Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides

. 2014 Jul 17 ; 19 (7) : 10386-409. [epub] 20140717

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25036151

In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.

Zobrazit více v PubMed

World Health Organization . Global Tuberculosis Report 2013. WHO Press; Geneva, Switzerland: 2013.

Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI

Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI

Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI

Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI

Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI

Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-caboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2–aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI

Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed

Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed

Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N'-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed

Bujdakova H., Kralova K., Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethiones. Pharmazie. 1995;50:156–156. PubMed

Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed

Laursen J.S., Engel-Andreasen J., Fristrup P., Harris P., Olsen C.A. Cis-trans amide bond rotamers in β-peptoids and peptoids: Evaluation of stereoelectronic effects in backbone and side chains. J. Am. Chem. Soc. 2013;135:2835–2844. doi: 10.1021/ja312532x. PubMed DOI

Pattabiraman V.R., Bode J.W. Rethinking amide bond synthesis. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI

Roth H.J., Fenner H. Arzneistoffe. 3rd ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. pp. 51–114.

Sinning C., Watzer B., de Petrocellis L., di Marzo V., Imming P. Dopamides, vanillylamides, ethanolamides, and arachidonic acid amides of anti-inflammatory and analgesic drug substances as TRPV1 ligands. Chem. Med. Chem. 2008;3:1956–1964. doi: 10.1002/cmdc.200800271. PubMed DOI

Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC

Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI

Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Andries K., Verhasselt P., Guillemont J., Gohlmann H.W., Neefs J.M., Winkler H., van Gestel J., Timmerman P., Zhu M., Lee E., et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–227. doi: 10.1126/science.1106753. PubMed DOI

Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. doi: 10.2174/157340605774598108. PubMed DOI

Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI

Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI

Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., et al. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. doi: 10.1016/j.bmcl.2007.09.040. PubMed DOI

Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., Coffey A., Polanski J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC

Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Kovacevic Z., Jampilek J., Rzeszowska-Wolny J., Richardson D.R., Polanski J. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI

Serda M., Mrozek-Wilczkiewicz A., Jampilek J., Pesko M., Kralova K., Vejsova M., Musiol R., Polanski J. Investigation of biological properties for (hetero)aromatic thiosemicarbazones. Molecules. 2012;17:13483–13502. doi: 10.3390/molecules171113483. PubMed DOI PMC

Cieslik W., Musiol R., Nycz J., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI

Rokade Y.B., Sayyed R.Z. Naphthalene derivatives: A new range of antimicrobials with high therapeutic value. Rasayan J. Chem. 2009;2:972–980.

Durrant J.D., Hall L., Swift R.V., Landon M., Schnaufer A., Schnaufer A., Amaro R.E. Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl. Trop. Dis. 2010 doi: 10.1371/journal.pntd.0000803. PubMed DOI PMC

Parineeta B.N. Derivatives of 1-chloromethyl naphthalene: Synthesis and microbiological evaluation as potential antifungal agents. Der Pharma Chem. 2011;3:105–111.

Kanno T., Tanaka A., Shimizu T., Nakano T., Nishizaki T. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol as a potential anticancer drug. Pharmacology. 2013;91:339–345. doi: 10.1159/000351747. PubMed DOI

Damu G.L.V., Wang Q.P., Zhang H.Z., Zhang Y.Y., Lv J.S., Zhou C.H. A series of naphthalimide azoles: Design, synthesis and bioactive evaluation as potential antimicrobial agents. Sci. Chin. Chem. 2013;56:952–969. doi: 10.1007/s11426-013-4873-1. DOI

Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. 1991;3:1621–1633.

Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

National Committee for Clinical Laboratory Standards . Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard, M24-A2. 2nd ed. National Committee for Clinical Laboratory Standards; Wayne, PA, USA: 2011. PubMed

Carroll J., Douarre P., Coffey A., Buckley J., Cashman B., O’Farrell K., O’Mahony J. Optimization of a rapid viability assay for Mycobacterium avium paratuberculosis by using alamarBlue. Appl. Environ. Microbiol. 2009;75:7870–7872. doi: 10.1128/AEM.01203-09. PubMed DOI PMC

Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. In Tech; Rijeka, Croatia: 2012. pp. 147–168.

Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI

Bueno R.V., Braga R.C., Segretti N.D., Ferreir E.I., Trossini G.H., Andrade C.H. New tuberculostatic agents targeting nucleic acid biosynthesis: Drug design using QSAR approaches. Curr. Pharm. Des. 2014;20:4474–4485. PubMed

Koul A., Vranckx L., Dhar N., Gohlmann H.W.H., Ozdemir E., Neefs J.M., Schulz M., Lu P., Mortz E., McKinney J.D., et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun. 2014 doi: 10.1038/ncomms4369. PubMed DOI PMC

Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI

Bell F. CCLVII.–The migration of acyl grups in o-aminophenols. J. Chem. Soc. 1930:1981–1987. doi: 10.1039/JR9300001981. DOI

Kumar K.N., Sreeramamurthy K., Palle S., Mukkanti K., Das P. Dithiocarbamate and DBU-promoted amide bond formation under microwave condition. Tetrahedron Lett. 2010;51:899–902. doi: 10.1016/j.tetlet.2009.11.127. DOI

Kobs U., Neumann W.P. Facile and effective synthesis of unusually substituted aromatic N-phenylamides. Chem. Ber. 1990;123:2191–2194. doi: 10.1002/cber.19901231117. DOI

Shah R., Deshpande R.K. A simplified method for the preparation of anilides. J. Uni. Bombay. 1933;2:125–127.

Strukil V., Bartolec B., Portada T., Dilovic I., Halasz I., Margetic D. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines. Chem. Commun. 2012;48:12100–12102. doi: 10.1039/c2cc36613d. PubMed DOI

Liu L.H., Guo L., Liu C.H., Zhang X., Jiang Y.B. Intramolecular charge transfer with 1-naphthanilides and 2-naphthanilides. Chin. J. Chem. 2005;23:857–864. doi: 10.1002/cjoc.200590857. DOI

Zhang Z., Yu Y., Liebeskind L.S. N-Amidation by copper-mediated cross-coupling of organostannanes or boronic acids with O-acetyl hydroxamic acids. Org. Lett. 2008;10:3005–3008. doi: 10.1021/ol8009682. PubMed DOI PMC

Bahrami K., Khodaei M.M., Targhan H., Arabi M.S. Preparation of esters and amides from carboxylic acids and N-formylation of amines promoted by 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-hexachloride. Tetrahedron Lett. 2013;54:5064–5068. doi: 10.1016/j.tetlet.2013.07.033. DOI

Tambade P.J., Patil Y.P., Bhanage B.M. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate catalyzed alkoxycarbonylation and aminocarbonylation reactions. Appl. Organometal. Chem. 2009;23:235–240. doi: 10.1002/aoc.1504. DOI

El-Sheikh M.I., Marks A., Biehl E.R. Investigation of the synthesis of benzoxazole via aryne reaction. J. Org. Chem. 1981;46:3256–3259. doi: 10.1021/jo00329a022. DOI

Aluri B.R., Niaz B., Kindermann M.K., Jones P.G., Heinicke J. P-C-N-Heterocycles: Synthesis of biaryl-type 1,3-benzazaphospholes with ortho-substituted phenyl or 2-heteroaryl groups. Dalton Trans. 2011;40:211–224. doi: 10.1039/c0dt00881h. PubMed DOI

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...