Microwave-assisted synthesis of new substituted anilides of quinaldic acid

. 2012 Jan 31 ; 17 (2) : 1292-306. [epub] 20120131

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22293847

In this study a one step method for the preparation of substituted anilides of quinoline-2-carboxylic acid was developed. This efficient innovative approach is based on the direct reaction of an acid or ester with substituted anilines using microwave irradiation. The optimized method was used for the synthesis of a series of eighteen substituted quinoline-2-carboxanilides. The molecular structure of N-(4-bromophenyl)quinoline-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group with four molecules within the unit cell and the total structure of the compound can be described as "a slightly screwed boat".

Zobrazit více v PubMed

Kharkar P.S., Deodhar M.N., Kulkarni V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med. Chem. Res. 2009;18:421–432.

Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI

Musiol R., Serda M., Hensel-Bielowka S., Polanski J. Quinoline-based antifungals. Curr. Med. Chem. 2010;17:1960–1973. PubMed

Nakamoto K., Tsukada I., Tanaka K., Matsukura M., Haneda T., Inoue S., Murai N., Abe S., Ueda N., Miyazaki M., et al. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives. Bioorg. Med. Chem. Lett. 2010;20:4624–4626. PubMed

Oliva B., Miller K., Caggiano N., O’Neill A.J., Cuny G.D., Hoemarm M.Z., Hauske J.R., Chopra I. Biological properties of novel antistaphylococcal quinoline-indole agents. Antimicrob. Agents Chemother. 2003;47:458–466. PubMed PMC

Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarmah M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. PubMed

Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. PubMed PMC

Vaillancourt V.A., Cudahy M.M., Staley S.A., Brideau R.J., Conrad S.J., Knechtel M.L., Oien N.L., Wieber J.L., Yagi Y., Wathen M.W. Naphthalene carboxamides as inhibitors of human cytomegalovirus DNA polymerization. Bioorg. Med. Chem. Lett. 2000;10:2079–2081. PubMed

Brideau R.J., Knechtel M.L., Huang A., Vaillancourt V.A., Vera E.E., Oien N.L., Hopkins T.A., Wieber J.L., Wilkinson K.F., Rush B.D., et al. Broad-spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antivir. Res. 2002;54:19–28. PubMed

Oien N.L., Brideau R.J., Hopkins T.A., Wieber J.L., Knechtel M.L., Shelly J.A., Anstadt R.A., Wells P.A., Poorman R.A., Huang A., et al. Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob. Agents Chemother. 2002;46:724–730. PubMed PMC

Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., et al. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. PubMed

Shi A., Nguyen T.A., Battina S.K., Rana S., Takemoto D.J., Chiang P.K., Hua D.H. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem. Lett. 2008;18:3364–3368. PubMed PMC

Gakhar G., Shi A., Hua D.H., Nguyen T.A. Antitumor effect of substituted quinolines in breast cancer cells. Drug Dev. Res. 2008;69:526–534.

Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. PubMed

Bernzweig J., Heiniger B., Prasain K., Lu J., Hua D.H., Nguyen T.A. Anti-breast cancer agents, quinolines, targeting gap junction author. Med. Chem. 2011;7:448–453. PubMed PMC

Foley M., Tilley L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 1998;79:55–87. PubMed

Nakayama H., Loiseau P.M., Bories C., Torres de Ortiz S., Schinini A., Serna E., Rojas de Arias A., Fakhfakh M.A., Franck X., Figadere B., et al. Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob. Agents Chemother. 2005;49:4950–4956. PubMed PMC

Kaur K., Jain M., Reddy R.P., Jain R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem. 2010;45:3245–3264. PubMed

Rautio J., Kumpulainen H., Heimbach T., Oliyai R., Oh D., Jarvinen T., Savolainen J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008;7:255–270. PubMed

Trost B.M., Fleming I., Winterfeldt E., editors. Comprehensive Organic Synthesis. Vol. 6. Pergamon Press; Oxford, UK: 1991. pp. 301–399.

Katritzky A.R., Suzuki K., Singh S.K. N-Acylation in combinatorial chemistry. ARKIVOC. 2004;i:12–35.

Lidstrom P., Tierney J.P., Wathey B., Westman J. Microwave assisted organic synthesis—A review. Tetrahedron. 2001;57:9225–9283.

