N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27537867
PubMed Central
PMC6273036
DOI
10.3390/molecules21081068
PII: molecules21081068
Knihovny.cz E-zdroje
- Klíčová slova
- MTT assay, hydroxynaphthalenecarboxamides, in vitro antimycobacterial activity, lipophilicity, structure-activity relationships,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- buněčné linie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiální viabilita účinky léků MeSH
- molekulární struktura MeSH
- Mycobacterium kansasii účinky léků MeSH
- Mycobacterium smegmatis účinky léků MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- naftoly chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- naftoly MeSH
A series of nineteen N-(alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides and a series of their nineteen positional isomers N-(alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides were prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, M. kansasii and M. smegmatis. Screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. Some of the tested compounds showed antimycobacterial activity comparable with or higher than that of rifampicin. For example, 2-hydroxy-N-(4-propoxyphenyl)-naphthalene-1-carboxamide showed the highest activity (MIC = 12 µM) against M. tuberculosis with insignificant cytotoxicity. N-[3-(But-2-yloxy)phenyl]- and N-[4-(but-2-yloxy)phenyl]-2-hydroxy-naphthalene-1-carboxamide demonstrated high activity against all tested mycobacterial strains and insignificant cytotoxicity. N-(Alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides demonstrated rather high effect against M. smegmatis and M. kansasii and strong antiproliferative effect against the human THP-1 cell line. Lipophilicity was found as the main physicochemical parameter influencing the activity. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Structure-activity relationships are discussed.
Department of Biological Sciences Cork Institute of Technology Bishopstown Cork Ireland
Global Change Research Institute CAS Belidla 986 4a Brno 60300 Czech Republic
Zobrazit více v PubMed
Working Group on New TB Drugs 2016. [(accessed on 1 July 2016)]. Available online: http://www.newtbdrugs.org/blog/category/tb-news/
World Health Organization . Global Tuberculosis Report 2015. WHO Press; Geneva, Switzerland: 2015.
Ioachimescu O.C., Tomford J.W. Nontuberculous mycobacterial disorders. In: Carey W., editor. Disease Management Project. Cleveland Clinic—Centre for Continuing Education; Cleveland, OH, USA: 2015. [(accessed on 1 July 2016)]. Available online: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/infectious-disease/nontuberculous-mycobacterial-disorders/Default.htm.
Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-(1-oxo-1-(phenylamino)alkan-2-yl)benzamides against MRSA. BioMed. Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Pattabiraman V.R., Bode J.W. Rethinking amide bond synthesis. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI
Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI
Zucca M., Scutera S., Savoia D. New chemotherapeutic strategies against malaria, leishmaniasis and trypanosomiases. Curr. Med. Chem. 2013;20:502–526. doi: 10.2174/0929867311320040003. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O´Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O´Mahony J., Liptaj T., et al. Ring-substituted 8-Hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar P., Imramovsky A., O´Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
De Marco A., de Candia M., Carotti A., Cellamare S., de Candia E., Altomare C. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides. Eur. J. Pharm. Sci. 2004;22:153–164. doi: 10.1016/j.ejps.2004.03.003. PubMed DOI
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O´Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3:e2375. doi: 10.1371/journal.pone.0002375. PubMed DOI PMC
Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI
Acharya N., Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 2002;318:1251–1264. doi: 10.1016/S0022-2836(02)00053-0. PubMed DOI
Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 147–168.
Terada H. Uncouplers of oxidative phosphorylation. Environ. Health Perspect. 1990;87:213–218. doi: 10.1289/ehp.9087213. PubMed DOI PMC
Feng X., Zhu W., Schurig-Briccio L.A., Lindert S., Shoen C., Hitchings R., Li J., Wang Y., Baig N., Zhou T., et al. Antiinfectives targeting enzymes and the proton motive force. Proc. Natl. Acad. Sci. USA. 2015;112:E7073–E7082. doi: 10.1073/pnas.1521988112. PubMed DOI PMC
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI
Terada H., Goto S., Yamamoto K., Takeuchi I., Hamada Y., Miyake K. Structural requirements of salicylanilides for uncoupling activity in mitochondria: Quantitative analysis of structure-uncoupling relationships. Biochim. Biophys. Acta. 1988;936:504–512. doi: 10.1016/0005-2728(88)90027-8. PubMed DOI
Parasitipedia.net Salicylanilides: Anthelmintics for Veterinary Use on Cattle, Sheep, Goats, Pigs, Poultry, Horses, Dogs and Cats against Parasitic Worms. [(accessed on 4 August 2016)]. Available online: http://parasitipedia.net/index.php?option=com_content&view=article&id=2447&Itemid=2714.
Arjunan V., Santhanam R., Rani T., Rosi H., Mohan S. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;104:182–196. doi: 10.1016/j.saa.2012.11.037. PubMed DOI
Malik I., Bukovsky M., Andriamainty F., Galisinova J. Anti-microbial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;43:959–965. PubMed PMC
Sindt A., Mackay M. Flukicides. IV. Crystal and molecular structure of 3′-chloro-4′-(p-chlorophenoxy)-3,5-diiodosalicylanilide (rafoxanide) Aust. J. Chem. 1980;33:203–207. doi: 10.1071/CH9800203. DOI
Li D.D., Qin Y.J., Sun J., Li J.R., Fang F., Du Q.R., Qian Y., Gong H.B., Zhu H.L. Optimization of substituted 6-salicyl-4-anilinoquinazoline derivatives as dual EGFR/HER2 tyrosine kinase inhibitors. PLoS ONE. 2013;8:e69427. doi: 10.1371/journal.pone.0069427. PubMed DOI PMC
Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI
Bobal P., Sujan J., Otevrel J., Imramovsky A., Padelkova Z., Jampilek J. Microwave-assisted synthesis of new substituted anilides of quinaldic acid. Molecules. 2012;17:1292–1306. doi: 10.3390/molecules17021292. PubMed DOI PMC
Li K., Schurig-Briccio L.A., Feng X., Upadhyay A., Pujari V., Lechartier B., Fontes F.L., Yang H., Rao G., Zhu W., et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J. Med. Chem. 2014;57:3126–3139. doi: 10.1021/jm500131s. PubMed DOI PMC
Hoagland D.T., Liu J., Lee R.B., Lee R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016;102:55–72. doi: 10.1016/j.addr.2016.04.026. PubMed DOI PMC
Thannaa S., Sucheck S.J. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. Med. Chem. Commun. 2016;7:69–85. doi: 10.1039/C5MD00376H. PubMed DOI PMC
ROCHE . Roche Diagnostics GmbH; Mannheim, Germany: 2011. [(accessed on 1 July 2016)]. Cell Proliferation Reagent WST-1. Available online: http://www.molecularinfo.com/MTM/J/J2/J2–2/J2–2.pdf.
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
Weiss R.H., Wintringham A.C., American Cyanamid Co. N-Substituted Amides of Aromatic ortho-Hydroxy Carboxylic Acids. US 2,410,397. 1946 Oct 29;
Jadhav G.V., Rao S.N., Hirwe N.W. Derivatives of 1-hydroxy-2-naphthoic acid. Part III. Arylamides and their bromination products. J. Univ. Bombay B. 1936;5:137–141.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †
Proline-Based Carbamates as Cholinesterase Inhibitors