi.org/10.1007/978-3-030-31434-7_8
Sidrauski, C., McGeachy, A. M., Ingolia, N. T., & Walter, P. (2015). The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Elife, 4, 1-16. https://doi.org/10.7554/eLife.05033
Srivastava, S. P., Kumar, K. U., & Kaufman, R. J. (1998). Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. The Journal of Biological Chemistry, 273(4), 2416-2423.
Standart, N., & Weil, D. (2018). P-bodies: Cytosolic droplets for coordinated mRNA storage. [Review]. Trends in Genetics, 34(8), 612-626. https://doi.org/10.1016/j.tig.2018.05.005
Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W. F., & Blackwell, T. K. (2004). MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The EMBO Journal, 23(6), 1313-1324. https://doi.org/10.1038/sj.emboj.7600163
Sukarieh, R., Sonenberg, N., & Pelletier, J. (2009). The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response. The American Journal of Physiology: Cell Physiology, 296(5), C1207-C1217. https://doi.org/10.1152/ajpcell.00511.2008
Suzuki, Y., Minami, M., Suzuki, M., Abe, K., Zenno, S., & Tsujimoto, M. (2009). The Hsp90 inhibitor geldanamycin abrogates colocalization of eIF4E and eIF4E-transporter into stress granules and association of eIF4E with eIF4G. The Journal of Biological Chemistry, 284(51), 35597-35604. https://doi.org/10.1074/jbc.M109.036285
Takahara, T., & Maeda, T. (2012). Transient sequestration of TORC1 into stress granules during heat stress. [Research Support, Non-U.S. Gov't]. Molecular Cell, 47(2), 242-252. https://doi.org/10.1016/j.molcel.2012.05.019
Takahashi, M., Higuchi, M., Matsuki, H., Yoshita, M., Ohsawa, T., & Oie, M. (2013). Stress granules inhibit apoptosis by reducing reactive oxygen species production. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 33(4), 815-829. https://doi.org/10.1128/MCB.00763-12
Taniuchi, S., Miyake, M., Tsugawa, K., Oyadomari, M., & Oyadomari, S. (2016). Integrated stress response of vertebrates is regulated by four eIF2alpha kinases. [Research Support, Non-U.S. Gov't]. Scientific Reports, 6, 32886. https://doi.org/10.1038/srep32886
Tenekeci, U., Poppe, M., Beuerlein, K., Buro, C., Muller, H., & Weiser, H. (2016). K63-Ubiquitylation and TRAF6 pathways regulate mammalian P-body formation and mRNA Decapping. Molecular Cell, 63(3), 540. https://doi.org/10.1016/j.molcel.2016.07.009
Thedieck, K., Holzwarth, B., Prentzell, M. T., Boehlke, C., Klasener, K., & Ruf, S. (2013). Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. [Research Support, Non-U.S. Gov't]. Cell, 154(4), 859-874. https://doi.org/10.1016/j.cell.2013.07.031
Theodorakis, N. G., & Morimoto, R. I. (1987). Posttranscriptional regulation of hsp70 expression in human cells: Effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 7(12), 4357-4368.
Thompson, D. J. (1993). A chemical hypothesis for arsenic methylation in mammals. [Research Support, U.S. Gov't, Non-P.H.S. Review]. Chemico-Biological Interactions, 88(2-3), 89-94.
Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J. M., & Bertrand, E. (2003). The RasGAP-associated endoribonuclease G3BP assembles stress granules. The Journal of Cell Biology, 160(6), 823-831. https://doi.org/10.1083/jcb.200212128
Tsai, N. P., Ho, P. C., & Wei, L. N. (2008). Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. The EMBO Journal, 27(5), 715-726. https://doi.org/10.1038/emboj.2008.19
Tsai, W. C., Gayatri, S., Reineke, L. C., Sbardella, G., Bedford, M. T., & Lloyd, R. E. (2016). Arginine demethylation of G3BP1 promotes stress granule assembly. The Journal of Biological Chemistry, 291(43), 22671-22685. https://doi.org/10.1074/jbc.M116.739573
Tsai, W. C., Reineke, L. C., Jain, A., Jung, S. Y., & Lloyd, R. E. (2017). Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. The Journal of Biological Chemistry, 292(46), 18886-18896. https://doi.org/10.1074/jbc.M117.800706
Vanderweyde, T., Yu, H., Varnum, M., Liu-Yesucevitz, L., Citro, A., & Ikezu, T. (2012). Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. [Research Support, N.I.H., Extramural]. The Journal of Neuroscience, 32(24), 8270-8283. https://doi.org/10.1523/JNEUROSCI.1592-12.2012
Wallace, E. W. J., Kear-Scott, J. L., Pilipenko, E. V., Schwartz, M. H., Laskowski, P. R., & Rojek, A. E. (2015). Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell, 162(6), 1286-1298. https://doi.org/10.1016/j.cell.2015.08.041
Wang, X., Flynn, A., Waskiewicz, A. J., Webb, B. L., Vries, R. G., & Baines, I. A. (1998). The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 273(16), 9373-9377.
Wang, Z., & Zhang, H. (2019). Phase separation, transition, and Autophagic degradation of proteins in development and pathogenesis. [Review]. Trends in Cell Biology, 29(5), 417-427. https://doi.org/10.1016/j.tcb.2019.01.008
Waskiewicz, A. J., Johnson, J. C., Penn, B., Mahalingam, M., Kimball, S. R., & Cooper, J. A. (1999). Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. [Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 19(3), 1871-1880. https://doi.org/10.1128/mcb.19.3.1871
Wehner, K. A., Schutz, S., & Sarnow, P. (2010). OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 30(8), 2006-2016. https://doi.org/10.1128/MCB.01350-09
Wek, S. A., Zhu, S., & Wek, R. C. (1995). The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 15(8), 4497-4506. https://doi.org/10.1128/mcb.15.8.4497
Welch, W. J. (1985). Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 260(5), 3058-3062.
Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R., & Parker, R. (2016). Distinct stages in stress granule assembly and disassembly. [Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural]. Elife, 5, 1-25. https://doi.org/10.7554/eLife.18413
Wijeweera, J. B., Thomas, C. M., Gandolfi, A. J., & Brendel, K. (1995). Sodium arsenite and heat shock induce stress proteins in precision-cut rat liver slices. Toxicology, 104(1-3), 35-45.
Wilbertz, Johannes H., Voigt, Franka, Horvathova, Ivana, Roth, Gregory, Zhan, Yinxiu, & Chao, Jeffrey A. (2018). doi: https://doi.org/10.1101/332502
Wippich, F., Bodenmiller, B., Trajkovska, M. G., Wanka, S., Aebersold, R., & Pelkmans, L. (2013). Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. [Research Support, Non-U.S. Gov't]. Cell, 152(4), 791-805. https://doi.org/10.1016/j.cell.2013.01.033
Wolozin, B., & Ivanov, P. (2019). Stress granules and neurodegeneration. Nature Reviews Neuroscience, 20(11), 649-666. https://doi.org/10.1038/s41583-019-0222-5
Xie, X., Matsumoto, S., Endo, A., Fukushima, T., Kawahara, H., & Saeki, Y. (2018). Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. Journal of Cell Science, 131(8), jcs210856. https://doi.org/10.1242/jcs.210856
Yamaguchi, A., & Kitajo, K. (2012). The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. [Research Support, Non-U.S. Gov't]. PLoS One, 7(11), e49267. https://doi.org/10.1371/journal.pone.0049267
Zachara, N. E., O'Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D., & Hart, G. W. (2004). Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 279(29), 30133-30142. https://doi.org/10.1074/jbc.M403773200
Zhang, K., Daigle, J. G., Cunningham, K. M., Coyne, A. N., Ruan, K., & Grima, J. C. (2018). Stress granule assembly disrupts nucleocytoplasmic transport. Cell, 173(4), 958-971.e917. https://doi.org/10.1016/j.cell.2018.03.025
Zhang, P., Fan, B., Yang, P., Temirov, J., Messing, J., & Kim, H. J. (2019). Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife, 8, 1-23. https://doi.org/10.7554/eLife.39578
Zhang, X., Shu, X. E., & Qian, S. B. (2018). O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nature Chemical Biology, 14(10), 909-916. https://doi.org/10.1038/s41589-018-0120-6