Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides

. 2024 Aug 26 ; 29 (17) : . [epub] 20240826

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39274892

Grantová podpora
BNW-1-013/N/3/F Medical University of Silesia in Katowice, Poland
PCN-1-048-2/F Medical University of Silesia in Katowice, Poland
2018/31/B/NZ7/02122 Polish National Science Center

A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.

Zobrazit více v PubMed

Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures-dream or reality: Preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI

Solomon V.R., Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011;18:1488–1508. doi: 10.2174/092986711795328382. PubMed DOI

Song Y., Xu H., Chen W., Zhan P., Liu X. 8-Hydroxyquinoline: A privileged structure with a broad-ranging pharmacological potential. MedChemComm. 2015;6:61–74. doi: 10.1039/C4MD00284A. DOI

Gupta R., Luxami V., Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg. Chem. 2021;108:104633. doi: 10.1016/j.bioorg.2021.104633. PubMed DOI

Saadeh H.A., Sweidan K.A., Mubarak M.S. Recent advances in the synthesis and biological activity of 8-hydroxyquinolines. Molecules. 2020;25:4321. doi: 10.3390/molecules25184321. PubMed DOI PMC

Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI

Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. 2021;354:e2000232. doi: 10.1002/ardp.202000232. PubMed DOI

Czaplinska B., Malarz K., Mrozek-Wilczkiewicz A., Slodek A., Korzec M., Musiol R. Theoretical and experimental investigations of large stokes shift fluorophores based on a quinoline scaffold. Molecules. 2020;25:2488. doi: 10.3390/molecules25112488. PubMed DOI PMC

Chotsiri P., Mahamar A., Hoglund R.M., Koita F., Sanogo K., Diawara H., Dicko A., Simpson J.A., Bousema T., White N.J., et al. Mechanistic modeling of primaquine pharmacokinetics, gametocytocidal activity, and mosquito infectivity. Clin. Pharmacol. Ther. 2022;111:676–685. doi: 10.1002/cpt.2512. PubMed DOI PMC

Musiol R., Mrozek-Wilczkiewicz A., Polanski J. Synergy against fungal pathogens: Working together is better than working alone. Curr. Med. Chem. 2014;21:870–893. doi: 10.2174/0929867321666131218094848. PubMed DOI

Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul S. 8-Hydroxyquinolines: Are view of their metal chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013;7:1157–1178. doi: 10.2147/DDDT.S49763. PubMed DOI PMC

Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI

Bissani C., Gasparin D., Pilger A. 8-Hydroxyquinoline, derivatives and metal-complexes: A review of antileukemia activities. ChemistrySelect. 2023;8:e202204219. doi: 10.1002/slct.202204219. DOI

Abeydeera N., Benin B.M., Mudarmah K., Pant B.D., Chen G., Shin W.S., Kim M.-H., Huang S.D. Harnessing the dual antimicrobial mechanism of action with Fe(8-hydroxyquinoline)3 to develop a topical ointment for mupirocin-resistant MRSA infections. Antibiotics. 2023;12:886. doi: 10.3390/antibiotics12050886. PubMed DOI PMC

Yin X.D., Ma K.Y., Wang Y.L., Sun Y., Shang X.F., Zhao Z.M., Wang R.X., Chen Y.J., Zhu J.K., Liu Y.Q. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J. Agric. Food Chem. 2020;68:11096–11104. doi: 10.1021/acs.jafc.0c01322. PubMed DOI

Pivarcsik T., Posa V., Kovacs H., May N.V., Spengler G., Posa S.P., Toth S., Nezafat Yazdi Z., Ozvegy-Laczka C., Ugrai I., et al. Metal complexes of a 5-nitro-8-hydroxyquinoline-proline hybrid with enhanced water solubility targeting multidrug resistant cancer cells. Int. J. Mol. Sci. 2023;24:593. doi: 10.3390/ijms24010593. PubMed DOI PMC

Pape V.F.S., Palko R., Toth S., Szabo M.J., Sessler J., Dorman G., Enyedy E.A., Soos T., Szatmari I., Szakacs G. Structure-activity relationships of 8-hydroxyquinoline-derived Mannich bases with tertiary amines targeting multidrug-resistant cancer. J. Med. Chem. 2022;65:7729–7745. doi: 10.1021/acs.jmedchem.2c00076. PubMed DOI PMC

Joaquim A.R., Gionbelli M.P., Gosmann G., Fuentefria A.M., Lopes M.S., Fernandes de Andrade S. Novel antimicrobial 8-hydroxyquinoline-based agents: Current development, structure-activity relationships, and perspectives. J. Med. Chem. 2021;64:16349–16379. doi: 10.1021/acs.jmedchem.1c01318. PubMed DOI

Pippi B., Lopes W., Reginatto P., Silva F.E.K., Joaquim A.R., Alves R.J., Silveira G.P., Vainstein M.H., Andrade S.F., Fuentefria A.M. New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharm. J. 2019;27:41–48. doi: 10.1016/j.jsps.2018.07.017. PubMed DOI PMC

Czaplinska B., Maron A., Malecki J.G., Szafraniec-Gorol G., Matussek M., Malarz K., Mrozek-Wilczkiewicz A., Danikiewicz W., Musiol R., Slodek A. Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes Pigment. 2017;144:119–132. doi: 10.1016/j.dyepig.2017.05.029. DOI

Szczepaniak J., Cieslik W., Romanowicz A., Musiol R., Krasowska A. Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int. J. Antimicrob. Agents. 2017;50:171–176. doi: 10.1016/j.ijantimicag.2017.01.044. PubMed DOI

Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI

Kushkevych I., Vitezova M., Kos J., Kollar P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Conan P., Leon A., Gourdel M., Rollet C., Chair L., Caroff N., Le Goux N., Le Jossic-Corcos C., Sinane M., Gentile L., et al. Identification of 8-hydroxyquinoline derivatives that decrease cystathionine beta synthase (CBS) activity. Int. J. Mol. Sci. 2022;23:6769. doi: 10.3390/ijms23126769. PubMed DOI PMC

Khasawneh M.A., Al-Kaabi A., Samadi A., Antony P., Vijayan R., Al-Keridis L.A., Saadeh H.A., Abutaha N. Synthesis and biological applications of some novel 8-hydroxyquinoline urea and thiourea derivatives. Arab. J. Chem. 2022;15:103905. doi: 10.1016/j.arabjc.2022.103905. DOI

Nqoro X., Tobeka N., Aderibigbe B. Quinoline–based hybrid compounds with antimalarial activity. Molecules. 2017;22:2268. doi: 10.3390/molecules22122268. PubMed DOI PMC

Teng P., Li C., Peng Z., Anne Marie V., Nimmagadda A., Su M., Li Y., Sun X., Cai J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem. 2018;26:3573–3579. doi: 10.1016/j.bmc.2018.05.031. PubMed DOI PMC

Zieba A., Wojtyczka R.D., Kepa M., Idzik D. Antimicrobial activity of novel 1-methyl-3-thio-4-aminoquinolinium salts. Folia Microbiol. 2010;55:3–9. doi: 10.1007/s12223-010-0001-1. PubMed DOI

Zieba A., Wojtyczka R.D., Kepa M., Idzik D. Synthesis and in vitro antimicrobial activity of 1-methyl-3-sulfothio-4-aminoquinolinium chlorides. Acta Pol. Pharm. Drug Res. 2013;70:163–166. PubMed

Wojtyczka R.D., Zieba A., Dziedzic A., Kepa M., Idzik D. An activity of thioacyl derivativesof 4-aminoquinolinium salts towards biofilm producing and planktonic forms of coagulase-negative staphylococci. BioMed Res. Int. 2015;2015:725939. doi: 10.1155/2015/725939. PubMed DOI PMC

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Empel A., Kisiel E., Wojtyczka R.D., Kepa M., Idzik D., Sochanik A., Wasik T.J., Zieba A. Synthesis and antimicrobial activity of sulfur derivatives of quinolinium salts. Molecules. 2018;23:218. doi: 10.3390/molecules23010218. PubMed DOI PMC

Al-Matarneh C.M., Nicolescu A., Marinaş I.C., Gaboreanu M.D., Shova S., Dascalu A., Silion M., Pinteala M. New library of iodo-quinoline derivatives obtained by an alternative synthetic pathway and their antimicrobial activity. Molecules. 2024;29:772. doi: 10.3390/molecules29040772. PubMed DOI PMC

Kaur R., Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220. PubMed DOI PMC

Kos J., Ku C.F., Kapustikova I., Oravec M., Zhang H.J., Jampilek J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. ChemistrySelect. 2019;4:4582–4587. doi: 10.1002/slct.201900873. DOI

Afzal O., Kuma S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015;97:871–910. doi: 10.1016/j.ejmech.2014.07.044. PubMed DOI

Van de Walle T., Cools L., Mangelinckx S., D’Hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021;226:113865. doi: 10.1016/j.ejmech.2021.113865. PubMed DOI

Sharma V., Mehta D.K., Das R. Synthetic methods of quinoline derivatives as potent anticancer agents. Mini Rev. Med. Chem. 2017;17:1557–1572. doi: 10.2174/1389557517666170510104954. PubMed DOI

Gao F., Zhang X., Wang T., Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem. 2019;165:59–79. doi: 10.1016/j.ejmech.2019.01.017. PubMed DOI

Ghanbari-Movahed M., Tea Kaceli M., Arijit Mondal A., Farzaei M.H., Anupam Bishayee A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines. 2021;9:480. doi: 10.3390/biomedicines9050480. PubMed DOI PMC

Hongmanee P., Rukseree K., Buabut B., Somsri B., Palittapongarnpim P. In vitro activities of cloxyquin (5-chloroquinolin-8-ol) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2007;51:1105–1106. doi: 10.1128/AAC.01310-06. PubMed DOI PMC

Jiang H., Taggart J.E., Zhang X., Benbrook D.M., Lind S.E., Ding W.Q. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline) Cancer Lett. 2011;312:11–17. doi: 10.1016/j.canlet.2011.06.032. PubMed DOI PMC

Cherdtrakulkiat R., Boonpangrak S., Sinthupoom N., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016;6:135–141. doi: 10.1016/j.bbrep.2016.03.014. PubMed DOI PMC

Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC

Cieslik W., Musiol R., Nycz J.E., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI

Sharma J., Ahmad S., Alam M.S. Bioactive triazoles: A potential review. J. Chem. Pharm. Res. 2012;4:5157–5164.

Lengerli D., Ibis K., Nural Y., Banoglu E. The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin. Drug Discov. 2022;17:1209–1236. doi: 10.1080/17460441.2022.2129613. PubMed DOI

Matin M.M., Matin P., Rahman M.R., Ben Hadda T., Almalki F.A., Mahmud S., Ghoneim M.M., Alruwaily M., Alshehri S. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front. Mol. Biosci. 2022;9:864286. doi: 10.3389/fmolb.2022.864286. PubMed DOI PMC

Khan S.A., Akhtar M.J., Gogoi U., Meenakshi D.U., Das A. An overview of 1,2,3-triazole-containing hybrids and their potential anticholinesterase activities. Pharmaceuticals. 2023;16:179. doi: 10.3390/ph16020179. PubMed DOI PMC

Vaishnani M.J., Bijani S., Rahamathulla M., Baldaniya L., Jain V., Thajudeen K.Y., Ahmed M.M., Farhana S.A., Pasha I. Biological importance and synthesis of 1,2,3-triazole derivatives: A review. Green Chem. Lett. Rev. 2024;17:2307989. doi: 10.1080/17518253.2024.2307989. DOI

Arafa F.M., Said H., Osman D., Rezki N., Aouad M.R., Hagar M., Osman M., Elwakil B.H., Jaremko M., Tolba M.M. Nanoformulation-based 1,2,3-triazole sulfonamides for anti-toxoplasma in vitro study. Trop. Med. Infect. Dis. 2023;8:401. doi: 10.3390/tropicalmed8080401. PubMed DOI PMC

Swaina B., Angelib A., Angapellya S., Thackera P.S., Singha P., Supuranb C.T., Arifuddina M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzym. Inhib. Med. Chem. 2019;34:1199–1209. doi: 10.1080/14756366.2019.1629432. PubMed DOI PMC

Poonia N., Kumar A., Kumar V., Yadav M., Lal K. Recent progress in 1H-1,2,3-triazoles as potential antifungal agents. Curr. Top. Med. Chem. 2021;21:2109–2133. doi: 10.2174/1568026621666210913122828. PubMed DOI

Marzi M., Farjam M., Kazeminejad Z., Shiroudi A., Kouhpayeh A., Zarenezhad E. A recent overview of 1,2,3-triazole-containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure-activity relationship (SAR) J. Chem. 2022;2022:7884316. doi: 10.1155/2022/7884316. DOI

Singh A., Singh K., Sharma A., Joshi K., Singh B., Sharma S., Batra K., Kaur K., Singh D., Chadha R., et al. 1,2,3-Triazole derivatives as an emerging scaffold for antifungal drug development against Candida albicans: A comprehensive review. Chem. Biodivers. 2023;20:e202300024. doi: 10.1002/cbdv.202300024. PubMed DOI

El Malah T., Nour H.F., Satti A.A.E., Hemdan B.A., El-Sayed W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules. 2020;25:790. doi: 10.3390/molecules25040790. PubMed DOI PMC

Hryhoriv H., Mariutsa I., Kovalenko S.M., Georgiyants V., Perekhoda L., Filimonova N., Geyderikh O., Sidorenko L. The search for new antibacterial agents among 1,2,3-triazole functionalized ciprofloxacin and norfloxacin hybrids: Synthesis, docking studies, and biological activity evaluation. Sci. Pharm. 2022;90:2. doi: 10.3390/scipharm90010002. DOI

Todorov L., Kostova I. 1,2,3-Triazoles and their metal chelates with antimicrobial activity. Front. Chem. 2023;11:1247805. doi: 10.3389/fchem.2023.1247805. PubMed DOI PMC

Al-Taweel S., Al-Saraireh Y., Al-Trawneh S., Alshahateet S., Al-Tarawneh R., Ayed N., Alkhojah M., Al-Khaboori W., Zereini W., Al-Qaralleh O. Synthesis and biological evaluation of ciprofloxacin-1,2,3-triazole hybrids as antitumor, antibacterial, and antioxidant agents. Heliyon. 2023;9:e22592. doi: 10.1016/j.heliyon.2023.e22592. PubMed DOI PMC

Al-Humaidi J.Y., Shaaban M.M., Rezki N., Aouad M.R., Zakaria M., Jaremko M., Hagar M., Elwakil B.H. 1,2,3-Triazole-benzofused molecular conjugates as potential antiviral agents against SARS-CoV-2 virus variants. Life. 2022;12:1341. doi: 10.3390/life12091341. PubMed DOI PMC

Agouram N. 1,2,3-Triazole derivatives as antiviral agents. Med. Chem. Res. 2023;32:2458–2472. doi: 10.1007/s00044-023-03154-3. DOI

Awolade P., Cele N., Ebenezer O., Kerru N., Gummidi L., Gu L., Palma G., Kaur M., Singh P. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. Anticancer Agents Med. Chem. 2021;21:1228–1239. doi: 10.2174/1871520620666200929153138. PubMed DOI

Krstulovic L., Miskovic Spoljaric K., Rastija V., Filipovic N., Bajic M., Glavas-Obrovac L. Novel 1,2,3-triazole-containing quinoline–benzimidazole hybrids: Synthesis, antiproliferative activity, in silico ADME predictions, and docking. Molecules. 2023;28:6950. doi: 10.3390/molecules28196950. PubMed DOI PMC

Moreno-Perea M., Suarez-Castro A., Fraire-Soto I., Sifuentes-Padilla J.L., Gutierrez-Hernandez R., Reyes-Estrada C.A., Lopez-Hernandez Y., Cortes-Garcia C.J., Chacon-Garcia L., Granados-Lopez A.J., et al. Proliferation, migration and invasion of breast cancer cell lines are inhibited by 1,5-disubstituted tetrazol-1,2,3-triazole hybrids through interaction with p53. Molecules. 2023;28:7600. doi: 10.3390/molecules28227600. PubMed DOI PMC

Kumar S., Ali I., Abbas F., Shafiq F., Yadav A.K., Ghate M.D., Kumar D. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Mol. Divers. 2024 doi: 10.1007/s11030-024-10817-9. PubMed DOI

Varani T., Abdouss M., Azerang P., Tahghighi A. Acetylenic sulfones and acetylenic sulfonamide analogs: A novel and preferable antimicrobial drugs based on computational strategies. J. Comput. Biophys. Chem. 2022;21:115–122. doi: 10.1142/S2737416521410027. DOI

Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Sochanik A., Cizek A., Jampilek J., Zieba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23:15078. doi: 10.3390/ijms232315078. PubMed DOI PMC

Kisiel-Nawrot E., Latocha M., Bak A., Kozik V., Jampilek J., Zieba A. Anticancer efficacy of antibacterial quinobenzothiazines. Appl. Sci. 2023;13:2886. doi: 10.3390/app13052886. PubMed DOI PMC

Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Cizek A., Jampilek J., Zieba A. Towards anticancer and antibacterial agents: Design and synthesis of 1,2,3-triazol-quinobenzothiazine derivatives. Int. J. Mol. Sci. 2023;24:13250. doi: 10.3390/ijms241713250. PubMed DOI PMC

Talele T.T. Acetylene group, friend or foe in medicinal chemistry. J. Med. Chem. 2020;63:5625–5663. doi: 10.1021/acs.jmedchem.9b01617. PubMed DOI

Ertl P., Altmann E., Racine S. The most common linkers in bioactive molecules and their bioisosteric replacement network. Bioorg. Med. Chem. 2023;81:117194. doi: 10.1016/j.bmc.2023.117194. PubMed DOI

Kumari S., Carmona A.V., Tiwari A.K., Trippier P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem. 2020;63:12290–12358. doi: 10.1021/acs.jmedchem.0c00530. PubMed DOI PMC

Meanwell N.A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 2023;71:18087–18122. doi: 10.1021/acs.jafc.3c00765. PubMed DOI

Tornesello A.L., Borrelli A., Buonaguro L., Buonaguro F.M., Tornesello M.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules. 2020;25:2850. doi: 10.3390/molecules25122850. PubMed DOI PMC

Qu B., Yuan J., Liu X., Zhang S., Ma X., Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front. Microbiol. 2024;14:1321386. doi: 10.3389/fmicb.2023.1321386. PubMed DOI PMC

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC

Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC

Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with van A gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI

Global Laboratory Standards for a Healthier World. [(accessed on 18 June 2024)]. Available online: https://clsi.org/

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 18 June 2024)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.

Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC

Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...