The Structure-Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27681720
PubMed Central
PMC6273431
DOI
10.3390/molecules21101274
PII: molecules21101274
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium kansasii, Mycobacterium marinum, N-arylpiperazines, electronic properties, lipophilicity, structure–activity,
- Publikační typ
- časopisecké články MeSH
This research was focused on in silico characterization and in vitro biological testing of the series of the compounds carrying a N-arylpiperazine moiety. The in silico investigation was based on the prediction of electronic, steric and lipohydrophilic features. The molecules were screened against Mycobacterium avium subsp. paratuberculosis CIT03, M. smegmatis ATCC 700084, M. kansasii DSM 44162, M. marinum CAMP 5644, Staphylococcus aureus ATCC 29213, methicillin-resistant S. aureus 63718, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Candida albicans CCM 8261, C. parapsilosis CCM 8260 and C. krusei CCM 8271, respectively, by standardized microdilution methods. The eventual antiproliferative (cytotoxic) impact of those compounds was examined on a human monocytic leukemia THP-1 cell line, as a part of the biological study. Promising potential against M. kansasii was found for 1-[3-(3-ethoxyphenylcarbamoyl)oxy-2-hydroxypropyl]-4-(3-trifluoromethylphenyl)piperazin-1-ium chloride (MIC = 31.75 μM), which was comparable to the activity of isoniazid (INH; MIC = 29.17 μM). Moreover, 1-{2-hydroxy-3-(3-methoxyphenylcarbamoyl)oxy)propyl}-4-(4-fluorophenyl)piperazin-1-ium chloride was even more effective (MIC = 17.62 μM) against given mycobacterium. Among the tested N-arylpiperazines, 1-{2-hydroxy-3-(4-methoxyphenylcarbamoyl)oxy)propyl}-4-(3-trifluorometh-ylphenyl)piperazin-1-ium chloride was the most efficient against M. marinum (MIC = 65.32 μM). One of the common features of all investigated substances was their insignificant antiproliferative (i.e., non-cytotoxic) effect. The study discussed structure-antimicrobial activity relationships considering electronic, steric and lipophilic properties.
Zobrazit více v PubMed
Evans B.E., Rittle K.E., Bock M.G., DiPardo R.M., Freidinger R.M., Whitter W.L., Lundell G.F., Veber D.F., Anderson P.S., Chang R.S.L., et al. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 1988;31:2235–2246. doi: 10.1021/jm00120a002. PubMed DOI
Horton D.A., Bourne G.T., Smythe M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 2003;103:893–930. doi: 10.1021/cr020033s. PubMed DOI
Panda G., Shagufta, Srivastava A.K., Sinha S. Synthesis and antitubercular activity of 2-hydroxy-aminoalkyl derivatives of diaryloxy methano phenanthrenes. Bioorg. Med. Chem. Lett. 2005;15:5222–5225. doi: 10.1016/j.bmcl.2005.08.045. PubMed DOI
Upadhayaya R.S., Kulkarni G.M., Vasireddy N.R., Vandavasi J.K., Dixit S.S., Sharma V., Chattopadhyaya J. Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2009;17:4681–4692. doi: 10.1016/j.bmc.2009.04.069. PubMed DOI
Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarman M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. doi: 10.1016/j.ejmech.2010.01.024. PubMed DOI
Chai X., Zhang J., Cao Y., Zou Y., Wu Q., Zhang D., Jiang Y., Sun Q. New azoles with antifungal activity: Design, synthesis, and molecular docking. Bioorg. Med. Chem. Lett. 2011;21:686–689. doi: 10.1016/j.bmcl.2010.12.006. PubMed DOI
Che X., Sheng C., Wang W., Cao Y., Xu Y., Ji H., Dong G., Miao Z., Yao J., Zhang W. New azoles with potent antifungal activity: Design, synthesis and molecular docking. Eur. J. Med. Chem. 2009;44:4218–4226. doi: 10.1016/j.ejmech.2009.05.018. PubMed DOI
Xu J., Cao Y., Zhang J., Yu S., Zou Y., Chai X., Wu Q., Zhang D., Jiang Y., Sun Q. Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. Eur. J. Med. Chem. 2011;46:3142–3148. doi: 10.1016/j.ejmech.2011.02.042. PubMed DOI
Sun Q.-Y., Xu J.-M., Cao Y.-B., Zhang W.-N., Wu Q.-Y., Zhang D.-Z., Zhang J., Zhao H.-Q., Jiang Y.-Y. Synthesis of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase (CYP51) Eur. J. Med. Chem. 2007;42:1226–1233. doi: 10.1016/j.ejmech.2007.01.006. PubMed DOI
Gan L.-L., Fang B., Zhou C.-H. Synthesis of azole-containing piperazine derivatives and evaluation of their antibacterial, antifungal and cytotoxic activities. Bull. Korean Chem. Soc. 2010;31:3684–3692. doi: 10.5012/bkcs.2010.31.12.3684. DOI
Tacon C., Guantai E.M., Smith P.J., Chibale K. Synthesis, biological evaluation and mechanistic studies of totarol amino alcohol derivatives as potential antimalarial agents. Bioorg. Med. Chem. 2012;20:893–902. doi: 10.1016/j.bmc.2011.11.060. PubMed DOI
Parai M.K., Panda G., Chaturvedi V., Manju Y.K., Sinha S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett. 2008;18:289–292. doi: 10.1016/j.bmcl.2007.10.083. PubMed DOI
Stefańska J., Bielenica A., Struga M., Tyski S., Kossakowski J., Loddo R., Ibba C., Collu D., Marongiu E., La Colla P. Biological evaluation of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives. Cent. Eur. J. Biol. 2009;4:362–368. doi: 10.2478/s11535-009-0015-3. DOI
Bohnert J.A., Kern W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents Chemother. 2005;49:849–852. doi: 10.1128/AAC.49.2.849-852.2005. PubMed DOI PMC
Li L., Li Z., Guo N., Jin J., Du R., Liang J., Wu X., Wang X., Liu M., Jin Q., et al. Synergistic activity of 1-(1-naphthylmethyl)piperazine with ciprofloxacin against clinically resistant Staphylococcus aureus, as determined by different methods. Lett. Appl. Microbiol. 2011;52:372–378. doi: 10.1111/j.1472-765X.2011.03010.x. PubMed DOI
Handzlik J., Szymańska E., Chevalier J., Otrębska E., Kieć-Kononowicz K., Pagès J.M., Alibert S. Amine-alkyl derivatives of hydantoin: New tool to combat resistant bacteria. Eur. J. Med. Chem. 2011;46:5807–5816. doi: 10.1016/j.ejmech.2011.09.032. PubMed DOI
Dymek A., Armada A., Handzlik J., Viveiros M., Spengler G., Molnar J., Kieć-Kononowicz K., Amaral L. The activity of 16 new hydantoin compounds on the intrinsic and overexpressed efflux pump system of Staphylococcus aureus. In Vivo. 2012;26:223–229. PubMed
Colabufo N.A., Berardi F., Perrone M.G., Cantore M., Contino M., Inglese C., Niso M., Perrone R. Multi-drug-resistance-reverting agents: 2-aryloxazole and 2-arylthiazole derivatives as potent BCRP or MRP1 inhibitors. ChemMedChem. 2009;4:188–195. doi: 10.1002/cmdc.200800329. PubMed DOI
Malík I. Drug-like properties of some esters of ortho-/meta-/para-alkoxyphenylcarbamic acid containing N-phenylpiperazine fragment. GJMR-B. 2013;13:23–27.
Kirk M. Fluorination in medicinal chemistry: Methods, strategies, and recent developments. Org. Process Res. Dev. 2008;12:305–321. doi: 10.1021/op700134j. DOI
Foley T.L., Rai G., Yasgar A., Daniel T., Baker H.L., Attene-Ramos M., Kosa N.M., Leister W., Burkart M.D., Jadhav A., et al. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J. Med. Chem. 2014;57:1063–1078. doi: 10.1021/jm401752p. PubMed DOI PMC
Patel R.V., Kumari P., Rajani D.P., Chikhalia K.H. Synthesis, characterization and pharmacological activities of 2-[4-cyano-(3-trifluoromethyl)phenylamino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoro-piperazinyl)-s-triazines. J. Fluor. Chem. 2011;132:617–627. doi: 10.1016/j.jfluchem.2011.06.021. DOI
Kubinyi H. Methods and Principles in Medicinal Chemistry. In: Mannhold R., Krogsgaard-Larsen P., Timmerman H., editors. QSAR: Hansch Analysis and Related Approaches. Wiley-VCh Verlag; Weinheim, Germany: 1993. pp. 22–56.
Malík I., Sedlárová E., Čižmárik J., Andriamainty F., Csöllei J. Study of physicochemical properties of 2-, 3-, 4-alkoxyphenylcarbamic acid derivatives with a substituted N-phenylpiperazine moiety in the basic part. Čes. Slov. Farm. 2005;54:235–239. PubMed
Malík I., Sedlárová E., Čižmárik J., Andriamainty F., Csöllei J. Study of physicochemical properties of 4-alkoxyphenylcarbamic acid derivatives with various substituted N-phenylpiperazin-1-yl moiety in the basic part of the molecule. Farm. Obzor. 2005;74:211–215. PubMed
Domagala J.M. Structure–activity and structure–side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother. 1994;33:685–706. doi: 10.1093/jac/33.4.685. PubMed DOI
Nieto M.J., Alovero F.L., Manzo R.H., Mazzieri M.R. Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies. Eur. J. Med. Chem. 2005;40:361–369. doi: 10.1016/j.ejmech.2004.11.008. PubMed DOI
Rodrigues M.O., Cantos J.B., D’Oca C.R., Soares K.L., Coelho T.S., Piovesan L.A., Russowsky D., da Silva P.A., D’Oca M.G. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids. Bioorg. Med. Chem. 2013;21:6910–6914. doi: 10.1016/j.bmc.2013.09.034. PubMed DOI
Sztanke K., Tuzimski T., Rzymowska J., Pasternak K., Kandefer-Szerszeń M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem. 2008;43:404–419. doi: 10.1016/j.ejmech.2007.03.033. PubMed DOI
Malík I., Sedlárová E., Csöllei J., Andriamainty F., Kurfürst P., Vančo J. Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure. Chem. Pap. 2006;60:42–47. doi: 10.2478/s11696-006-0007-y. DOI
Leo A.J., Hoekman D. Calculating log P(oct) with no missing fragments. The problem of estimating new interaction parameters. Perspect. Drug Discov. Des. 2000;18:19–38. doi: 10.1023/A:1008739110753. DOI
Ghose A.K., Crippen G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships. I. Partition coefficients as a measure of hydrophobicity. J. Comput. Chem. 1986;7:565–577. doi: 10.1002/jcc.540070419. PubMed DOI
Ghose A.K., Crippen G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships. II. Modeling dispersive and hydrophobic interactions. J. Chem. Inform. Comput. Sci. 1987;27:21–35. doi: 10.1021/ci00053a005. PubMed DOI
Wildman S.A., Crippen G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inform. Comput. Sci. 1999;39:868–873. doi: 10.1021/ci990307l. DOI
Viswanadhan N.V., Ghose K.A., Reyankar R.G., Robins K.R. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inform. Comput. Sci. 1989;29:163–172.
Broto P., Moreau G., Vandycke C. Molecular structures: Perception, autocorrelation descriptor and SAR studies. Autocorrelation descriptor. Eur. J. Med. Chem. Chim. Theor. 1984;19:66–70.
Tetko I.V., Tanchuk V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPs 2.1 program. J. Chem. Inf. Comput. Sci. 2002;42:1136–1145. doi: 10.1021/ci025515j. PubMed DOI
Mannhold R., Petrauskas A. Substructure versus whole-molecule approaches for calculating log P. QSAR Comb. Sci. 2003;22:466–475. doi: 10.1002/qsar.200390036. DOI
Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J. Nat. Prod. 2014;77:1297–1303. doi: 10.1021/np401025f. PubMed DOI
Nakagawa S., Schielzeth H. General and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Hett E.C., Rubin E.J. Bacterial growth and cell division: A mycobacterial perspective. Microbiol. Mol. Biol. Rev. 2008;72:126–156. doi: 10.1128/MMBR.00028-07. PubMed DOI PMC
Hadda T.B., Srivastava S., Das B., Salgado-Zamora H., Shaheen U., Bader A., Moazzam Naseer M. POM analyses of antimicrobial activity of some 2,3-armed 4,5,6,7-tetrahydro-1-benzothiophenes: Favourable and unfavourable physico-chemical parameters in design of antibacterial and mycolytic agents. Med. Chem. Res. 2014;23:995–1003. doi: 10.1007/s00044-013-0707-0. DOI
Hirayama M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci. 2011;16:23–31. doi: 10.4265/bio.16.23. PubMed DOI
Luo Y.-L., Baathulaa K., Kannekanti V.K., Zhou C.-H., Cai G.-X. Novel benzimidazole derived naphthalimide triazoles: Synthesis, antimicrobial activity and interactions with calf thymus DNA. Sci. China Chem. 2015;58:483–494. doi: 10.1007/s11426-014-5296-3. DOI
Krátký M., Vinšová J., Rodriguez N.G., Stolaříková J. Antimycobacterial activity of salicylanilide benzenesulfonates. Molecules. 2012;17:492–503. doi: 10.3390/molecules17010492. PubMed DOI PMC
Talath S., Gadad A.K. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]-thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives. Eur. J. Med. Chem. 2006;41:918–924. doi: 10.1016/j.ejmech.2006.03.027. PubMed DOI
Zhang Y.-Y., Mi J.-L., Zhou C.-H., Zhou X.-D. Synthesis of novel fluconazoliums and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem. 2011;46:4391–4402. doi: 10.1016/j.ejmech.2011.07.010. PubMed DOI
Costa E.C., Cassamale T.B., Carvalho D.B., Bosquiroli L.S.S., Ojeda M., Ximenes T.V., Matos M.F.C., Kadri M.C.T., Baroni A.C.M., Arruda C.C.P. Antileishmanial activity and structure–activity relationship of triazolic compounds derived from the Neolignans Grandisin, Veraguensin, and Machilin G. Molecules. 2016;21 doi: 10.3390/molecules21060802. PubMed DOI PMC
Malík I., Sedlárová E., Csöllei J., Andriamainty F., Čižmárik J., Kečkéšová S. The physicochemical properties of dibasic alkyl esters of 2- and 3-alkyloxy substituted phenylcarbamic acid. Acta Facult. Pharm. Univ. Comen. 2007;54:136–145.
Minnikin D.E. Lipids: Complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C., Stanford J.L., editors. The Biology of the Mycobacteria. Academic Press; London, UK: 1982. pp. 95–184.
Guérardel Y., Maes E., Briken V., Chirat F., Leroy Y., Locht C., Strecker G., Kremer L. Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: Novel structural features and apoptosis-inducing properties. J. Biol. Chem. 2003;278:36637–36651. doi: 10.1074/jbc.M305427200. PubMed DOI
Burguière A., Hitchen P.G., Dover L.G., Kremer L., Ridell M., Alexander D.C., Liu J., Morris H.R., Minnikin D.E., Dell A., et al. LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J. Biol. Chem. 2005;23:42124–42133. doi: 10.1074/jbc.M507500200. PubMed DOI
Van der Woude A.D., Sarkar D., Bhatt A., Sparrius M., Raadsen S.A., Boon L., Geurtsen J., van der Sar A.M., Luirink J., Houben E.N., et al. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J. Biol. Chem. 2012;287:20417–20429. doi: 10.1074/jbc.M111.336461. PubMed DOI PMC
Waisser K., Doležal R., Čižmárik J. Graphic demonstration of the structure–antimycobacterial activity relationships in the series of ester phenylcarbamid acid with piperidine or pyrrolidine moiety. Folia Pharm. Univ. Carol. 2008;37:65–76.
