Aminopeptidase N Inhibitors as Pointers for Overcoming Antitumor Treatment Resistance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/IGA/0932/2021
Masaryk University
MUNI/A/1682/2020
Masaryk University
PubMed
36077208
PubMed Central
PMC9456425
DOI
10.3390/ijms23179813
PII: ijms23179813
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff bases, acetamidophenones, aminopeptidase N, inhibition of proliferation, semicarbazones, thiosemicarbazones,
- MeSH
- aminopeptidasy MeSH
- antigeny CD13 metabolismus MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- semikarbazony * MeSH
- thiosemikarbazony * MeSH
- zinek farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminopeptidasy MeSH
- antigeny CD13 MeSH
- semikarbazony * MeSH
- thiosemikarbazony * MeSH
- zinek MeSH
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.
Zobrazit více v PubMed
Mina-Osorio P. The moonlighting enzyme CD13: Old and new functions to target. Trends Mol. Med. 2008;14:362–371. doi: 10.1016/j.molmed.2008.06.003. PubMed DOI PMC
Li Z., Tomlinson A.C.A., Wong A.H.M., Zhou D., Desforges M., Talbot P.J., Benlekbir S., Rubinstein J.L., Rini J.M. The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife. 2019;8:e51230. doi: 10.7554/eLife.51230. PubMed DOI PMC
Kis A., Dénes N., Szabó J.P., Arató V., Beke L., Matolay O., Enyedi K.N., Méhes G., Mező G., Bai P., et al. In Vivo Molecular Imaging of the Efficacy of Aminopeptidase N (APN/CD13) Receptor Inhibitor Treatment on Experimental Tumors Using 68Ga-NODAGA-c(NGR) Peptide. Bio. Med. Res. Int. 2021;2021:6642973. doi: 10.1155/2021/6642973. PubMed DOI PMC
Zhang Q., Wang J., Zhang H., Zhao D., Zhang Z., Zhang S. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J. Cancer Res. Ther. 2015;11:223–228. doi: 10.4103/0973-1482.138007. PubMed DOI
Wȩglarz-Tomczak E., Talma M., Giurg M., Westerhoff H.V., Janowski R., Mucha A. Neutral metalloaminopeptidases APN and MetAP2 as newly discovered anticancer molecular targets of actinomycin D and its simple analogs. Oncotarget. 2018;9:29365–29378. doi: 10.18632/oncotarget.25532. PubMed DOI PMC
Ichinose Y., Genka K., Koike T., Kato H., Watanabe Y., Mori T., Iioka S., Sakuma A., Ohta M. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma. J. Natl. Cancer Inst. 2003;95:605–610. doi: 10.1093/jnci/95.8.605. PubMed DOI
Scornik O.A., Botbol V. Bestatin as an experimental tool in mammals. Curr. Drug Metab. 2001;2:67–85. doi: 10.2174/1389200013338748. PubMed DOI
Shuai L., Fang X., Hafeng W., Zheng L., Xiaowen L., Liang S., Zhihong N. Ubenimex inhibits cell proliferation, migration, and invasion in renal cell carcinoma: The effect is autophagy-associated. Oncol. Rep. 2015;33:1372–1380. doi: 10.3892/or.2014.3693. PubMed DOI
Wang X., Niu Z., Jia Y., Cui M., Han L., Zhang Y., Liu Z., Bi D., Liu S. Ubenimex inhibits cell proliferation, migration, and invasion by inhibiting the expression of APN and inducing autophagic cell death in prostate cancer cells. Oncol. Rep. 2016;35:2121–2130. doi: 10.3892/or.2016.4611. PubMed DOI
Liu S., Gao M., Wang X., Ding S., Lv J., Gao D., Wang Z., Niu Z. Ubenimex attenuates acquired sorafenib resistance in renal cell carcinoma by inhibiting Akt signaling in a lipophagy associated mechanism. Oncotarget. 2016;7:79141–79153. doi: 10.18632/oncotarget.13003. PubMed DOI PMC
DiNardo C.D., Cortes J.E. Tosedostat for the treatment of relapsed and refractory acute myeloid leukemia. Expert Opin. Investig. Drugs. 2013;23:265–272. doi: 10.1517/13543784.2014.864276. PubMed DOI
US National Library of Medicine. ClinicalTrials.gov. [(accessed on 12 January 2022)]; Available online: https://clinicaltrials.gov/ct2/results?intr=Apo2L%2FTRAIL+OR+dulanermin&draw=2&rank=5#rowId4.
Ni J., Wang X., Shang Y., Li Y., Chen S. CD13 inhibition augments DR4-induced tumor cell death in a p-ERK1/2-independent manner. Cancer Biol. Med. 2021;18:570–586. doi: 10.20892/j.issn.2095-3941.2020.0196. PubMed DOI PMC
Amin S.A., Adhikari N., Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J. Med. Chem. 2018;61:6468–6490. doi: 10.1021/acs.jmedchem.7b00782. PubMed DOI
Ma C., Jin K., Cao J., Zhang L., Li X., Xu W. Novel leucine ureido derivatives as inhibitors of aminopeptidase N (APN) Bioorg. Med. Chem. 2013;21:1621–1627. doi: 10.1016/j.bmc.2013.01.068. PubMed DOI
Ma C., Cao J., Liang X., Huang Y., Wu P., Li Y., Xu W., Zhang Y. Novel leucine ureido derivatives as aminopeptidase N inhibitors. Design, synthesis, and activity evaluation. Eur. J. Med. Chem. 2016;108:21–27. doi: 10.1016/j.ejmech.2015.11.021. PubMed DOI
Zhang X., Zhang L., Zhang J., Feng J., Yuan Y., Fang H., Xu W. Design, synthesis, and preliminary activity evaluation of novel 3-amino-2-hydroxyl-3-phenylpropanoic acid derivatives as aminopeptidase N/CD13 inhibitors. J. Enzym. Inhib. Med. Chem. 2013;28:545–551. doi: 10.3109/14756366.2012.656622. PubMed DOI
Schalk C., d’Orchymont H., Jauch M.F., Tarnus C. 3-Amino-2-tetralone derivatives: Novel potent and selective inhibitors of aminopeptidase-M (EC 3.4.11.2) Arch. Biochem. Biophys. 1994;311:42–46. doi: 10.1006/abbi.1994.1206. PubMed DOI
Reddy P.S., Satyanarayana B., Raju V.J. Synthesis and structural studies on divalent transition metal complexes of 5-acetyl 2,4-dihydroxy acetophenone semicarbazone. J. Indian Chem. Soc. 2006;83:1204–1207.
Reddy P.S., Satyanarayana B. Synthesis and structural studies on the transition metal complexes of 5-acetyl 2,4-dihydroxy acetophenone thiosemicarbazone. Acta Cienc. Indica Chem. 2006;32:311–315.
Xiong X., Barathi A., Beuermann R.W., Tan D.T.H. Assay of leucine aminopeptidase activity in vitro using large-pore reversed-phase chromatography with fluorescence detection. J. Chromatogr. B. 2003;796:63–70. doi: 10.1016/j.jchromb.2003.08.005. PubMed DOI
Partition Coefficient Calculation with ACD/LogP. [(accessed on 7 December 2021)]. Available online: https://www.acdlabs.com/products/percepta/predictors/logP.
Isoelectric Point Plugin. [(accessed on 7 December 2021)]. Available online: https://docs.chemaxon.com/display/docs/isoelectric-point-plugin.md#src-1806643-isoelectricpointplugin-introduction.
Licona-Limón I., Garay-Canales C.A., Muñoz-Paleta O., Ortega E. CD13 mediates phagocytosis in human monocytic cells. J. Leukoc. Biol. 2015;98:85–98. doi: 10.1189/jlb.2A0914-458R. PubMed DOI PMC
Gai Y., Jiang Y., Long Y., Sun L., Liu S., Qin C., Zhang Y., Zeng D., Lan X. Evaluation of an Integrin αvβ3 and Aminopeptidase N Dual-Receptor Targeting Tracer for Breast Cancer Imaging. Mol. Pharm. 2020;17:349–358. doi: 10.1021/acs.molpharmaceut.9b01134. PubMed DOI PMC
Joshi S., Chen L., Winter M.B., Lin Y.L., Yang Y., Shapovalova M., Smith P.M., Liu C., Li F., LeBeau A.M. The Rational Design of Therapeutic Peptides for Aminopeptidase N using a Substrate-Based Approach. Sci. Rep. 2017;7:1424. doi: 10.1038/s41598-017-01542-5. PubMed DOI PMC
Ito K., Nakajima Y., Onohara Y., Takeo M., Nakashima K., Matsubara F., Ito T., Yoshimoto T. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition. J. Biol. Chem. 2006;281:3364–3376. doi: 10.1074/jbc.M605203200. PubMed DOI
Zubáč P. ((Masaryk University, Brno, South Moravia, Czech Republic)). Personal communication. 2020.
Amishro C., Yoji I., Junichiro Y., Toshiyuki A., Ryuchiro N., Tomohisa N. Thiazolidine derivatives. US2007112044 A1. U.S. Patent. 2007 May 17;
Nakhamovich A.S., Elokhina G.V., Dolgusin G.V., Gushin A.S., Poljakov R.A., Volkova K.A., Punija V.S. Method for preparing 4-thioureidoiminimethyl-pyridinium perchlorate possessing tuberculostatic activity. RU2265014 C1. RU Patent. 2005 November 27;
Pizzo C., Farral-Tello P., Yaluff G., Serna E., Torres S., Vera N., Saiz C., Robello C., Mahler G. New approach towards the synthesis of selenosemicarbazones, useful compounds for Chagas’ disease. Eur. J. Med. Chem. 2016;109:107–113. doi: 10.1016/j.ejmech.2015.12.040. PubMed DOI
Kollar P., Barta T., Zavalova V., Smejkal K., Hampl A. Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br. J. Pharmacol. 2011;162:1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC