N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity

. 2016 Aug 16 ; 21 (8) : . [epub] 20160816

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27537867

A series of nineteen N-(alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides and a series of their nineteen positional isomers N-(alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides were prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, M. kansasii and M. smegmatis. Screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. Some of the tested compounds showed antimycobacterial activity comparable with or higher than that of rifampicin. For example, 2-hydroxy-N-(4-propoxyphenyl)-naphthalene-1-carboxamide showed the highest activity (MIC = 12 µM) against M. tuberculosis with insignificant cytotoxicity. N-[3-(But-2-yloxy)phenyl]- and N-[4-(but-2-yloxy)phenyl]-2-hydroxy-naphthalene-1-carboxamide demonstrated high activity against all tested mycobacterial strains and insignificant cytotoxicity. N-(Alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides demonstrated rather high effect against M. smegmatis and M. kansasii and strong antiproliferative effect against the human THP-1 cell line. Lipophilicity was found as the main physicochemical parameter influencing the activity. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Structure-activity relationships are discussed.

Zobrazit více v PubMed

Working Group on New TB Drugs 2016. [(accessed on 1 July 2016)]. Available online: http://www.newtbdrugs.org/blog/category/tb-news/

World Health Organization . Global Tuberculosis Report 2015. WHO Press; Geneva, Switzerland: 2015.

Ioachimescu O.C., Tomford J.W. Nontuberculous mycobacterial disorders. In: Carey W., editor. Disease Management Project. Cleveland Clinic—Centre for Continuing Education; Cleveland, OH, USA: 2015. [(accessed on 1 July 2016)]. Available online: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/infectious-disease/nontuberculous-mycobacterial-disorders/Default.htm.

Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-(1-oxo-1-(phenylamino)alkan-2-yl)benzamides against MRSA. BioMed. Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Pattabiraman V.R., Bode J.W. Rethinking amide bond synthesis. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI

Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI

Zucca M., Scutera S., Savoia D. New chemotherapeutic strategies against malaria, leishmaniasis and trypanosomiases. Curr. Med. Chem. 2013;20:502–526. doi: 10.2174/0929867311320040003. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI

Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O´Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI

Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O´Mahony J., Liptaj T., et al. Ring-substituted 8-Hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar P., Imramovsky A., O´Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

De Marco A., de Candia M., Carotti A., Cellamare S., de Candia E., Altomare C. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides. Eur. J. Pharm. Sci. 2004;22:153–164. doi: 10.1016/j.ejps.2004.03.003. PubMed DOI

Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O´Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3:e2375. doi: 10.1371/journal.pone.0002375. PubMed DOI PMC

Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI

Acharya N., Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 2002;318:1251–1264. doi: 10.1016/S0022-2836(02)00053-0. PubMed DOI

Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 147–168.

Terada H. Uncouplers of oxidative phosphorylation. Environ. Health Perspect. 1990;87:213–218. doi: 10.1289/ehp.9087213. PubMed DOI PMC

Feng X., Zhu W., Schurig-Briccio L.A., Lindert S., Shoen C., Hitchings R., Li J., Wang Y., Baig N., Zhou T., et al. Antiinfectives targeting enzymes and the proton motive force. Proc. Natl. Acad. Sci. USA. 2015;112:E7073–E7082. doi: 10.1073/pnas.1521988112. PubMed DOI PMC

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI

Terada H., Goto S., Yamamoto K., Takeuchi I., Hamada Y., Miyake K. Structural requirements of salicylanilides for uncoupling activity in mitochondria: Quantitative analysis of structure-uncoupling relationships. Biochim. Biophys. Acta. 1988;936:504–512. doi: 10.1016/0005-2728(88)90027-8. PubMed DOI

Parasitipedia.net Salicylanilides: Anthelmintics for Veterinary Use on Cattle, Sheep, Goats, Pigs, Poultry, Horses, Dogs and Cats against Parasitic Worms. [(accessed on 4 August 2016)]. Available online: http://parasitipedia.net/index.php?option=com_content&view=article&id=2447&Itemid=2714.

Arjunan V., Santhanam R., Rani T., Rosi H., Mohan S. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;104:182–196. doi: 10.1016/j.saa.2012.11.037. PubMed DOI

Malik I., Bukovsky M., Andriamainty F., Galisinova J. Anti-microbial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;43:959–965. PubMed PMC

Sindt A., Mackay M. Flukicides. IV. Crystal and molecular structure of 3′-chloro-4′-(p-chlorophenoxy)-3,5-diiodosalicylanilide (rafoxanide) Aust. J. Chem. 1980;33:203–207. doi: 10.1071/CH9800203. DOI

Li D.D., Qin Y.J., Sun J., Li J.R., Fang F., Du Q.R., Qian Y., Gong H.B., Zhu H.L. Optimization of substituted 6-salicyl-4-anilinoquinazoline derivatives as dual EGFR/HER2 tyrosine kinase inhibitors. PLoS ONE. 2013;8:e69427. doi: 10.1371/journal.pone.0069427. PubMed DOI PMC

Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI

Bobal P., Sujan J., Otevrel J., Imramovsky A., Padelkova Z., Jampilek J. Microwave-assisted synthesis of new substituted anilides of quinaldic acid. Molecules. 2012;17:1292–1306. doi: 10.3390/molecules17021292. PubMed DOI PMC

Li K., Schurig-Briccio L.A., Feng X., Upadhyay A., Pujari V., Lechartier B., Fontes F.L., Yang H., Rao G., Zhu W., et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J. Med. Chem. 2014;57:3126–3139. doi: 10.1021/jm500131s. PubMed DOI PMC

Hoagland D.T., Liu J., Lee R.B., Lee R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016;102:55–72. doi: 10.1016/j.addr.2016.04.026. PubMed DOI PMC

Thannaa S., Sucheck S.J. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. Med. Chem. Commun. 2016;7:69–85. doi: 10.1039/C5MD00376H. PubMed DOI PMC

ROCHE . Roche Diagnostics GmbH; Mannheim, Germany: 2011. [(accessed on 1 July 2016)]. Cell Proliferation Reagent WST-1. Available online: http://www.molecularinfo.com/MTM/J/J2/J2–2/J2–2.pdf.

Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI

Weiss R.H., Wintringham A.C., American Cyanamid Co. N-Substituted Amides of Aromatic ortho-Hydroxy Carboxylic Acids. US 2,410,397. 1946 Oct 29;

Jadhav G.V., Rao S.N., Hirwe N.W. Derivatives of 1-hydroxy-2-naphthoic acid. Part III. Arylamides and their bromination products. J. Univ. Bombay B. 1936;5:137–141.

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides

. 2022 Nov 12 ; 27 (22) : . [epub] 20221112

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides

. 2022 Mar 15 ; 23 (6) : . [epub] 20220315

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis

. 2020 May 12 ; 21 (10) : . [epub] 20200512

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †

. 2018 Jul 04 ; 23 (7) : . [epub] 20180704

Proline-Based Carbamates as Cholinesterase Inhibitors

. 2017 Nov 14 ; 22 (11) : . [epub] 20171114

Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

. 2017 Oct 12 ; 22 (10) : . [epub] 20171012

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...