Balgavý P., Devínsky F. Cut-off effects in biological activities of surfactants. Adv. Colloid Interface Sci. 1996;12:23–63. doi: 10.1016/0001-8686(96)00295-3. PubMed DOI
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17081219. PubMed DOI PMC
Tengler J., Kapustíková I., Peško M., Govender R., Keltošová S., Mokrý P., Kollár P., O’Mahony J., Coffey A., Kráľová K., et al. Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl-4-[(alkoxycarbonyl)amino]benzoates. Sci. World J. 2013;2013 doi: 10.1155/2013/274570. PubMed DOI PMC
Dolezal M., Zitko J., Jampilek J. Pyrazinecarboxylic acid derivatives with antimycobacterial activity. In: Cardona P.J., editor. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 233–262.
Guillemont J., Meyer C., Poncelet A., Bourdrez X., Andries K. Diarylquinolines, synthesis pathways and quantitative structure–activity relationship studies leading to the discovery of TMC207. Future Med. Chem. 2011;11:1345–1360. doi: 10.4155/fmc.11.79. PubMed DOI
Mengelers M.J., Hougee P.E., Janssen L.H., van Miert A.S. Structure–activity relationships between antibacterial activities and physicochemical properties of sulfonamides. J. Vet. Pharmacol. Ther. 1997;20:276–283. doi: 10.1046/j.1365-2885.1997.00063.x. PubMed DOI
Richards C.D., Martin K., Gregory S., Keightley C.A., Hesketh T.R., Smith G.A., Warren G.B., Metcalfe J.C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature. 1978;276:775–779. doi: 10.1038/276775a0. PubMed DOI
Mourad A.E. Charge transfer complexes of N-arylcarbamates with π-acceptors. Z. Naturforschung. 1987;42:284–288. doi: 10.1515/zna-1987-0314. DOI
Vaschetto M.E., Retamal B.A. Substituent effect on electronic properties of aniline and oligoanilines. J. Phys. Chem. 1987;101:6945–6950. doi: 10.1021/jp970029y. DOI
Malík I., Sedlárová E., Csöllei J., Račanská E., Čižmárik J., Kurfürst P. Synthesis, physico-chemical properties and biological activity of 1-(4-fluorophenyl)-4-[3-(2-, 3- and 4-alkyloxyphenylcarbamoyloxy)-2-hydroxypropyl]piperaziniumchlorides. Sci. Pharm. 2004;72:283–291.
Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., et al. Virtual computational chemistry laboratory—Design and description. J. Comput. Aided Mol. Des. 2005;19:453–463. doi: 10.1007/s10822-005-8694-y. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard. 8th ed. CLSI; Wayne, NJ, USA: 2012. pp. 10–56. CLSI Document M11-A8. PubMed
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, NJ, USA: 2014. pp. 106–211. 24th Informational Supplement M100-S24.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007. pp. 91–274.
Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998;36:618–623. PubMed PMC
Boşgelmez-Tınaz G., Ulusoy S., Arıdoğan B., Coşkun-Arı F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. Eur. J. Clin. Microbiol. Infect. Dis. 2006;25:410–412. doi: 10.1007/s10096-006-0153-8. PubMed DOI
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A., Literak I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard. 9th ed. CLSI; Wayne, NJ, USA: 2012. pp. 10–42. CLSI Document M07-A9.
Clinical Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 12th ed. CLSI; Wayne, NJ, USA: 2007. pp. 17–159. Informational Supplement M100-S17.
Sato M., Tanaka H., Yamaguchi R., Kato K., Etoh H. Synergistic effects of mupirocin and an isoflavanone isolated from Erythrina variegata on growth and recovery of methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 2004;24:241–246. doi: 10.1016/j.ijantimicag.2004.03.020. PubMed DOI
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †