Investigating biological activity spectrum for novel styrylquinazoline analogues

. 2009 Oct 23 ; 14 (10) : 4246-65. [epub] 20091023

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19924061

In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

Zobrazit více v PubMed

Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. pp. 51–114.

Harris C.R., Thorarensen A. Advances in the discovery of novel antibacterial agents during the year 2002. Curr. Med. Chem. 2004;11:2213–2243. PubMed

Andries K., Verhasselt P., Guillemont J., Gohlmann H.W., Neefs J.M., Winkler H., Van Gestel J., Timmerman P., Zhu M., Lee E., Williams P., de Chaffoy D., Huitric E., Hoffner S., Cambau E., Truffot-Pernot C., Lounis N., Jarlier V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–227. PubMed

Vangapandu S., Jain M., Jain R., Kaur S., Singh P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004;12:2501–2508. PubMed

Carta A., Piras S., Palomba M., Jabes D., Molicotti P., Zanetti S. Anti-mycobacterial activity of quinolones. Triazoloquinolones a new class of potent anti-mycobacterial agents. Anti-Infective Agents Med. Chem. 2008;7:134–147.

Sissi C., Palumbo M. The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem. Anti-Canc. Agents. 2003;3:439–450. doi: 10.2174/1568011033482279. PubMed DOI

Bossu E., Agliano A.M., Desideri N., Sestili I., Porra R., Grandilone M., Quaglia M.G. LTB4 as marker of 5-LO inhibitory activity of two new N-ethoxycarbonyl-4-quinolones. J. Pharm. Biomed. Anal. 1999;19:539–549. PubMed

Ko T.C., Hour M.J., Lien J.C., Teng C.M., Lee K.H., Kuo S.C., Huang L.J. Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg. Med. Chem. Lett. 2001;11:279–282. PubMed

Jampilek J., Dolezal M., Kunes J., Vichova P., Jun D., Raich I., O´Connor R., Clynes M. Synthesis of (2E)-2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)prop-2-enoic acid (VUFB 20609) and 2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20584) as potential antileukotrienic agents. J. Pharm. Pharmacol. 2004;56:783–794. PubMed

Jampilek J., Dolezal M., Kunes J., Vichova P., Jun D., Raich I., O´Connor R., Clynes M. Preparation of 2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20615) and 2-methyl-2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20623) as potential antileukotrienic agents. Curr. Org. Chem. 2004;8:1235–1243. PubMed

Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI

Polanski J., Zouhiri F., Jeanson L., Desmaele D., d’Angelo J., Mouscadet J.F., Gieleciak R., Gasteiger J., Le Bret M. Use of Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J. Med. Chem. 2002;45:4647–4654. PubMed

Polanski J., Niedbala H., Musiol R., Tabak D., Podeszwa B., Gieleciak R., Bak A., Palka A., Magdziarz T. Analogues of the styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: Design and synthetic problems. Acta Poloniae Pharm. Drug Res. 2004;61:3–4. PubMed

Polanski J., Niedbala H., Musiol R., Podeszwa B., Tabak D., Palka A., Mencel A., Finster J., Mouscadet J.F., Le Bret M. 5-Hydroxy-8-nitro-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drugs Des. Disc. 2006;3:175–178.

Polanski J., Niedbala H., Musiol R., Podeszwa B., Tabak D., Palka A., Mencel A., Mouscadet J.F., Le Bret M. Fragment based approach for the investigation of HIV-1 integrase inhibition. Lett. Drugs Des. Disc. 2007;4:99–105.

Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. PubMed

Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. PubMed

Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. PubMed

Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. PubMed

Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., Kozik V., Polanski J., Csollei J., Dohnal J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. PubMed PMC

Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., Jampilek J., Dohnal J., Kalinowski D., Richardson D.R. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. PubMed

Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. 1991;3:1621–1633.

Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Vol. 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Kralova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3-and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Techn. 2000;18:251–256.

Kralova K., Sersen F., Miletin M., Dolezal M. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 2002;56:214–217.

Dolezal M., Miletin M., Kunes J., Kralova K. Synthesis and biological evaluation of some amides of pyrazine-2-carboxylic acids. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

[(21 September 2009)]. Available online: http://www.who.int/tb/publications/global_report/2008/summary/en/index.html/

Espinal M.A. The global situation of MDR-TB. Tuberculosis. 2003;83:44–51. doi: 10.1016/S1472-9792(02)00058-6. PubMed DOI

Field S.K., Cowie R.L. Lung disease due to the more common nontuberculous mycobacteria. Chest. 2006;129:1653–1672. doi: 10.1378/chest.129.6.1653. PubMed DOI

Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI

Morrone N., Cruvinel M.C., Morrone N., Jr., Freire J.A., Oliveira L.M., Gonçalves C. Pneumopatia causada por Mycobacterium kansasii. J. Pneumol. 2003;29:341–349. doi: 10.1590/S0102-35862003000600005. DOI

[(21 September 2009)]. Available online: http://www.doctorfungus.org/

Gershon H., Gershon M., Clarke D.D. Synergistic mixtures of fungitoxic monochloro- and dichloro-8-quinolinols against five fungi. Mycopathologia. 2004;158:131–135. doi: 10.1023/B:MYCO.0000038427.42852.6a. PubMed DOI

Dardari Z., Lemrani M., Bahloul A., Sebban A., Hassar M., Kitane S., Berrada M., Boudouma M. Antileishmanial activity of a new 8-hydroxyquinoline derivative designed7-[5′-(3′-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study. Farmaco. 2004;59:195–199. doi: 10.1016/j.farmac.2003.11.001. PubMed DOI

Musiol R., Podeszwa B., Finster J., Niedbala H., Polanski J. An efficient microwave-assisted synthesis of structurally diverse styrylquinolines. Monatsh. Chem. 2006;137:1211–1217.

Musiol R., Niedbala H., Majerz-Maniecka K., Oleksyn B., Polanski J. Synthesis and structure of styrylquinolines. Ann. Pol. Chem. Soc. 2005;1:118–122.

Majerz-Maniecka K., Musiol R., Nitek W., Oleksyn B., Mouscadet J.F., Le Bret M., Polanski J. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2006;16:1005–1009. PubMed

Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.

Avdeef A. Physicochemical profiling (permeability, solubility, charge state) Curr. Topics Med. Chem. 2001;1:277–351. doi: 10.2174/1568026013395100. PubMed DOI

Pliska V. Lipophilicity in drug action and toxicology. In: Pliska V., Testa B., van der Waterbeemd H., editors. Methods and Principles in Medicinal Chemistry. 1st. Vol. 4. Wiley-VCH; Weinheim, DE: 1996. pp. 1–6.

Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A. 2004;1037:299–310. PubMed

Valko K., Du C.M., Bevan C., Reynolds D.P., Abraham M.H. Rapid method for the estimation of octanol/water partition coefficient (log Poct) from gradient RP-HPLC retention and a hydrogen bond acidity term (Σα2H) Curr. Med. Chem. 2001;8:1137–1146. doi: 10.2174/0929867013372643. PubMed DOI

Cimpan G., Irimie F., Gocan S., Claessens H.A. Role of stationary phase and eluent composition on the determination of log P values of N-hydroxyethylamide of aryloxyalkylen and pyridine carboxylic acids by reversed-phase high-performance liquid chromatography. J. Chromatogr. B. 1998;714:247–261. doi: 10.1016/S0378-4347(98)00228-X. PubMed DOI

Gocan S., Cimpan G., Comer J. Lipophilicity measurements by liquid chromatography. Adv. Chromatogr. 2006;44:79–176. PubMed

Hartmann T., Schmitt J. Lipophilicity – beyond octanol/water: A short comparison of modern technologies. Drug Discov. Today Technol. 2004;1:431–439. doi: 10.1016/j.ddtec.2004.10.006. PubMed DOI

Nasal A., Siluk D., Kaliszan R. Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr. Med. Chem. 2003;10:381–426. doi: 10.2174/0929867033368268. PubMed DOI

Piraprez G., Herent M.F., Collin S. Determination of the lipophilicity of aroma compounds by RP-HPLC. Flavour Fragr. J. 1998;13:400–408. doi: 10.1002/(SICI)1099-1026(199811/12)13:6<400::AID-FFJ767>3.0.CO;2-X. DOI

Yamagami C., Iwasaki K., Ishikawa A. Hydrophobicity parameters determined by reversed-phase liquid chromatography. XII. Comparison of capacity factors and octane/methanol-water partition coefficients for monosubstituted pyrazines, and effect of octanol added to both partitioning systems. Chem. Pharm. Bull. 1997;45:1653–1658. doi: 10.1248/cpb.45.1653. DOI

Yamagami C., Araki K., Ohnishi K., Hanasato K., Inaba H., Aono M., Ohta A. Measurement and prediction of hydrophobicity parameters for highly lipophilic compounds: Application of the HPLC column-switching technique to measurement of log P of diarylpyrazines. J. Pharm. Sci. 1999;88:1299–1304. PubMed

Yamagami C., Kawase K., Iwaki K. Hydrophobicity parameters determined by reversed-phase liquid chromatography. XV: Optimal conditions for prediction of log Poct by using RP-HPLC procedures. Chem. Pharm. Bull. 2002;50:1578–1583. PubMed

Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Kunes J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC Study. Collect. Czech. Chem. Comm. 2008;73:1–18.

Musiol R., Jampilek J., Podeszwa B., Finster J., Tabak D., Dohnal J., Polanski J. RP-HPLC Determination of drug lipophilicity in series of quinoline derivatives. Cent. Eur. J. Chem. 2009;7:586–597. doi: 10.2478/s11532-009-0059-2. DOI

Dolezal M., Jampilek J., Osicka Z., Kunes J., Buchta V., Vichova P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: Synthesis and biological activity. Farmaco. 2003;58:1105–1111. doi: 10.1016/S0014-827X(03)00163-0. PubMed DOI

Jampilek J., Vinsova J., Dohnal J. Synthesis and hydrophobic properties of benzoxazoles. In: Seijas J.A., Tato M.P.V., editors. Proceedings of the 9th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-9); November 1–30, 2005; Basel, Switzerland: MDPI; 2005. p. a008.

Jampilek J., Vinsova J., Dohnal J. Synthesis and hydrophobic properties of substituted 2-aryl-5,7-di-tert-butylbenzoxazoles. In: Seijas J.A., Tato M.P.V., editors. Proceedings of the 10th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-10); November 1–30, 2006; Basel, Switzerland: MDPI; 2006. p. a003.

Vinsova J., Cermakova K., Tomeckova A., Ceckova M., Jampilek J., Cermak P., Kunes J., Dolezal M., Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 2006;14:5850–5865. PubMed

Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed

Takahata Y., Chong D.P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 2005;103:509–515. doi: 10.1002/qua.20533. DOI

Nielsen K.E., Pedersen E.B. Phosphoramides. XII. Phosphorus pentaoxide – amine hydrochloride as reagents in the synthesis of 4-(3H)-quinazolinones and 4-quinazolinamines. Acta Chem. Scand. Ser. B. 1980;34:637–642.

Finster J., Kalinowski D., Musiol R., Mrozek A., Szurko A., Serafin A., Kamalapuram S.K., Kovacevic Z., Jampilek J., Ratuszna A., Rezeszowska-Wolny J., Richardson D.R., Polanski J. Investigating anti-proliferative activity of styrylazanaftalenes and azanaftalenediones. Bioorg. Med. Chem. 2009 submitted. PubMed

Kovalenko S., Belenichev I., Nikitin V., Karpenko A. Search for substances with antioxidant and antiamnestic activities among 2-substituted 4-(3H)-quinazolones. Acta Pol. Pharm. Drug Design. 2003;60:275–279. PubMed

Botros S., Shaban M. Synthesis of some 2-styrylquinazoline derivatives structurally related to certain chemotherapeutic agents. Pharmazie. 1978;33:646–647. PubMed

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd. Taylor & Francis Group; Boca Raton, London-New York-Singapore: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; Berlin-Heidelberg/New York, Germany/US: 1982.

Sheehan D.J., Espinel-Ingroff A., Steele M., Webb C.D. Antifungal susceptibility testing of yeasts: A brief overview. Clin. Infect. Dis. 1993;17:494–500. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace