Microwave-assisted synthesis of new substituted anilides of quinaldic acid
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22293847
PubMed Central
PMC6268041
DOI
10.3390/molecules17021292
PII: molecules17021292
Knihovny.cz E-zdroje
- MeSH
- anilidy chemická syntéza chemie MeSH
- chinoliny chemie MeSH
- hmotnostní spektrometrie MeSH
- krystalografie rentgenová MeSH
- mikrovlny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anilidy MeSH
- chinoliny MeSH
- quinaldic acid MeSH Prohlížeč
In this study a one step method for the preparation of substituted anilides of quinoline-2-carboxylic acid was developed. This efficient innovative approach is based on the direct reaction of an acid or ester with substituted anilines using microwave irradiation. The optimized method was used for the synthesis of a series of eighteen substituted quinoline-2-carboxanilides. The molecular structure of N-(4-bromophenyl)quinoline-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group with four molecules within the unit cell and the total structure of the compound can be described as "a slightly screwed boat".
Zobrazit více v PubMed
Kharkar P.S., Deodhar M.N., Kulkarni V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med. Chem. Res. 2009;18:421–432.
Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI
Musiol R., Serda M., Hensel-Bielowka S., Polanski J. Quinoline-based antifungals. Curr. Med. Chem. 2010;17:1960–1973. PubMed
Nakamoto K., Tsukada I., Tanaka K., Matsukura M., Haneda T., Inoue S., Murai N., Abe S., Ueda N., Miyazaki M., et al. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives. Bioorg. Med. Chem. Lett. 2010;20:4624–4626. PubMed
Oliva B., Miller K., Caggiano N., O’Neill A.J., Cuny G.D., Hoemarm M.Z., Hauske J.R., Chopra I. Biological properties of novel antistaphylococcal quinoline-indole agents. Antimicrob. Agents Chemother. 2003;47:458–466. PubMed PMC
Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarmah M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. PubMed
Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. PubMed PMC
Vaillancourt V.A., Cudahy M.M., Staley S.A., Brideau R.J., Conrad S.J., Knechtel M.L., Oien N.L., Wieber J.L., Yagi Y., Wathen M.W. Naphthalene carboxamides as inhibitors of human cytomegalovirus DNA polymerization. Bioorg. Med. Chem. Lett. 2000;10:2079–2081. PubMed
Brideau R.J., Knechtel M.L., Huang A., Vaillancourt V.A., Vera E.E., Oien N.L., Hopkins T.A., Wieber J.L., Wilkinson K.F., Rush B.D., et al. Broad-spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antivir. Res. 2002;54:19–28. PubMed
Oien N.L., Brideau R.J., Hopkins T.A., Wieber J.L., Knechtel M.L., Shelly J.A., Anstadt R.A., Wells P.A., Poorman R.A., Huang A., et al. Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob. Agents Chemother. 2002;46:724–730. PubMed PMC
Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., et al. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. PubMed
Shi A., Nguyen T.A., Battina S.K., Rana S., Takemoto D.J., Chiang P.K., Hua D.H. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem. Lett. 2008;18:3364–3368. PubMed PMC
Gakhar G., Shi A., Hua D.H., Nguyen T.A. Antitumor effect of substituted quinolines in breast cancer cells. Drug Dev. Res. 2008;69:526–534.
Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. PubMed
Bernzweig J., Heiniger B., Prasain K., Lu J., Hua D.H., Nguyen T.A. Anti-breast cancer agents, quinolines, targeting gap junction author. Med. Chem. 2011;7:448–453. PubMed PMC
Foley M., Tilley L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 1998;79:55–87. PubMed
Nakayama H., Loiseau P.M., Bories C., Torres de Ortiz S., Schinini A., Serna E., Rojas de Arias A., Fakhfakh M.A., Franck X., Figadere B., et al. Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob. Agents Chemother. 2005;49:4950–4956. PubMed PMC
Kaur K., Jain M., Reddy R.P., Jain R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem. 2010;45:3245–3264. PubMed
Rautio J., Kumpulainen H., Heimbach T., Oliyai R., Oh D., Jarvinen T., Savolainen J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008;7:255–270. PubMed
Trost B.M., Fleming I., Winterfeldt E., editors. Comprehensive Organic Synthesis. Vol. 6. Pergamon Press; Oxford, UK: 1991. pp. 301–399.
Katritzky A.R., Suzuki K., Singh S.K. N-Acylation in combinatorial chemistry. ARKIVOC. 2004;i:12–35.
Lidstrom P., Tierney J.P., Wathey B., Westman J. Microwave assisted organic synthesis—A review. Tetrahedron. 2001;57:9225–9283.
Tierney J.P., Lidstrom P., editors. Microwave Assisted Organic Synthesis. Blackwell Publishing; Oxford, UK: 2005.
de la Hoz A., Diaz-Ortiz A., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005;34:164–178. PubMed
Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light. CEM Publishing; Matthews, NC, USA: 2002.
Loupy A., editor. Microwaves in Organic Synthesis. Wiley-VCH; Weinheim, Germany: 2002.
Varma R.S. In: Advances in Green Chemistry: Chemical Syntheses using Microwave Irradiation. Varma R.S., editor. AstraZeneca Research Foundation, Kavitha Printers; Bangalore, India: 2002.
Bogdal D. Microwave-assisted Organic Synthesis One Hundred Reaction Procedures. Elsevier; Oxford, UK: 2005.
Bankston D., Dumas J., Natero R., Riedl B., Monahan M.-K., Sibley R. A scaleable synthesis of BAY 43-9006: A potent Raf kinase inhibitor for the treatment of cancer. Org. Process. Res. Dev. 2002;6:777–781. doi: 10.1021/op020205n. DOI
Perreux L., Loupy A., Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58:2155–2162.
Qi J.Y., Qiu L.Q., Yang Q.Y., Zhou Z.Y., Chan A.S.C. N-(4-Iodophenyl)quinoline-2-carboxamide. Acta Crystallogr. E. 2003;59:o104–o105.
Mocilac P., Lough A.J., Gallagher J.F. Structures and conformational analysis of a 3 × 3 isomer grid of nine N-(fluorophenyl)pyridinecarboxamides. Cryst. Eng. Comm. 2011;13:1899–1999.
Wilson C.R., Munro O.Q. Unconventional hydrogen bonding and π-stacking in two substituted pyridine carboxamides. Acta Crystallogr. C. 2010;66:o513–o516. doi: 10.1107/S0108270110036218. PubMed DOI
Qi J.Y., Yang Q.Y., Lam K.H., Zhou Z.Y., Chan A.S.C. N-(4-Bromophenyl)pyridine-2-carboxamide. Acta Crystallogr. E. 2003;59:o374–o375.
Zhang Q., Zhang S.P., Shao S.C. N-(4-Chlorophenyl)picolinamide. Acta Crystallogr. E. 2006;62:o4695–o4696.
Schaefer W., Neubert P. Mass spectra of heterocyclic carboxylic acid amides. I. Pyridine- and quinolinecarboxylic acid anilides. Tetrahedron. 1969;25:315–327. doi: 10.1016/S0040-4020(01)82626-0. DOI
Davis J.W., Jr. Studies with quinolines. I. Synthesis of quinaldic acid and some of its amide derivatives. J. Org. Chem. 1959;24:1691–1694. doi: 10.1021/jo01093a016. DOI
Petrie C., Orme M.W., Baindur N., Robbins K.G., Harris S.M., Kontoyianni M., Hurley L.H., Kerwin S.M., Mundy G.R. Compositions and Methods for Treating Bone Deficit Conditions. 9715308 A1. PCT Int. Appl. WO. 1997 May 1;
Chan L., Jin H., Stefanac T., Wang W., Lavallee J.F., Bedard J., May S. Isoquinoline-6-carboxamides as potent and selective anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 1999;9:2583–2586. doi: 10.1016/S0960-894X(99)00435-7. PubMed DOI
Kiselyov A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: A convenient one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett. 2005;46:4851–4854. doi: 10.1016/j.tetlet.2005.05.066. DOI
Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. In: Carter C.W. Jr., Sweet R.M., editors. Methods in Enzymology 276: Macromolecular Crystallography, Part A. Academic Press; New York, NY, USA: 1997. pp. 307–326. PubMed
Coppens P. The Evaluation of Absorption and Extinction in Single Crystal Structure Analysis. In: Ahmed F.R., Hall S.R., Huber C.P., editors. Crystallographic Computing. Munksgaard; Copenhagen, Denmark: 1970. pp. 255–270.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A. Completion and refinement of crystal-structures with SIR92. J. Appl. Crystallogr. 1993;26:343–350. doi: 10.1107/S0021889892010331. DOI
Sheldrick G.M. SHELXL-97. University of Gottingen; Gottingen, Germany: 1997.
Proline-Based Carbamates as Cholinesterase Inhibitors
N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity