Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BNW-1-013/N/3/F
Medical University of Silesia in Katowice, Poland
PCN-1-048-2/F
Medical University of Silesia in Katowice, Poland
2018/31/B/NZ7/02122
Polish National Science Center
PubMed
39274892
PubMed Central
PMC11396667
DOI
10.3390/molecules29174044
PII: molecules29174044
Knihovny.cz E-zdroje
- Klíčová slova
- 1,2,3-triazole, 8-hydroxyquinoline, acetylene derivatives, antibacterial activity, anticancer activity, cytotoxicity, synthesis,
- MeSH
- antibakteriální látky * farmakologie chemie chemická syntéza MeSH
- antitumorózní látky * farmakologie chemie chemická syntéza MeSH
- chinoliny * chemie farmakologie chemická syntéza MeSH
- Enterococcus faecalis účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- racionální návrh léčiv MeSH
- Staphylococcus aureus účinky léků MeSH
- sulfonamidy * farmakologie chemie chemická syntéza MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antitumorózní látky * MeSH
- chinoliny * MeSH
- sulfonamidy * MeSH
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.
Zobrazit více v PubMed
Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures-dream or reality: Preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI
Solomon V.R., Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011;18:1488–1508. doi: 10.2174/092986711795328382. PubMed DOI
Song Y., Xu H., Chen W., Zhan P., Liu X. 8-Hydroxyquinoline: A privileged structure with a broad-ranging pharmacological potential. MedChemComm. 2015;6:61–74. doi: 10.1039/C4MD00284A. DOI
Gupta R., Luxami V., Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg. Chem. 2021;108:104633. doi: 10.1016/j.bioorg.2021.104633. PubMed DOI
Saadeh H.A., Sweidan K.A., Mubarak M.S. Recent advances in the synthesis and biological activity of 8-hydroxyquinolines. Molecules. 2020;25:4321. doi: 10.3390/molecules25184321. PubMed DOI PMC
Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI
Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. 2021;354:e2000232. doi: 10.1002/ardp.202000232. PubMed DOI
Czaplinska B., Malarz K., Mrozek-Wilczkiewicz A., Slodek A., Korzec M., Musiol R. Theoretical and experimental investigations of large stokes shift fluorophores based on a quinoline scaffold. Molecules. 2020;25:2488. doi: 10.3390/molecules25112488. PubMed DOI PMC
Chotsiri P., Mahamar A., Hoglund R.M., Koita F., Sanogo K., Diawara H., Dicko A., Simpson J.A., Bousema T., White N.J., et al. Mechanistic modeling of primaquine pharmacokinetics, gametocytocidal activity, and mosquito infectivity. Clin. Pharmacol. Ther. 2022;111:676–685. doi: 10.1002/cpt.2512. PubMed DOI PMC
Musiol R., Mrozek-Wilczkiewicz A., Polanski J. Synergy against fungal pathogens: Working together is better than working alone. Curr. Med. Chem. 2014;21:870–893. doi: 10.2174/0929867321666131218094848. PubMed DOI
Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul S. 8-Hydroxyquinolines: Are view of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013;7:1157–1178. doi: 10.2147/DDDT.S49763. PubMed DOI PMC
Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI
Bissani C., Gasparin D., Pilger A. 8-Hydroxyquinoline, derivatives and metal-complexes: A review of antileukemia activities. ChemistrySelect. 2023;8:e202204219. doi: 10.1002/slct.202204219. DOI
Abeydeera N., Benin B.M., Mudarmah K., Pant B.D., Chen G., Shin W.S., Kim M.-H., Huang S.D. Harnessing the dual antimicrobial mechanism of action with Fe(8-hydroxyquinoline)3 to develop a topical ointment for mupirocin-resistant MRSA infections. Antibiotics. 2023;12:886. doi: 10.3390/antibiotics12050886. PubMed DOI PMC
Yin X.D., Ma K.Y., Wang Y.L., Sun Y., Shang X.F., Zhao Z.M., Wang R.X., Chen Y.J., Zhu J.K., Liu Y.Q. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J. Agric. Food Chem. 2020;68:11096–11104. doi: 10.1021/acs.jafc.0c01322. PubMed DOI
Pivarcsik T., Posa V., Kovacs H., May N.V., Spengler G., Posa S.P., Toth S., Nezafat Yazdi Z., Ozvegy-Laczka C., Ugrai I., et al. Metal complexes of a 5-nitro-8-hydroxyquinoline-proline hybrid with enhanced water solubility targeting multidrug resistant cancer cells. Int. J. Mol. Sci. 2023;24:593. doi: 10.3390/ijms24010593. PubMed DOI PMC
Pape V.F.S., Palko R., Toth S., Szabo M.J., Sessler J., Dorman G., Enyedy E.A., Soos T., Szatmari I., Szakacs G. Structure-activity relationships of 8-hydroxyquinoline-derived Mannich bases with tertiary amines targeting multidrug-resistant cancer. J. Med. Chem. 2022;65:7729–7745. doi: 10.1021/acs.jmedchem.2c00076. PubMed DOI PMC
Joaquim A.R., Gionbelli M.P., Gosmann G., Fuentefria A.M., Lopes M.S., Fernandes de Andrade S. Novel antimicrobial 8-hydroxyquinoline-based agents: Current development, structure-activity relationships, and perspectives. J. Med. Chem. 2021;64:16349–16379. doi: 10.1021/acs.jmedchem.1c01318. PubMed DOI
Pippi B., Lopes W., Reginatto P., Silva F.E.K., Joaquim A.R., Alves R.J., Silveira G.P., Vainstein M.H., Andrade S.F., Fuentefria A.M. New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharm. J. 2019;27:41–48. doi: 10.1016/j.jsps.2018.07.017. PubMed DOI PMC
Czaplinska B., Maron A., Malecki J.G., Szafraniec-Gorol G., Matussek M., Malarz K., Mrozek-Wilczkiewicz A., Danikiewicz W., Musiol R., Slodek A. Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes Pigment. 2017;144:119–132. doi: 10.1016/j.dyepig.2017.05.029. DOI
Szczepaniak J., Cieslik W., Romanowicz A., Musiol R., Krasowska A. Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int. J. Antimicrob. Agents. 2017;50:171–176. doi: 10.1016/j.ijantimicag.2017.01.044. PubMed DOI
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Kushkevych I., Vitezova M., Kos J., Kollar P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Conan P., Leon A., Gourdel M., Rollet C., Chair L., Caroff N., Le Goux N., Le Jossic-Corcos C., Sinane M., Gentile L., et al. Identification of 8-hydroxyquinoline derivatives that decrease cystathionine beta synthase (CBS) activity. Int. J. Mol. Sci. 2022;23:6769. doi: 10.3390/ijms23126769. PubMed DOI PMC
Khasawneh M.A., Al-Kaabi A., Samadi A., Antony P., Vijayan R., Al-Keridis L.A., Saadeh H.A., Abutaha N. Synthesis and biological applications of some novel 8-hydroxyquinoline urea and thiourea derivatives. Arab. J. Chem. 2022;15:103905. doi: 10.1016/j.arabjc.2022.103905. DOI
Nqoro X., Tobeka N., Aderibigbe B. Quinoline–based hybrid compounds with antimalarial activity. Molecules. 2017;22:2268. doi: 10.3390/molecules22122268. PubMed DOI PMC
Teng P., Li C., Peng Z., Anne Marie V., Nimmagadda A., Su M., Li Y., Sun X., Cai J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem. 2018;26:3573–3579. doi: 10.1016/j.bmc.2018.05.031. PubMed DOI PMC
Zieba A., Wojtyczka R.D., Kepa M., Idzik D. Antimicrobial activity of novel 1-methyl-3-thio-4-aminoquinolinium salts. Folia Microbiol. 2010;55:3–9. doi: 10.1007/s12223-010-0001-1. PubMed DOI
Zieba A., Wojtyczka R.D., Kepa M., Idzik D. Synthesis and in vitro antimicrobial activity of 1-methyl-3-sulfothio-4-aminoquinolinium chlorides. Acta Pol. Pharm. Drug Res. 2013;70:163–166. PubMed
Wojtyczka R.D., Zieba A., Dziedzic A., Kepa M., Idzik D. An activity of thioacyl derivativesof 4-aminoquinolinium salts towards biofilm producing and planktonic forms of coagulase-negative staphylococci. BioMed Res. Int. 2015;2015:725939. doi: 10.1155/2015/725939. PubMed DOI PMC
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Empel A., Kisiel E., Wojtyczka R.D., Kepa M., Idzik D., Sochanik A., Wasik T.J., Zieba A. Synthesis and antimicrobial activity of sulfur derivatives of quinolinium salts. Molecules. 2018;23:218. doi: 10.3390/molecules23010218. PubMed DOI PMC
Al-Matarneh C.M., Nicolescu A., Marinaş I.C., Gaboreanu M.D., Shova S., Dascalu A., Silion M., Pinteala M. New library of iodo-quinoline derivatives obtained by an alternative synthetic pathway and their antimicrobial activity. Molecules. 2024;29:772. doi: 10.3390/molecules29040772. PubMed DOI PMC
Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC
Kos J., Ku C.F., Kapustikova I., Oravec M., Zhang H.J., Jampilek J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. ChemistrySelect. 2019;4:4582–4587. doi: 10.1002/slct.201900873. DOI
Afzal O., Kuma S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI
Van de Walle T., Cools L., Mangelinckx S., D’Hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021;226:113865. doi: 10.1016/j.ejmech.2021.113865. PubMed DOI
Sharma V., Mehta D.K., Das R. Synthetic methods of quinoline derivatives as potent anticancer agents. Mini Rev. Med. Chem. 2017;17:1557–1572. doi: 10.2174/1389557517666170510104954. PubMed DOI
Gao F., Zhang X., Wang T., Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem. 2019;165:59–79. doi: 10.1016/j.ejmech.2019.01.017. PubMed DOI
Ghanbari-Movahed M., Tea Kaceli M., Arijit Mondal A., Farzaei M.H., Anupam Bishayee A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines. 2021;9:480. doi: 10.3390/biomedicines9050480. PubMed DOI PMC
Hongmanee P., Rukseree K., Buabut B., Somsri B., Palittapongarnpim P. In vitro activities of cloxyquin (5-chloroquinolin-8-ol) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2007;51:1105–1106. doi: 10.1128/AAC.01310-06. PubMed DOI PMC
Jiang H., Taggart J.E., Zhang X., Benbrook D.M., Lind S.E., Ding W.Q. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline) Cancer Lett. 2011;312:11–17. doi: 10.1016/j.canlet.2011.06.032. PubMed DOI PMC
Cherdtrakulkiat R., Boonpangrak S., Sinthupoom N., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016;6:135–141. doi: 10.1016/j.bbrep.2016.03.014. PubMed DOI PMC
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Cieslik W., Musiol R., Nycz J.E., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI
Sharma J., Ahmad S., Alam M.S. Bioactive triazoles: A potential review. J. Chem. Pharm. Res. 2012;4:5157–5164.
Lengerli D., Ibis K., Nural Y., Banoglu E. The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin. Drug Discov. 2022;17:1209–1236. doi: 10.1080/17460441.2022.2129613. PubMed DOI
Matin M.M., Matin P., Rahman M.R., Ben Hadda T., Almalki F.A., Mahmud S., Ghoneim M.M., Alruwaily M., Alshehri S. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front. Mol. Biosci. 2022;9:864286. doi: 10.3389/fmolb.2022.864286. PubMed DOI PMC
Khan S.A., Akhtar M.J., Gogoi U., Meenakshi D.U., Das A. An overview of 1,2,3-triazole-containing hybrids and their potential anticholinesterase activities. Pharmaceuticals. 2023;16:179. doi: 10.3390/ph16020179. PubMed DOI PMC
Vaishnani M.J., Bijani S., Rahamathulla M., Baldaniya L., Jain V., Thajudeen K.Y., Ahmed M.M., Farhana S.A., Pasha I. Biological importance and synthesis of 1,2,3-triazole derivatives: A review. Green Chem. Lett. Rev. 2024;17:2307989. doi: 10.1080/17518253.2024.2307989. DOI
Arafa F.M., Said H., Osman D., Rezki N., Aouad M.R., Hagar M., Osman M., Elwakil B.H., Jaremko M., Tolba M.M. Nanoformulation-based 1,2,3-triazole sulfonamides for anti-toxoplasma in vitro study. Trop. Med. Infect. Dis. 2023;8:401. doi: 10.3390/tropicalmed8080401. PubMed DOI PMC
Swaina B., Angelib A., Angapellya S., Thackera P.S., Singha P., Supuranb C.T., Arifuddina M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzym. Inhib. Med. Chem. 2019;34:1199–1209. doi: 10.1080/14756366.2019.1629432. PubMed DOI PMC
Poonia N., Kumar A., Kumar V., Yadav M., Lal K. Recent progress in 1H-1,2,3-triazoles as potential antifungal agents. Curr. Top. Med. Chem. 2021;21:2109–2133. doi: 10.2174/1568026621666210913122828. PubMed DOI
Marzi M., Farjam M., Kazeminejad Z., Shiroudi A., Kouhpayeh A., Zarenezhad E. A recent overview of 1,2,3-triazole-containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure-activity relationship (SAR) J. Chem. 2022;2022:7884316. doi: 10.1155/2022/7884316. DOI
Singh A., Singh K., Sharma A., Joshi K., Singh B., Sharma S., Batra K., Kaur K., Singh D., Chadha R., et al. 1,2,3-Triazole derivatives as an emerging scaffold for antifungal drug development against Candida albicans: A comprehensive review. Chem. Biodivers. 2023;20:e202300024. doi: 10.1002/cbdv.202300024. PubMed DOI
El Malah T., Nour H.F., Satti A.A.E., Hemdan B.A., El-Sayed W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules. 2020;25:790. doi: 10.3390/molecules25040790. PubMed DOI PMC
Hryhoriv H., Mariutsa I., Kovalenko S.M., Georgiyants V., Perekhoda L., Filimonova N., Geyderikh O., Sidorenko L. The search for new antibacterial agents among 1,2,3-triazole functionalized ciprofloxacin and norfloxacin hybrids: Synthesis, docking studies, and biological activity evaluation. Sci. Pharm. 2022;90:2. doi: 10.3390/scipharm90010002. DOI
Todorov L., Kostova I. 1,2,3-Triazoles and their metal chelates with antimicrobial activity. Front. Chem. 2023;11:1247805. doi: 10.3389/fchem.2023.1247805. PubMed DOI PMC
Al-Taweel S., Al-Saraireh Y., Al-Trawneh S., Alshahateet S., Al-Tarawneh R., Ayed N., Alkhojah M., Al-Khaboori W., Zereini W., Al-Qaralleh O. Synthesis and biological evaluation of ciprofloxacin-1,2,3-triazole hybrids as antitumor, antibacterial, and antioxidant agents. Heliyon. 2023;9:e22592. doi: 10.1016/j.heliyon.2023.e22592. PubMed DOI PMC
Al-Humaidi J.Y., Shaaban M.M., Rezki N., Aouad M.R., Zakaria M., Jaremko M., Hagar M., Elwakil B.H. 1,2,3-Triazole-benzofused molecular conjugates as potential antiviral agents against SARS-CoV-2 virus variants. Life. 2022;12:1341. doi: 10.3390/life12091341. PubMed DOI PMC
Agouram N. 1,2,3-Triazole derivatives as antiviral agents. Med. Chem. Res. 2023;32:2458–2472. doi: 10.1007/s00044-023-03154-3. DOI
Awolade P., Cele N., Ebenezer O., Kerru N., Gummidi L., Gu L., Palma G., Kaur M., Singh P. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. Anticancer Agents Med. Chem. 2021;21:1228–1239. doi: 10.2174/1871520620666200929153138. PubMed DOI
Krstulovic L., Miskovic Spoljaric K., Rastija V., Filipovic N., Bajic M., Glavas-Obrovac L. Novel 1,2,3-triazole-containing quinoline–benzimidazole hybrids: Synthesis, antiproliferative activity, in silico ADME predictions, and docking. Molecules. 2023;28:6950. doi: 10.3390/molecules28196950. PubMed DOI PMC
Moreno-Perea M., Suarez-Castro A., Fraire-Soto I., Sifuentes-Padilla J.L., Gutierrez-Hernandez R., Reyes-Estrada C.A., Lopez-Hernandez Y., Cortes-Garcia C.J., Chacon-Garcia L., Granados-Lopez A.J., et al. Proliferation, migration and invasion of breast cancer cell lines are inhibited by 1,5-disubstituted tetrazol-1,2,3-triazole hybrids through interaction with p53. Molecules. 2023;28:7600. doi: 10.3390/molecules28227600. PubMed DOI PMC
Kumar S., Ali I., Abbas F., Shafiq F., Yadav A.K., Ghate M.D., Kumar D. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Mol. Divers. 2024 doi: 10.1007/s11030-024-10817-9. PubMed DOI
Varani T., Abdouss M., Azerang P., Tahghighi A. Acetylenic sulfones and acetylenic sulfonamide analogs: A novel and preferable antimicrobial drugs based on computational strategies. J. Comput. Biophys. Chem. 2022;21:115–122. doi: 10.1142/S2737416521410027. DOI
Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Sochanik A., Cizek A., Jampilek J., Zieba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23:15078. doi: 10.3390/ijms232315078. PubMed DOI PMC
Kisiel-Nawrot E., Latocha M., Bak A., Kozik V., Jampilek J., Zieba A. Anticancer efficacy of antibacterial quinobenzothiazines. Appl. Sci. 2023;13:2886. doi: 10.3390/app13052886. PubMed DOI PMC
Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Cizek A., Jampilek J., Zieba A. Towards anticancer and antibacterial agents: Design and synthesis of 1,2,3-triazol-quinobenzothiazine derivatives. Int. J. Mol. Sci. 2023;24:13250. doi: 10.3390/ijms241713250. PubMed DOI PMC
Talele T.T. Acetylene group, friend or foe in medicinal chemistry. J. Med. Chem. 2020;63:5625–5663. doi: 10.1021/acs.jmedchem.9b01617. PubMed DOI
Ertl P., Altmann E., Racine S. The most common linkers in bioactive molecules and their bioisosteric replacement network. Bioorg. Med. Chem. 2023;81:117194. doi: 10.1016/j.bmc.2023.117194. PubMed DOI
Kumari S., Carmona A.V., Tiwari A.K., Trippier P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem. 2020;63:12290–12358. doi: 10.1021/acs.jmedchem.0c00530. PubMed DOI PMC
Meanwell N.A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 2023;71:18087–18122. doi: 10.1021/acs.jafc.3c00765. PubMed DOI
Tornesello A.L., Borrelli A., Buonaguro L., Buonaguro F.M., Tornesello M.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules. 2020;25:2850. doi: 10.3390/molecules25122850. PubMed DOI PMC
Qu B., Yuan J., Liu X., Zhang S., Ma X., Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front. Microbiol. 2024;14:1321386. doi: 10.3389/fmicb.2023.1321386. PubMed DOI PMC
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with van A gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Global Laboratory Standards for a Healthier World. [(accessed on 18 June 2024)]. Available online: https://clsi.org/
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 18 June 2024)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC
Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC