Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCN-1-039/K/2/F
Medical University of Silesia
PCN-2-006/N/1/F
Medical University of Silesia
PCN-1-060/K/0/F
Medical University of Silesia
PubMed
36499402
PubMed Central
PMC9736374
DOI
10.3390/ijms232315078
PII: ijms232315078
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, azaphenothiazines, cytotoxicity, descriptor-based similarity analysis, phenothiazine,
- MeSH
- antibakteriální látky chemie MeSH
- chloridy farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- chloridy MeSH
A new method for modifying the structure of tetracyclic quinobenzothiazinium derivatives has been developed, allowing introduction of various substituents at different positions of the benzene ring. The method consists of reacting appropriate aniline derivatives with 5,12-(dimethyl)thioquinantrenediinium bis-chloride. A series of new quinobenzothiazine derivatives was obtained with propyl, allyl, propargyl and benzyl substituents in 9, 10 and 11 positions, respectively. The structure of the obtained compounds was analyzed by 1H and 13C NMR (HSQC, HMBC) and X-ray analysis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). In addition, all the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. 9-Benzyloxy-5-methyl-12H-quino [3,4-b][1,4]benzothiazinium chloride (6j), 9-propoxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6a) and 9-allyloxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6d) demonstrated high activity against the entire tested microbial spectrum. The activities of the compounds were comparable with oxacillin, tetracycline and ciprofloxacinagainst staphylococcal strains and with rifampicin against both mycobacterial strains. Compound 6j had a significant effect on the inhibition of bacterial respiration as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity, but also bactericidal activity. Preliminary in vitro cytotoxicity screening of the compounds performed using normal human dermal fibroblasts (NHDF) proved that the tested compounds showed an insignificant cytotoxic effect on human cells (IC50 > 37 µM), making these compounds interesting for further investigation. Moreover, the intermolecular similarity of novel compounds was analyzed in the multidimensional space (mDS) of the structure/property-related in silico descriptors by means of principal component analysis (PCA) and hierarchical clustering analysis (HCA), respectively. The distance-oriented structure/property distribution was related with the experimental lipophilic data.
Zobrazit více v PubMed
Berntsen A. Uber das Methylenblau, U. Ber. Dtsch. Chem. Ges. 1883;16:2896–2904.
Gupta R.R., Kumar M. Synthesis, properties and reactions of phenothiazines. In: Gupta R.R., editor. Phenothiazine and 1,4-Benzothiazines—Chemical and Biological Aspect. Elsevier; Amsterdam, The Netherlands: 1988. pp. 1–161.
Silberg I.A., Cormos G., Oniciu D.C. Retrosynthetic approach to the synthesis of phenothiazines. In: Katritzky A.R., editor. Advances in Heterocyclic Chemistry. Elsevier; New York, NY, USA: 2006. pp. 205–237.
Mosnaim A.D., Ranade V.V., Wolf M.E., Puente J., Valenzuela M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Therapeut. 2006;13:261–273. doi: 10.1097/01.mjt.0000212897.20458.63. PubMed DOI
Pluta K., Morak-Młodawska B., Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011;46:3179–3189. doi: 10.1016/j.ejmech.2011.05.013. PubMed DOI
Aszczyszyn A.J., Gąsiorowski K., Świątek P., Malinka W., Cieślik-Boczula K., Petrus J., Matusewicz-Czarnik B. Chemical structure of phenothiazines and their biological activity. Pharm. Rep. 2012;64:16–23. doi: 10.1016/S1734-1140(12)70726-0. PubMed DOI
Aaron J.J., Gaye Seye M.D., Trajkovska S., Motohashi N. Topics in Heterocyclic Chemistry. Volume 16. Springer; Berlin, Germany: 2009. Bioactive phenothiazines and benzo[a]phenothiazines: Spectroscopic studies and biological and biomedical properties and applications; pp. 153–231.
Pluta K., Jeleń M., Morak-Młodawska B., Zimecki M., Artym J., Kocięba M., Zaczyńska E. Azaphenothiazines—Promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties. Eur. J. Med. Chem. 2017;138:774–806. doi: 10.1016/j.ejmech.2017.07.009. PubMed DOI
Zięba A., Latocha M., Sochanik A. Synthesis and in vitro antiproliferative activity of novel 12(H)-quino [3,4-b][1,4]benzothiazine derivatives. Med. Chem. Res. 2013;22:4158–4163. doi: 10.1007/s00044-012-0384-4. PubMed DOI PMC
Zięba A., Czuba Z.P., Król W. In vitro antimicrobial activity of novel azaphenothiazine derivatives. Acta Pol. Pharm. 2012;69:1149–1152. PubMed
Barazarte A., Lobo G., Gamboa N., Rodrigues J.R., Capparelli M.V., Alvarez-Larena A., Lopez S.E., Charris J.E. Synthesis and antimalarial activity of pyrazolo and pyrimido benzothiazine dioxide derivatives. Eur. J. Med. Chem. 2009;44:1303–1310. doi: 10.1016/j.ejmech.2008.08.005. PubMed DOI
Matralis A.N., Kourounakis A.P. Design of novel potent antihyperlipidemic agents with antioxidant/anti-inflammatory properties exploiting phenothiazine’s strong antioxidant activity. J. Med. Chem. 2014;57:2568–2581. doi: 10.1021/jm401842e. PubMed DOI
Wesołowska O. Interaction of phenothiazines, stilbenes and flavonoids with multidrug resistance-associated transporters, P-glycoprotein and MRP1. Acta Biochim. Pol. 2011;58:433–448. doi: 10.18388/abp.2011_2209. PubMed DOI
Gonzalez-Munoz G.C., Arce M.P., Lopez B., Perez C., Romero A., del Barrio L., Martín-de-Saavedra M.D., Egea J., Leon R., Villarroya M., et al. Old phenothiazine and dibenzothiadiazepine derivatives for tomorrow’s neuroprotective therapies against neurodegenerative diseases. Eur. J. Med. Chem. 2010;45:6152–6158. doi: 10.1016/j.ejmech.2010.09.039. PubMed DOI
Pluta K., Morak-Młodawska B., Jeleń M. Synthesis and properties of diaza-, triaza- and tetraazaphenothiazines. J. Heterocycl. Chem. 2009;45:355–391. doi: 10.1002/jhet.42. DOI
Zięba A., Latocha M., Sochanik A., Nycz A., Kuśmierz D. Synthesis and in vitro antiproliferative activity of novel phenyl ring-substituted 5-alkyl-12(H)quino [3,4-b][1,4]benzothiazine derivatives. Molecules. 2016;21:1455. doi: 10.3390/molecules21111455. PubMed DOI PMC
Kaneko T., Clark R., Ohi N., Kawahara T., Akamatsu H., Ozaki F., Kamada A., Okano K., Yokohama H., Muramoto K., et al. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino [2,3-b][1,4]benzothiazine derivatives. Chem. Pharm. Bull. 2002;50:922–929. doi: 10.1248/cpb.50.922. PubMed DOI
Kaneko T., Clark R., Ohi N., Ozaki F., Kawahara T., Kamada A., Okano K., Yokohama H., Ohkuro M., Muramoto K., et al. Piperidine carboxylic acid derivatives of 10H-pyrazino [2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors. Chem. Pharm. Bull. 2004;52:675–687. doi: 10.1248/cpb.52.675. PubMed DOI
Peltason L., Bajorath J. Systematic computational analysis of structure-activity relationships: Concepts, challenges and recent advances. Future Med. Chem. 2009;1:451–466. doi: 10.4155/fmc.09.41. PubMed DOI
Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI
Lopez-Lopez E., Prieto-Martínez F.D., Medina-Franco J.L. Activity landscape and molecular modeling to explore the SAR of dual epigenetic inhibitors: A focus on G9a and DNMT1. Molecules. 2018;23:3282. doi: 10.3390/molecules23123282. PubMed DOI PMC
Zięba A., Maślankiewicz A., Suwińska K. Azinyl Sulfides, Part LXIII, 1-Alkyl-4-(arylamino)quinolinium-3-thiolates and 7-Alkyl-12H-quino [3,4-b]-1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000;16:2947–2953. doi: 10.1002/1099-0690(200008)2000:16<2947::AID-EJOC2947>3.0.CO;2-U. DOI
Zięba A., Suwińska K. 1-Alkyl-4-(3-pyridinylamino)quinolinium-3-thiolates and their transformation into new diazaphenothiazine derivatives. Heterocycles. 2006;68:495–503. doi: 10.3987/COM-05-10654. DOI
Zięba A., Sochanik A., Szurko A., Rams M., Mrozek A., Cmoch P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino [3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010;45:4733–4739. doi: 10.1016/j.ejmech.2010.07.035. PubMed DOI
Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC
Global Laboratory Standards for a Healthier World. [(accessed on 15 November 2022)]. Available online: https://clsi.org/
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with van A gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public Health. 2020;13:1255–1264. PubMed
Luukinen H., Hammaren M.M., Vanha-Aho L.M., Parikka M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018;140:58299. doi: 10.3791/58299. PubMed DOI PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Gonec T., Pospisilova T.S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Pindjakova D., Pilarova E., Pauk K., Michnova H., Hosek J., Magar P., Cizek A., Imramovsky A., Jampilek J. Study of biological activities and ADMET-related properties of salicylanilide-based peptidomimetics. Int. J. Mol. Sci. 2022;23:11648. doi: 10.3390/ijms231911648. PubMed DOI PMC
Portela C.A., Smart K.F., Tumanov S., Cook G.M., Villas-Boas S.G. Global metabolic response of Enterococcus faecalis to oxygen. J. Bacteriol. 2014;196:2012–2022. doi: 10.1128/JB.01354-13. PubMed DOI PMC
Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary; Boston, MA, USA: 2014. [(accessed on 15 September 2022)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ PubMed
Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC
Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962-20. doi: 10.1128/mBio.02962-20. PubMed DOI PMC
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 15 September 2022)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov. Today. 2022;27:2028–2041. doi: 10.1016/j.drudis.2022.05.006. PubMed DOI
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin. Drug Discov. 2022;17:949–968. doi: 10.1080/17460441.2022.2097659. PubMed DOI
Bedaquilin. DrugBank. [(accessed on 14 February 2022)]. Available online: https://go.drugbank.com/drugs/DB08903.
Khan S.R., Singh S., Roy K.K., Akhtar M.S., Saxena A.K., Krishnan M.Y. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int. J. Antimicrob. Agents. 2013;41:41–46. doi: 10.1016/j.ijantimicag.2012.09.012. PubMed DOI
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Mapari M., Bhole R.P., Khedekar P.B., Chikhale R.V. Challenges in targeting mycobacterial ATP synthase: The known and beyond. J. Mol. Struct. 2022;1247:131331. doi: 10.1016/j.molstruc.2021.131331. DOI
Paritala H., Carroll K.S. New targets and inhibitors of Mycobacterial sulfur metabolism. Infect. Disord. Drug Targets. 2013;13:85–115. doi: 10.2174/18715265113139990022. PubMed DOI PMC
Mathew B., Ross L., Reynolds R.C. A novel quinoline derivative that inhibits mycobacterial FtsZ. Tuberculosis. 2013;93:398–400. doi: 10.1016/j.tube.2013.04.002. PubMed DOI PMC
Warman A.J., Rito T.S., Fisher N.E., Moss D.M., Berry N.G., O’Neill P.M., Ward S.A., Biagini G.A. Antitubercular pharmacodynamics of phenothiazines. J. Antimicrob. Chemother. 2013;68:869–880. doi: 10.1093/jac/dks483. PubMed DOI PMC
Kristiansen J.E., Dastidar S.G., Palchoudhuri S., Roy D.S., Das S., Hendricks O., Christensen J.B. Phenothiazines as a solution for multidrug resistant tuberculosis: From the origin to present. Int. Microbiol. 2015;18:1–12. PubMed
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
Kruger A., Maltarollo V.G., Wrenger C., Kronenberger T. ADME profiling in drug discovery and a new path paved on silica. In: Gaitonde V., Karmakar P., Trivedi A., editors. Drug Discovery and Development—New Advances. IntechOpen; Rijeka, Croatia: 2019. [(accessed on 4 October 2022)]. Available online: https://www.intechopen.com/chapters/66969.
Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Sheldrick G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC
Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides