Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines

. 2016 Jul 28 ; 17 (8) : . [epub] 20160728

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27483236

Ring-substituted hydroxynaphthanilides are considered as cyclic analogues of salicylanilides, compounds possessing a wide range of pharmacological activities, including promising anticancer properties. The aim of this study was to evaluate the potential anticancer effect of novel nitro-substituted hydroxynaphthanilides with a special focus on structure-activity relationships. The antiproliferative effect was assessed by Water Soluble Tetrazolium Salts-1 (WST-1) assay, and cytotoxicity was evaluated via dye exclusion test. Flow cytometry was used for cell cycle analysis and detection of apoptosis using Annexin V-FITC/PI assay. Protein expression was estimated by Western blotting. Our data indicate that the potential to cause the antiproliferative effect increases with the shift of the nitro substituent from the ortho- to the para-position. The most potent compounds, 3-hydroxy-N-(3-nitrophenyl)naphthalene-2-carboxamide (2), and 2-hydroxy-N-(4-nitrophenyl)-naphthalene-1-carboxamide (6) showed antiproliferative activity against THP-1 and MCF-7 cancer cells without affecting the proliferation of 3T3-L1 non-tumour cells. Compounds 2 and 6 induced the accumulation of THP-1 and MCF-7 cells in G1 phase associated with the downregulation of cyclin E1 protein levels, while the levels of cyclin B1 were not affected. Moreover, compound 2 was found to exert the pro-apoptotic effect on the THP-1 cells. These results suggest that hydroxynaphthanilides might represent a potential model structure for the development of novel anticancer agents.

Zobrazit více v PubMed

Kratky M., Vinsova J., Novotna E., Mandikova J., Wsol V., Trejtnar F., Ulmann V., Stolarikova J., Fernandes S., Bhat S., et al. Salicylanilide derivatives block mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinburgh) 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Olliaro P., Seiler J., Kuesel A., Horton J., Clark J.N., Don R., Keiser J. Potential drug development candidates for human soil-transmitted helminthiases. PLoS Negl. Trop. Dis. 2011;5:1219. doi: 10.1371/journal.pntd.0001138. PubMed DOI PMC

Mudduluru G., Walther W., Kobelt D., Dahlmann M., Treese C., Assaraf Y.G., Stein U. Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist. Updat. 2016;26:10–27. doi: 10.1016/j.drup.2016.03.002. PubMed DOI

Osada T., Chen M., Yang X.Y., Spasojevic I., Vandeusen J.B., Hsu D., Clary B.M., Clay T.M., Chen W., Morse M.A., et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 2011;71:4172–4182. doi: 10.1158/0008-5472.CAN-10-3978. PubMed DOI PMC

Li Y., Li P.K., Roberts M.J., Arend R.C., Samant R.S., Buchsbaum D.J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14. doi: 10.1016/j.canlet.2014.04.003. PubMed DOI PMC

Fonseca B.D., Diering G.H., Bidinosti M.A., Dalal K., Alain T., Balgi A.D., Forestieri R., Nodwell M., Rajadurai C.V., Gunaratnam C., et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 2012;287:17530–17545. doi: 10.1074/jbc.M112.359638. PubMed DOI PMC

Lu W., Lin C., Roberts M.J., Waud W.R., Piazza G.A., Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS ONE. 2011;6:1219. doi: 10.1371/journal.pone.0029290. PubMed DOI PMC

Jin Y., Lu Z., Ding K., Li J., Du X., Chen C., Sun X., Wu Y., Zhou J., Pan J. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–2527. doi: 10.1158/0008-5472.CAN-09-3950. PubMed DOI

Kang B.-R., Shan A.-L., Li Y.-P., Xu J., Lu S.-M., Zhang S.-Q. Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping. Bioorg. Med. Chem. 2013;21:6956–6964. doi: 10.1016/j.bmc.2013.09.027. PubMed DOI

Liechti C., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI

Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryloylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2016;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI

Zhu X.F., Wang J.S., Cai L.L., Zeng Y.X., Yang D. SUCI02 inhibits the erbb-2 tyrosine kinase receptor signaling pathway and arrests the cell cycle in G1 phase in breast cancer cells. Cancer Sci. 2006;97:84–89. doi: 10.1111/j.1349-7006.2006.00143.x. PubMed DOI PMC

Imramovsky A., Jorda R., Pauk K., Reznickova E., Dusek J., Hanusek J., Krystof V. Substituted 2-hydroxy-N-(arylalkyl)benzamides induce apoptosis in cancer cell lines. Eur. J. Med. Chem. 2016;68:253–259. doi: 10.1016/j.ejmech.2013.08.009. PubMed DOI

Zuo M., Zheng Y.W., Lu S.M., Li Y., Zhang S.Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC-EGFR dual inhibitors. Bioorg. Med. Chem. 2012;20:4405–4412. doi: 10.1016/j.bmc.2012.05.034. PubMed DOI

Solomon V.R., Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011;18:1488–1508. doi: 10.2174/092986711795328382. PubMed DOI

Guo L., Wang Q.L., Jiang Q.Q., Jiang Q.J., Jiang Y.B. Anion-triggered substituent-dependent conformational switching of salicylanilides. New hints for understanding the inhibitory mechanism of salicylanilides. J. Org. Chem. 2007;72:9947–9953. doi: 10.1021/jo701823d. PubMed DOI

Walters Haygood C.L., Arend R.C., Gangrade A., Chettiar S., Regan N., Hassmann C.J., 2nd, Li P.K., Hidalgo B., Straughn J.M., Jr., Buchsbaum D.J. Niclosamide analogs for treatment of ovarian cancer. Int. J. Gynecol. Cancer. 2015;25:1377–1385. doi: 10.1097/IGC.0000000000000506. PubMed DOI

Brumatti G., Sheridan C., Martin S.J. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods. 2008;44:235–240. doi: 10.1016/j.ymeth.2007.11.010. PubMed DOI

Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14:32–43. doi: 10.1038/sj.cdd.4402060. PubMed DOI

Malik I., Bukovsky M., Andriamainty F., Galisinova J. Antimicrobial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;3:959–965. PubMed PMC

Williams G.H., Stoeber K. The cell cycle and cancer. J. Pathol. 2012;226:352–364. doi: 10.1002/path.3022. PubMed DOI

Malumbres M., Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer. 2009;9:153–166. doi: 10.1038/nrc2602. PubMed DOI

Diaz-Moralli S., Tarrado-Castellarnau M., Miranda A., Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther. 2013;138:255–271. doi: 10.1016/j.pharmthera.2013.01.011. PubMed DOI

Guo X., Hartley R.S. Hur contributes to cyclin E1 deregulation in MCF-7 breast cancer cells. Cancer Res. 2006;66:7948–7956. doi: 10.1158/0008-5472.CAN-05-4362. PubMed DOI

Wingate H., Bedrosian I., Akli S., Keyomarsi K. The low molecular weight (LMW) isoforms of cyclin E deregulate the cell cycle of mammary epithelial cells. Cell Cycle. 2003;2:461–466. doi: 10.4161/cc.2.5.464. PubMed DOI

Akli S., Keyomarsi K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Ther. 2003;2:S38–S47. doi: 10.4161/cbt.201. PubMed DOI

Kollar P., Barta T., Zavalova V., Smejkal K., Hampl A. Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br. J. Pharmacol. 2011;162:1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC

Kajstura M., Halicka H.D., Pryjma J., Darzynkiewicz Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytom. A. 2007;71:125–131. doi: 10.1002/cyto.a.20357. PubMed DOI

Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Liu L.F., Desai S.D., Li T.K., Mao Y., Sun M., Sim S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 2000;922:1–10. doi: 10.1111/j.1749-6632.2000.tb07020.x. PubMed DOI

Stephenson D.A., Toltl L.J., Beaudin S., Liaw P.C. Modulation of monocyte function by activated protein C, a natural anticoagulant. J. Immunol. 2006;177:2115–2122. doi: 10.4049/jimmunol.177.4.2115. PubMed DOI

Amran D., Sancho P., Fernandez C., Esteban D., Ramos A.M., de Blas E., Gomez M., Palacios M.A., Aller P. Pharmacological inhibitors of extracellular signal-regulated protein kinases attenuate the apoptotic action of cisplatin in human myeloid leukemia cells via glutathione-independent reduction in intracellular drug accumulation. Biochim. Biophys. Acta. 2005;1743:269–279. doi: 10.1016/j.bbamcr.2004.10.009. PubMed DOI

McIlwain D.R., Berger T., Mak T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013;5:a008656. doi: 10.1101/cshperspect.a008656. PubMed DOI PMC

Degterev A., Boyce M., Yuan J. A decade of caspases. Oncogene. 2003;22:8543–8567. doi: 10.1038/sj.onc.1207107. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

New potent N-hydroxycinnamamide-based histone deacetylase inhibitors suppress proliferation and trigger apoptosis in THP-1 leukaemia cells

. 2025 Apr ; 358 (4) : e2400889.

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Salicylanilides and Their Anticancer Properties

. 2023 Jan 15 ; 24 (2) : . [epub] 20230115

Aminopeptidase N Inhibitors as Pointers for Overcoming Antitumor Treatment Resistance

. 2022 Aug 29 ; 23 (17) : . [epub] 20220829

Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3)

. 2022 Jul 06 ; 15 (7) : . [epub] 20220706

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis

. 2020 May 12 ; 21 (10) : . [epub] 20200512

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors

. 2019 Oct 29 ; 20 (21) : . [epub] 20191029

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study

. 2019 Mar 27 ; 20 (7) : . [epub] 20190327

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Proline-Based Carbamates as Cholinesterase Inhibitors

. 2017 Nov 14 ; 22 (11) : . [epub] 20171114

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

The Structure-Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold

. 2016 Sep 26 ; 21 (10) : . [epub] 20160926

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...