Investigating biological activity spectrum for novel styrylquinazoline analogues
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19924061
PubMed Central
PMC6254837
DOI
10.3390/molecules14104246
PII: 14104246
Knihovny.cz E-zdroje
- MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- atypické mykobakteriální infekce farmakoterapie MeSH
- bakteriální pneumonie farmakoterapie mikrobiologie MeSH
- chinazoliny chemická syntéza chemie farmakologie MeSH
- chloroplasty účinky léků MeSH
- fotosyntéza účinky léků MeSH
- lidé MeSH
- netuberkulózní mykobakterie účinky léků MeSH
- Spinacia oleracea účinky léků MeSH
- styreny chemická syntéza farmakologie MeSH
- transport elektronů účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-styrylquinazolin-4(3H)-one MeSH Prohlížeč
- 4-chloro-2-styrylquinazoline MeSH Prohlížeč
- antituberkulotika MeSH
- chinazoliny MeSH
- styreny MeSH
- styrylquinazoline MeSH Prohlížeč
In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.
Zobrazit více v PubMed
Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. pp. 51–114.
Harris C.R., Thorarensen A. Advances in the discovery of novel antibacterial agents during the year 2002. Curr. Med. Chem. 2004;11:2213–2243. PubMed
Andries K., Verhasselt P., Guillemont J., Gohlmann H.W., Neefs J.M., Winkler H., Van Gestel J., Timmerman P., Zhu M., Lee E., Williams P., de Chaffoy D., Huitric E., Hoffner S., Cambau E., Truffot-Pernot C., Lounis N., Jarlier V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–227. PubMed
Vangapandu S., Jain M., Jain R., Kaur S., Singh P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004;12:2501–2508. PubMed
Carta A., Piras S., Palomba M., Jabes D., Molicotti P., Zanetti S. Anti-mycobacterial activity of quinolones. Triazoloquinolones a new class of potent anti-mycobacterial agents. Anti-Infective Agents Med. Chem. 2008;7:134–147.
Sissi C., Palumbo M. The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem. Anti-Canc. Agents. 2003;3:439–450. doi: 10.2174/1568011033482279. PubMed DOI
Bossu E., Agliano A.M., Desideri N., Sestili I., Porra R., Grandilone M., Quaglia M.G. LTB4 as marker of 5-LO inhibitory activity of two new N-ethoxycarbonyl-4-quinolones. J. Pharm. Biomed. Anal. 1999;19:539–549. PubMed
Ko T.C., Hour M.J., Lien J.C., Teng C.M., Lee K.H., Kuo S.C., Huang L.J. Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg. Med. Chem. Lett. 2001;11:279–282. PubMed
Jampilek J., Dolezal M., Kunes J., Vichova P., Jun D., Raich I., O´Connor R., Clynes M. Synthesis of (2E)-2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)prop-2-enoic acid (VUFB 20609) and 2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20584) as potential antileukotrienic agents. J. Pharm. Pharmacol. 2004;56:783–794. PubMed
Jampilek J., Dolezal M., Kunes J., Vichova P., Jun D., Raich I., O´Connor R., Clynes M. Preparation of 2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20615) and 2-methyl-2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20623) as potential antileukotrienic agents. Curr. Org. Chem. 2004;8:1235–1243. PubMed
Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI
Polanski J., Zouhiri F., Jeanson L., Desmaele D., d’Angelo J., Mouscadet J.F., Gieleciak R., Gasteiger J., Le Bret M. Use of Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J. Med. Chem. 2002;45:4647–4654. PubMed
Polanski J., Niedbala H., Musiol R., Tabak D., Podeszwa B., Gieleciak R., Bak A., Palka A., Magdziarz T. Analogues of the styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: Design and synthetic problems. Acta Poloniae Pharm. Drug Res. 2004;61:3–4. PubMed
Polanski J., Niedbala H., Musiol R., Podeszwa B., Tabak D., Palka A., Mencel A., Finster J., Mouscadet J.F., Le Bret M. 5-Hydroxy-8-nitro-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drugs Des. Disc. 2006;3:175–178.
Polanski J., Niedbala H., Musiol R., Podeszwa B., Tabak D., Palka A., Mencel A., Mouscadet J.F., Le Bret M. Fragment based approach for the investigation of HIV-1 integrase inhibition. Lett. Drugs Des. Disc. 2007;4:99–105.
Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. PubMed
Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. PubMed
Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. PubMed
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. PubMed
Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., Kozik V., Polanski J., Csollei J., Dohnal J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. PubMed PMC
Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., Jampilek J., Dohnal J., Kalinowski D., Richardson D.R. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. PubMed
Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. 1991;3:1621–1633.
Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI
Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.
Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Vol. 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3-and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Techn. 2000;18:251–256.
Kralova K., Sersen F., Miletin M., Dolezal M. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 2002;56:214–217.
Dolezal M., Miletin M., Kunes J., Kralova K. Synthesis and biological evaluation of some amides of pyrazine-2-carboxylic acids. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
[(21 September 2009)]. Available online: http://www.who.int/tb/publications/global_report/2008/summary/en/index.html/
Espinal M.A. The global situation of MDR-TB. Tuberculosis. 2003;83:44–51. doi: 10.1016/S1472-9792(02)00058-6. PubMed DOI
Field S.K., Cowie R.L. Lung disease due to the more common nontuberculous mycobacteria. Chest. 2006;129:1653–1672. doi: 10.1378/chest.129.6.1653. PubMed DOI
Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI
Morrone N., Cruvinel M.C., Morrone N., Jr., Freire J.A., Oliveira L.M., Gonçalves C. Pneumopatia causada por Mycobacterium kansasii. J. Pneumol. 2003;29:341–349. doi: 10.1590/S0102-35862003000600005. DOI
[(21 September 2009)]. Available online: http://www.doctorfungus.org/
Gershon H., Gershon M., Clarke D.D. Synergistic mixtures of fungitoxic monochloro- and dichloro-8-quinolinols against five fungi. Mycopathologia. 2004;158:131–135. doi: 10.1023/B:MYCO.0000038427.42852.6a. PubMed DOI
Dardari Z., Lemrani M., Bahloul A., Sebban A., Hassar M., Kitane S., Berrada M., Boudouma M. Antileishmanial activity of a new 8-hydroxyquinoline derivative designed7-[5′-(3′-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study. Farmaco. 2004;59:195–199. doi: 10.1016/j.farmac.2003.11.001. PubMed DOI
Musiol R., Podeszwa B., Finster J., Niedbala H., Polanski J. An efficient microwave-assisted synthesis of structurally diverse styrylquinolines. Monatsh. Chem. 2006;137:1211–1217.
Musiol R., Niedbala H., Majerz-Maniecka K., Oleksyn B., Polanski J. Synthesis and structure of styrylquinolines. Ann. Pol. Chem. Soc. 2005;1:118–122.
Majerz-Maniecka K., Musiol R., Nitek W., Oleksyn B., Mouscadet J.F., Le Bret M., Polanski J. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2006;16:1005–1009. PubMed
Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Avdeef A. Physicochemical profiling (permeability, solubility, charge state) Curr. Topics Med. Chem. 2001;1:277–351. doi: 10.2174/1568026013395100. PubMed DOI
Pliska V. Lipophilicity in drug action and toxicology. In: Pliska V., Testa B., van der Waterbeemd H., editors. Methods and Principles in Medicinal Chemistry. 1st. Vol. 4. Wiley-VCH; Weinheim, DE: 1996. pp. 1–6.
Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A. 2004;1037:299–310. PubMed
Valko K., Du C.M., Bevan C., Reynolds D.P., Abraham M.H. Rapid method for the estimation of octanol/water partition coefficient (log Poct) from gradient RP-HPLC retention and a hydrogen bond acidity term (Σα2H) Curr. Med. Chem. 2001;8:1137–1146. doi: 10.2174/0929867013372643. PubMed DOI
Cimpan G., Irimie F., Gocan S., Claessens H.A. Role of stationary phase and eluent composition on the determination of log P values of N-hydroxyethylamide of aryloxyalkylen and pyridine carboxylic acids by reversed-phase high-performance liquid chromatography. J. Chromatogr. B. 1998;714:247–261. doi: 10.1016/S0378-4347(98)00228-X. PubMed DOI
Gocan S., Cimpan G., Comer J. Lipophilicity measurements by liquid chromatography. Adv. Chromatogr. 2006;44:79–176. PubMed
Hartmann T., Schmitt J. Lipophilicity – beyond octanol/water: A short comparison of modern technologies. Drug Discov. Today Technol. 2004;1:431–439. doi: 10.1016/j.ddtec.2004.10.006. PubMed DOI
Nasal A., Siluk D., Kaliszan R. Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr. Med. Chem. 2003;10:381–426. doi: 10.2174/0929867033368268. PubMed DOI
Piraprez G., Herent M.F., Collin S. Determination of the lipophilicity of aroma compounds by RP-HPLC. Flavour Fragr. J. 1998;13:400–408. doi: 10.1002/(SICI)1099-1026(199811/12)13:6<400::AID-FFJ767>3.0.CO;2-X. DOI
Yamagami C., Iwasaki K., Ishikawa A. Hydrophobicity parameters determined by reversed-phase liquid chromatography. XII. Comparison of capacity factors and octane/methanol-water partition coefficients for monosubstituted pyrazines, and effect of octanol added to both partitioning systems. Chem. Pharm. Bull. 1997;45:1653–1658. doi: 10.1248/cpb.45.1653. DOI
Yamagami C., Araki K., Ohnishi K., Hanasato K., Inaba H., Aono M., Ohta A. Measurement and prediction of hydrophobicity parameters for highly lipophilic compounds: Application of the HPLC column-switching technique to measurement of log P of diarylpyrazines. J. Pharm. Sci. 1999;88:1299–1304. PubMed
Yamagami C., Kawase K., Iwaki K. Hydrophobicity parameters determined by reversed-phase liquid chromatography. XV: Optimal conditions for prediction of log Poct by using RP-HPLC procedures. Chem. Pharm. Bull. 2002;50:1578–1583. PubMed
Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Kunes J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC Study. Collect. Czech. Chem. Comm. 2008;73:1–18.
Musiol R., Jampilek J., Podeszwa B., Finster J., Tabak D., Dohnal J., Polanski J. RP-HPLC Determination of drug lipophilicity in series of quinoline derivatives. Cent. Eur. J. Chem. 2009;7:586–597. doi: 10.2478/s11532-009-0059-2. DOI
Dolezal M., Jampilek J., Osicka Z., Kunes J., Buchta V., Vichova P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: Synthesis and biological activity. Farmaco. 2003;58:1105–1111. doi: 10.1016/S0014-827X(03)00163-0. PubMed DOI
Jampilek J., Vinsova J., Dohnal J. Synthesis and hydrophobic properties of benzoxazoles. In: Seijas J.A., Tato M.P.V., editors. Proceedings of the 9th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-9); November 1–30, 2005; Basel, Switzerland: MDPI; 2005. p. a008.
Jampilek J., Vinsova J., Dohnal J. Synthesis and hydrophobic properties of substituted 2-aryl-5,7-di-tert-butylbenzoxazoles. In: Seijas J.A., Tato M.P.V., editors. Proceedings of the 10th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-10); November 1–30, 2006; Basel, Switzerland: MDPI; 2006. p. a003.
Vinsova J., Cermakova K., Tomeckova A., Ceckova M., Jampilek J., Cermak P., Kunes J., Dolezal M., Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 2006;14:5850–5865. PubMed
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed
Takahata Y., Chong D.P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 2005;103:509–515. doi: 10.1002/qua.20533. DOI
Nielsen K.E., Pedersen E.B. Phosphoramides. XII. Phosphorus pentaoxide – amine hydrochloride as reagents in the synthesis of 4-(3H)-quinazolinones and 4-quinazolinamines. Acta Chem. Scand. Ser. B. 1980;34:637–642.
Finster J., Kalinowski D., Musiol R., Mrozek A., Szurko A., Serafin A., Kamalapuram S.K., Kovacevic Z., Jampilek J., Ratuszna A., Rezeszowska-Wolny J., Richardson D.R., Polanski J. Investigating anti-proliferative activity of styrylazanaftalenes and azanaftalenediones. Bioorg. Med. Chem. 2009 submitted. PubMed
Kovalenko S., Belenichev I., Nikitin V., Karpenko A. Search for substances with antioxidant and antiamnestic activities among 2-substituted 4-(3H)-quinazolones. Acta Pol. Pharm. Drug Design. 2003;60:275–279. PubMed
Botros S., Shaban M. Synthesis of some 2-styrylquinazoline derivatives structurally related to certain chemotherapeutic agents. Pharmazie. 1978;33:646–647. PubMed
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd. Taylor & Francis Group; Boca Raton, London-New York-Singapore: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; Berlin-Heidelberg/New York, Germany/US: 1982.
Sheehan D.J., Espinel-Ingroff A., Steele M., Webb C.D. Antifungal susceptibility testing of yeasts: A brief overview. Clin. Infect. Dis. 1993;17:494–500. PubMed
Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides