Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27617988
PubMed Central
PMC6273964
DOI
10.3390/molecules21091189
PII: molecules21091189
Knihovny.cz E-zdroje
- Klíčová slova
- carbamates, hydroxynaphthalene-carboxamides, in vitro antibacterial activity, in vitro antimycobacterial activity, in vitro cytotoxicity assay, structure-activity relationships,
- MeSH
- antiinfekční látky * chemická syntéza chemie farmakologie MeSH
- cytotoxiny * chemická syntéza chemie farmakologie MeSH
- karbamáty * chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus růst a vývoj MeSH
- Mycobacterium tuberculosis růst a vývoj MeSH
- nádorové buněčné linie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky * MeSH
- cytotoxiny * MeSH
- karbamáty * MeSH
Series of thirteen 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl carbamates and thirteen 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl carbamates with alkyl/cycloalkyl/arylalkyl chains were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, two methicillin-resistant S. aureus strains, Mycobacterium marinum, and M. kansasii. 1-[(2-Chlorophenyl)carbamoyl]naphthalen-2-yl ethylcarbamate and 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl ethylcarbamate showed antistaphylococcal (MICs = 42 µM against MRSA) and antimycobacterial (MICs = 21 µM) activity against the tested strains comparable with or higher than that of the standards ampicillin and isoniazid. In the case of bulkier carbamate tails (R > propyl/isopropyl), the activity was similar (MICs ca. 70 µM). Screening of the cytotoxicity of both of the most effective compounds was performed using THP-1 cells, and no significant lethal effect was observed (LD50 >30 µM). The structure-activity relationships are discussed.
Zobrazit více v PubMed
World Health Organization . World Health Statistics 2016: Monitoring Health for the SDGs. WHO Press; Geneva, Switzerland: 2016.
World Health Organization . Global Tuberculosis Report 2015. WHO Press; Geneva, Switzerland: 2015.
World Health Organization . Global Antimicrobial Resistance Surveillance System 2015. WHO Press; Geneva, Switzerland: 2015.
European Centre for Disease Prevention and Control. [(accessed on 30 July 2016)]. Available online: http://ecdc.europa.eu/en/Pages/home.aspx.
Thampi N., Showler A., Burry L., Bai A.D., Steinberg M., Ricciuto D.R., Bell C.M., Morris A.M. Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care. Am. J. Infect. Control. 2015;43:739–744. doi: 10.1016/j.ajic.2015.01.031. PubMed DOI
Kaku N., Yanagihara K., Morinaga Y., Yamada K., Harada Y., Migiyama Y., Nagaoka K., Matsuda J., Uno N., Hasegawa H., et al. Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. J. Infect. Chemother. 2014;20:350–355. doi: 10.1016/j.jiac.2013.12.009. PubMed DOI
Tavares L.S., Silva C.S.F., de Souza V.C., da Silva V.L., Diniz C.G., Santos M.O. Strategies and molecular tools to fight antimicrobial resistance: Resistome, transcriptome, and antimicrobial peptides. Front. Microbiol. 2013;4:412. doi: 10.3389/fmicb.2013.00412. PubMed DOI PMC
Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI
Jampilek J. How Can We Bolster the Antifungal Drug Discovery Pipeline? Future Med. Chem. 2016;8:1393–1397. doi: 10.4155/fmc-2016-0124. PubMed DOI
Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Imramovsky A., Pauk K., Pejchal V., Hanusek J. Salicylanilides and their derivates as perspective anti-tuberculosis drugs: Synthetic routes and biological evaluations. Mini Rev. Org. Chem. 2011;8:211–220. doi: 10.2174/157019311795177808. DOI
Kratky M., Vinsova J. Antiviral activity of substituted salicylanilides—A review. Mini Rev. Med. Chem. 2011;11:956–967. doi: 10.2174/138955711797068382. PubMed DOI
Kratky M., Vinsova J. Advances in mycobacterial isocitrate lyase targeting and inhibitors. Curr. Med. Chem. 2012;19:6126–6137. doi: 10.2174/0929867311209066126. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Steinhilber D., Schubert-Zsilavecz M., Roth H.J. Medizinische Chemie: Targets, Arzneistoffe, Chemische Biologie. Deutscher Apotheker Verlag; Stutgart, Germany: 2010.
US Environmental Protection Agency–Pesticide Registration: Pesticide Data Submitters List (PDSL), 2016. [(accessed on 30 July 2016)]; Available online: https://www.epa.gov/sites/production/files/2016-04/documents/dslchem_0.pdf.
Pattabiraman V.R., Bode J.W. Rethinking amide bond synthesis. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI
Ghosh A.K., Brindisi M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]-benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Jampilek J., Brychtova K. Azone analogues: Classification, design, and transdermal penetration principles. Med. Res. Rev. 2012;32:907–947. doi: 10.1002/med.20227. PubMed DOI
Malik I., Bukovsky M., Andriamainty F., Galisinova J. Anti-microbial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;43:959–965. PubMed PMC
Malik I., Bukovsky M., Andriamainty F., Galisinova J. Antimicrobial effect of para-alkoxyphenylcarbamic acid esters containing substituted N-phenylpiperazine moiety. Braz. J. Microbiol. 2013;44:457–463. doi: 10.1590/S1517-83822013000200018. PubMed DOI PMC
Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Chambel B., Pereira D., Kollar P., Imramovsky A., O’Mahony J., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI
Gonec T., Kos J., Nevin E., Govender R., Pesko M., Kushkevych I., Oravec M., Kollar P., O’Mahony J., Kralova K., et al. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides. Molecules. 2014;19:10386–10409. doi: 10.3390/molecules190710386. PubMed DOI PMC
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Alnimr A.M. Dormancy models for Mycobacterium tuberculosis: A mini review. Braz. J. Microbiol. 2015;46:641–647. doi: 10.1590/S1517-838246320140507. PubMed DOI PMC
Van Ingen J., Boeree M.J., van Soolingen D., Mouton J.W. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updates. 2012;15:149–161. doi: 10.1016/j.drup.2012.04.001. PubMed DOI
Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI
National Committee for Clinical Laboratory Standards . M24-A2 Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard. 2nd ed. NCCLS; Wayne, PA, USA: 2011. PubMed
Tengler J., Kapustikova I., Pesko M., Govender R., Keltosova S., Mokry P., Kollar P., O’Mahony J., Coffey A., Kralova K., et al. Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates. Sci. World J. 2013;2013:274570. doi: 10.1155/2013/274570. PubMed DOI PMC
Kratky M., Vinsova J. Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity. Bioorg. Med. Chem. 2016;24:1322–1330. doi: 10.1016/j.bmc.2016.02.004. PubMed DOI
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard. 5th ed. NCCLS; Wayne, PA, USA: 2000. CLSI Document M7-A5.
National Committee for Clinical Laboratory Standards . Performance Standards for Antimicrobial Susceptibility Testing. NCCLS; Wayne, MI, USA: 2002. 12th Informational Supplement M100-S12.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Clinical and Laboratory Standards Institute. [(accessed on 5 September 2016)]. Available online: http://www.clsi.org.
Dibasic Derivatives of Phenylcarbamic Acid against Mycobacterial Strains: Old Drugs and New Tricks?