Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29973562
PubMed Central
PMC6099728
DOI
10.3390/molecules23071635
PII: molecules23071635
Knihovny.cz E-zdroje
- Klíčová slova
- hydroxynaphthalenecarboxamides, lipophilicity determinations, structure-lipophilicity relationships,
- MeSH
- anilidy chemie MeSH
- chromatografie s reverzní fází MeSH
- hydrofobní a hydrofilní interakce MeSH
- molekulární struktura MeSH
- naftaleny chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anilidy MeSH
- naftaleny MeSH
The evaluation of the lipophilic characteristics of biologically active agents is indispensable for the rational design of ADMET-tailored structure⁻activity models. N-Alkoxy-3-hydroxynaphthalene-2-carboxanilides, N-alkoxy-1-hydroxynaphthalene-2-carboxanilides, and N-alkoxy-2-hydroxynaphthalene-1-carboxanilides were recently reported as a series of compounds with antimycobacterial, antibacterial, and herbicidal activity. As it was found that the lipophilicity of these biologically active agents determines their activity, the hydro-lipophilic properties of all three series were investigated in this study. All 57 anilides were analyzed using the reversed-phase high-performance liquid chromatography method for the measurement of lipophilicity. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary reversed-phase column. In the present study, a range of software lipophilicity predictors for the estimation of clogP values of a set of N-alkoxyphenylhydroxynaphthalenecarboxamides was employed and subsequently cross-compared with experimental parameters. Thus, the empirical values of lipophilicity (logk) and the distributive parameters (π) were compared with the corresponding in silico characteristics that were calculated using alternative methods for deducing the lipophilic features. To scrutinize (dis)similarities between the derivatives, a PCA procedure was applied to visualize the major differences in the performance of molecules with respect to their lipophilic profile, molecular weight, and violations of Lipinski’s Rule of Five.
Zobrazit více v PubMed
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures-dream or reality: Preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Malik I., Csollei J., Jampilek J., Stanzel L., Zadrazilova I., Hosek J., Pospisilova S., Cizek A., Coffey A., O’Mahony J. The structure–antimicrobial activity relationships of promising class of the compounds containing N-arylpiperazine scaffold. Molecules. 2016;21:1274. doi: 10.3390/molecules21101274. PubMed DOI PMC
Gonec T., Malik I., Csollei J., Jampilek J., Stolarikova J., Solovic I., Mikus P., Keltosova S., Kollar P., O’Mahony J., et al. Synthesis and in vitro antimycobacterial activity of the novel N-arylpiperazines containing ethane-1,2-diyl connecting chain. Molecules. 2017;22:2100. doi: 10.3390/molecules22122100. PubMed DOI PMC
Kubinyi H. QSAR: Hansch Analysis and Related Approaches. Wiley-VCH; Weinheim, Germany: 1993.
Kerns E.H., Di L. Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Pliska V. In: Lipophilicity in Drug Action and Toxicology. 1st ed. Pliska V., Testa B., van der Waterbeemd H., editors. Volume 4 Methods and Principles in Medicinal Chemistry; Wiley-VCH; Weinheim, Germany: 1996.
Avdeef A. Absorption and Drug Development: Solubility, Permeability, and Charge State. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2012.
Hansch C., Mahoney P.P., Fujita T., Muir R.M. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 1962;194:178–180. doi: 10.1038/194178b0. DOI
Hansch C., Fujita T. ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964;86:1616–1626. doi: 10.1021/ja01062a035. DOI
Leo A., Hansch C., Elkins D. partition coefficients and their uses. Chem. Rev. 1971;71:525–616. doi: 10.1021/cr60274a001. DOI
Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A. 2004;1037:299–310. doi: 10.1016/j.chroma.2003.10.084. PubMed DOI
Carlson R.M., Carlson R.E., Kopperman H.L. Determination of partition coefficients by liquid chromatography. J. Chromatogr. A. 1975;107:219–223. doi: 10.1016/S0021-9673(00)82769-7. DOI
Mirrlees M.S., Moulton S.J., Murphy C.T., Taylor P. Direct measurement of octanol-water partition coefficients by high-pressure liquid chromatography. J. Med. Chem. 1976;19:615–619. doi: 10.1021/jm00227a008. PubMed DOI
Unger S.H., Cook J.R., Holenberg J.S. Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed phase high pressure liquid chromatography. J. Pharm. Sci. 1978;67:1364–1367. doi: 10.1002/jps.2600671008. PubMed DOI
Braumann T. Determination of hydrophobic parameters by reversed-phase liquid chromatography: Theory, experimental techniques, and application in studies on quantitative structure-activity relationships. J. Chromatogr. A. 1986;373:191–225. doi: 10.1016/S0021-9673(00)80213-7. PubMed DOI
Giaginis C., Tsantili-Kakoulidou A. Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J. Liq. Chromatogr. Relat. 2008;31:79–96. doi: 10.1080/10826070701665626. DOI
Valko K., Du C.M., Bevan C., Reynolds D.P., Abraham M.H. Rapid method for the estimation of octanol/water partition coefficient (log P(oct)) from gradient RP-HPLC retention and a hydrogen bond acidity term (zetaalpha(2)(H)) Curr. Med. Chem. 2001;8:1137–1146. doi: 10.2174/0929867013372643. PubMed DOI
Cimpan G., Irimie F., Gocan S., Claessens H.A. Role of stationary phase and eluent composition on the determination of log P values of N-hydroxyethylamide of aryloxyalkylen and pyridine carboxylic acids by reversed-phase high-performance liquid chromatography. J. Chromatogr. B. 1998;714:247–261. doi: 10.1016/S0378-4347(98)00228-X. PubMed DOI
Gocan S., Cimpan G., Comer J. Lipophilicity measurements by liquid chromatography. Adv. Chromatogr. 2006;44:79–176. PubMed
Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Collect. Czechoslov. Chem. Commun. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI
Musilek K., Jampilek J., Dohnal J., Jun D., Gunn-Moore F., Dolezal M., Kuca K. RP-HPLC determination of the lipophilicity of bispyridinium reactivators of acetylcholinesterase bearing a but-2-ene connecting linker. Anal. Bioanal. Chem. 2008;391:367–372. doi: 10.1007/s00216-008-2018-8. PubMed DOI
Musiol R., Jampilek J., Podeszwa B., Finster J., Tabak D., Dohnal J., Polanski J. RP-HPLC determination of drug lipophilicity in series of quinoline derivatives. Cent. Eur. J. Chem. 2009;7:586–597.
Tengler J., Kapustikova I., Stropnicky O., Mokry P., Oravec M., Csollei J., Jampilek J. Synthesis of New (arylcarbonyloxy)aminopropanol derivatives and the determination of their physico-chemical properties. Cent. Eur. J. Chem. 2013;11:1757–1767. doi: 10.2478/s11532-013-0302-8. DOI
Hartmann T., Schmitt J. Lipophilicity-beyond octanol/water: A short comparison of modern technologies. Drug Discov. Today Technol. 2004;1:431–439. doi: 10.1016/j.ddtec.2004.10.006. PubMed DOI
Nasal A., Siluk D., Kaliszan R. Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr. Med. Chem. 2003;10:381–426. doi: 10.2174/0929867033368268. PubMed DOI
Bak A., Kozik V., Smolinski S., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carbox-anilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carbox-anilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxynaphthalene-carboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI
De Marco A., De Candia M., Carotti A., Cellamare S., De Candia E., Altomare C. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides. Eur. J. Pharm. Sci. 2004;22:153–164. doi: 10.1016/j.ejps.2004.03.003. PubMed DOI
Opletalova V., Kalinowski D.S., Vejsova M., Kunes J., Pour M., Jampilek J., Buchta V., Richardson D.R. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: Cellular iron chelation mediating cytotoxic activity. Chem. Res. Toxicol. 2008;21:1878–1889. doi: 10.1021/tx800182k. PubMed DOI
Opletalova V., Dolezel J., Kralova K., Pesko M., Kunes J., Jampilek J. Synthesis and characterization of (Z)-5-arylmethylidenerhodanines with photosynthesis-inhibiting properties. Molecules. 2011;16:5207–5227. doi: 10.3390/molecules16065207. PubMed DOI PMC
Norrington F.E., Hyde R.M., Williams S.G., Wootton R. Physicochemical-activity relations in practice I. A rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. doi: 10.1021/jm00240a016. PubMed DOI
Dearden J.C. Partitioning and lipophilicity in quantitative structure-activity relationships. Environ. Health Perspect. 1985;61:203–228. doi: 10.1289/ehp.8561203. PubMed DOI PMC
Hansch C., Leo A., Unger S.H., Kim K.H., Nikaitani D., Lien E.J. “Aromatic” substituent constants for structure-activity correlations. J. Med. Chem. 1973;16:1207–1216. doi: 10.1021/jm00269a003. PubMed DOI
Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., et al. Virtual computational chemistry laboratory--design and description. J. Comput. Aided Mol. Des. 2005;19:453–463. doi: 10.1007/s10822-005-8694-y. PubMed DOI
Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI
Centner V., Massart D.L., de Noord O.E., de Jong S., Vandeginste B.M.V., Sterna C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996;68:3851–3858. doi: 10.1021/ac960321m. PubMed DOI
Smolinski A., Drobek L., Dombek V., Bak A. Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps. Chemosphere. 2016;162:189–198. doi: 10.1016/j.chemosphere.2016.07.086. PubMed DOI
Investigation of Permeation of Theophylline through Skin Using Selected Piperazine-2,5-Diones