Tierney J.P., Lidstrom P., editors. Microwave Assisted Organic Synthesis. Blackwell Publishing; Oxford, UK: 2005.

de la Hoz A., Diaz-Ortiz A., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005;34:164–178. PubMed

Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light. CEM Publishing; Matthews, NC, USA: 2002.

Loupy A., editor. Microwaves in Organic Synthesis. Wiley-VCH; Weinheim, Germany: 2002.

Varma R.S. In: Advances in Green Chemistry: Chemical Syntheses using Microwave Irradiation. Varma R.S., editor. AstraZeneca Research Foundation, Kavitha Printers; Bangalore, India: 2002.

Bogdal D. Microwave-assisted Organic Synthesis One Hundred Reaction Procedures. Elsevier; Oxford, UK: 2005.

Bankston D., Dumas J., Natero R., Riedl B., Monahan M.-K., Sibley R. A scaleable synthesis of BAY 43-9006: A potent Raf kinase inhibitor for the treatment of cancer. Org. Process. Res. Dev. 2002;6:777–781. doi: 10.1021/op020205n. DOI

Perreux L., Loupy A., Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58:2155–2162.

Qi J.Y., Qiu L.Q., Yang Q.Y., Zhou Z.Y., Chan A.S.C. N-(4-Iodophenyl)quinoline-2-carboxamide. Acta Crystallogr. E. 2003;59:o104–o105.

Mocilac P., Lough A.J., Gallagher J.F. Structures and conformational analysis of a 3 × 3 isomer grid of nine N-(fluorophenyl)pyridinecarboxamides. Cryst. Eng. Comm. 2011;13:1899–1999.

Wilson C.R., Munro O.Q. Unconventional hydrogen bonding and π-stacking in two substituted pyridine carboxamides. Acta Crystallogr. C. 2010;66:o513–o516. doi: 10.1107/S0108270110036218. PubMed DOI

Qi J.Y., Yang Q.Y., Lam K.H., Zhou Z.Y., Chan A.S.C. N-(4-Bromophenyl)pyridine-2-carboxamide. Acta Crystallogr. E. 2003;59:o374–o375.

Zhang Q., Zhang S.P., Shao S.C. N-(4-Chlorophenyl)picolinamide. Acta Crystallogr. E. 2006;62:o4695–o4696.

Schaefer W., Neubert P. Mass spectra of heterocyclic carboxylic acid amides. I. Pyridine- and quinolinecarboxylic acid anilides. Tetrahedron. 1969;25:315–327. doi: 10.1016/S0040-4020(01)82626-0. DOI

Davis J.W., Jr. Studies with quinolines. I. Synthesis of quinaldic acid and some of its amide derivatives. J. Org. Chem. 1959;24:1691–1694. doi: 10.1021/jo01093a016. DOI

Petrie C., Orme M.W., Baindur N., Robbins K.G., Harris S.M., Kontoyianni M., Hurley L.H., Kerwin S.M., Mundy G.R. Compositions and Methods for Treating Bone Deficit Conditions. 9715308 A1. PCT Int. Appl. WO. 1997 May 1;

Chan L., Jin H., Stefanac T., Wang W., Lavallee J.F., Bedard J., May S. Isoquinoline-6-carboxamides as potent and selective anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 1999;9:2583–2586. doi: 10.1016/S0960-894X(99)00435-7. PubMed DOI

Kiselyov A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: A convenient one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett. 2005;46:4851–4854. doi: 10.1016/j.tetlet.2005.05.066. DOI

Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. In: Carter C.W. Jr., Sweet R.M., editors. Methods in Enzymology 276: Macromolecular Crystallography, Part A. Academic Press; New York, NY, USA: 1997. pp. 307–326. PubMed

Coppens P. The Evaluation of Absorption and Extinction in Single Crystal Structure Analysis. In: Ahmed F.R., Hall S.R., Huber C.P., editors. Crystallographic Computing. Munksgaard; Copenhagen, Denmark: 1970. pp. 255–270.

Altomare A., Cascarano G., Giacovazzo C., Guagliardi A. Completion and refinement of crystal-structures with SIR92. J. Appl. Crystallogr. 1993;26:343–350. doi: 10.1107/S0021889892010331. DOI

Sheldrick G.M. SHELXL-97. University of Gottingen; Gottingen, Germany: 1997.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...