Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
UK/289/2022
Comenius University
UK/320/2022
Comenius University
LM2018123
Large Research Infrastructure CzeCOS
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES-Adaptation strategies for sustainable ecosystem services and food security under ad-verse environmental conditions
FVL/CELER/ITA2020
Internal Creative Agency of University of Veterinary and Pharmaceutical Sciences Brno
PubMed
35745634
PubMed Central
PMC9228535
DOI
10.3390/ph15060715
PII: ph15060715
Knihovny.cz E-zdroje
- Klíčová slova
- antistaphylococcal activity, carbamates, cytotoxicity, hydroxynaphthalenes, lipophilicity, structure–activity relationships,
- Publikační typ
- časopisecké články MeSH
Pattern 1-hydroxy-N-(2,4,5-trichlorophenyl)-2-naphthamide and the thirteen original carbamates derived from it were prepared and characterized. All the compounds were tested against Staphylococcus aureus ATCC 29213 as a reference and quality control strain and in addition against three clinical isolates of methicillin-resistant S. aureus (MRSA). Moreover, the compounds were evaluated against Enterococcus faecalis ATCC 29212, and preliminary in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line (THP-1). The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. While pattern anilide had no antibacterial activity, the prepared carbamates demonstrated high antistaphylococcal activity comparable to the used standards (ampicillin and ciprofloxacin), which unfortunately were ineffective against E. feacalis. 2-[(2,4,5-Trichlorophenyl)carba- moyl]naphthalen-1-yl ethylcarbamate (2) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl butylcarbamate (4) expressed the nanomolar minimum inhibitory concentrations (MICs 0.018−0.064 μM) against S. aureus and at least two other MRSA isolates. Microbicidal effects based on the minimum bactericidal concentrations (MBCs) against all the tested staphylococci were found for nine carbamates, while 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl heptylcarbamate (7) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl (4-phenylbutyl)carbamate (14) demonstrated MBCs in the range of 0.124−0.461 μM. The selectivity index (SI) for most investigated carbamates was >20 and for some derivatives even >100. The performed tests did not show an effect on the damage to the bacterial membrane, while the compounds were able to inhibit the respiratory chain of S. aureus.
Global Change Research Institute CAS Belidla 986 4a 60300 Brno Czech Republic
Institute of Chemistry University of Silesia Bankowa 12 40007 Katowice Poland
Zobrazit více v PubMed
Newsom S.W. Ogston’s coccus. J. Hosp. Infect. 2008;70:369–372. doi: 10.1016/j.jhin.2008.10.001. PubMed DOI
WHO Antimicrobial Resistance. 2021. [(accessed on 23 May 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC
Siddiqui A.H., Koirala J. StatPearl. StatPearls Publishing; Treasure Island, FL, USA: 2022. [(accessed on 17 April 2022)]. Methicillin resistant Staphylococcus aureus. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482221/ PubMed
Harkins C.P., Pichon B., Doumith M., Parkhill J., Westh H., Tomasz A., de Lencastre H., Bentley S.D., Kearns A.M., Holden M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18:130. doi: 10.1186/s13059-017-1252-9. PubMed DOI PMC
Katayama Y., Ito T., Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000;44:1549–1555. doi: 10.1128/AAC.44.6.1549-1555.2000. PubMed DOI PMC
Hartman B.J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984;158:513–516. doi: 10.1128/jb.158.2.513-516.1984. PubMed DOI PMC
Hassoun A., Linden P.K., Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care. 2017;21:211. doi: 10.1186/s13054-017-1801-3. PubMed DOI PMC
Borg M.A., Camilleri L. What is driving the epidemiology of methicillin-resistant Staphylococcus aureus infections in Europe? Microb. Drug Resist. 2021;27:889–894. doi: 10.1089/mdr.2020.0259. PubMed DOI
Kratky M., Vinsova J. Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity. Bioorg. Med. Chem. 2016;24:1322–1330. doi: 10.1016/j.bmc.2016.02.004. PubMed DOI
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Liang H.J., Cheng Y.J., Wang L.X., Huang B.Q., Zhang N.N., Liang J., Yan M. Exploration of (3-benzyl-5-hydroxyphenyl)- carbamates as new antibacterial agents against Gram-positive bacteria. Arch. Pharm. 2020;353:e1900294. doi: 10.1002/ardp.201900294. PubMed DOI
Giacomini D., Martelli G., Picciche M., Calaresu E., Cocuzza C.E., Musumeci R. Design and synthesis of 4-alkylidene-β-lactams: Benzyl- and phenethyl-carbamates as key fragments to switch on antibacterial activity. ChemMedChem. 2017;12:1525–1533. doi: 10.1002/cmdc.201700307. PubMed DOI
Tittal R.K., Vikas G.D., Rani P., Lal K., Kumar A. Synthesis, antimicrobial activity, molecular docking and DFT study: Aryl-carbamic acid 1-benzyl-1H-[1,2,3]triazol-4-ylmethyl esters. ChemistrySelect. 2020;5:6723–6729. doi: 10.1002/slct.202001547. DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalene-carboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Trabocchi A. Principles and applications of small molecule peptidomimetics. In: Trabocchi A., Lenci E., editors. Small Molecule Drug Discovery. Elsevier; Amsterdam, The Netherlands: 2020. pp. 163–195.
Ghosh A.K., Brindisi M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC
Matosevic A., Bosak A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arh. Hig. Rada Toksikol. 2020;71:285–299. PubMed PMC
Makhoba X.H., Viegas C., Mosa R.A., Viegas F.P.D., Pooe O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Devel. Ther. 2020;14:3235–3249. doi: 10.2147/DDDT.S257494. PubMed DOI PMC
Gray D.A., Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis. 2020;6:1346–1365. doi: 10.1021/acsinfecdis.0c00001. PubMed DOI PMC
Qureshi K.A., Bholay A.D., Rai P.K., Qureshi K.A., Bholay A.D., Rai P.K., Mohammed H.A., Khan R.A., Azam F., Jaremko M., et al. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci. Rep. 2021;11:14539. doi: 10.1038/s41598-021-93285-7. PubMed DOI PMC
Murugaiyan J., Kumar P.A., Rao G.S., Iskandar K., Hawser S., Hays J.P., Mohsen Y., Adukkadukkam S., Awuah W.A., Jose R.A.M., et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics. 2022;11:200. doi: 10.3390/antibiotics11020200. PubMed DOI PMC
Verma T., Aggarwal A., Singh S., Sharma S., Sarma S.J. Current challenges and advancements towards discovery and resistance of antibiotics. J. Mol. Struct. 2022;1248:131380. doi: 10.1016/j.molstruc.2021.131380. DOI
Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-hydroxynaphthalene-2-carboxanilides affecting photosynthetic electron transport in photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Pliska V., Testa B., van der Waterbeemd H. Lipophilicity in Drug Action and Toxicology. Wiley-VCH; Weinheim, Germany: 1996.
Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; San Diego, CA, USA: 2015.
Balgavy P., Devinsky F. Cut-off effects in biological activities of surfactants. Adv. Colloid. Interface Sci. 1996;66:23–63. doi: 10.1016/0001-8686(96)00295-3. PubMed DOI
Sarapuk J., Kubica K. Cut-off phenomenon. Cell Mol. Biol. Lett. 1998;3:261–269.
Kralova K., Sersen F. Effects of bioactive natural and synthetic compounds with different alkyl chain length on photosynthetic apparatus. In: Najafpour M., editor. Applied Photosynthesis. InTech; Rijeka, Croatia: 2012. pp. 165–190.
Lukac M., Lacko I., Bukovsky M., Kyselova Z., Karlovska J., Horvath B., Devinsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Cent. Eur. J. Chem. 2010;8:194–201.
Devinsky F., Kopecka-Leitmanova A., Sersen F., Balgavy P. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides. J. Pharm. Pharmacol. 1990;42:790–794. doi: 10.1111/j.2042-7158.1990.tb07022.x. PubMed DOI
Grandic M., Frangez R. Pathophysiological effects of synthetic derivatives of polymeric alkylpyridinium salts from the marine sponge, Reniera sarai. Mar. Drugs. 2014;12:2408–2421. doi: 10.3390/md12052408. PubMed DOI PMC
Lin P.A., Cheng C.H., Hsieh K.T., Lin J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B. 2021;202:111674. doi: 10.1016/j.colsurfb.2021.111674. PubMed DOI
Brycki B.E., Szulc A., Kowalczyk I., Kozirog A., Sobolewska E. Antimicrobial activity of gemini surfactants with ether group in the spacer part. Molecules. 2021;26:5759. doi: 10.3390/molecules26195759. PubMed DOI PMC
Terekhova N.V., Khailova L.S., Rokitskaya T.I., Nazarov P.A., Islamov D.R., Usachev K.S., Tatarinov D.A., Mironov V.F., Kotova E.A., Antonenko Y.N. Trialkyl(vinyl)phosphonium chlorophenol derivatives as potent mitochondrial uncouplers and antibacterial agents. ACS Omega. 2021;6:20676–20685. doi: 10.1021/acsomega.1c02909. PubMed DOI PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary; Boston, MA, USA: 2014. [(accessed on 2 May 2022)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ PubMed
Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC
Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962-20. doi: 10.1128/mBio.02962-20. PubMed DOI PMC
Loghmani S.B., Zitzow E., Koh G.C.C., Ulmer A., Veith N., Großeholz R., Rossnagel M., Loesch M., Aebersold R., Kreikemeyer B., et al. All driven by energy demand? Integrative comparison of metabolism of Enterococcus faecalis wildtype and a glutamine synthase mutant. Microbiol. Spectr. 2022;10:e0240021. doi: 10.1128/spectrum.02400-21. PubMed DOI PMC
Measuring Cell Viability/Cytotoxicity Dojindo EU GmbH, Munich, Germany. [(accessed on 18 April 2022)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
Devi K.P., Nisha S.A., Sakthivel R., Pandian S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010;130:107–115. doi: 10.1016/j.jep.2010.04.025. PubMed DOI
Vaara M., Vaara T. Outer membrane permeability barrier disruption by polymyxinin polymyxin-susceptible and-resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 1981;19:578–583. doi: 10.1128/AAC.19.4.578. PubMed DOI PMC
Rajagopal M., Walker S. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 2017;404:1–44. PubMed PMC
Mishra N., Yang S.J., Sawa A., Rubio A., Nast C.C., Yeaman M.R., Bayer A.S. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009;53:2312–2318. doi: 10.1128/AAC.01682-08. PubMed DOI PMC
Garcia A.B., Vinuela-Prieto J.M., Lopez-Gonzalez L., Candel F.J. Correlation between resistance mechanisms in Staphylococcus aureus and cell wall and septum thickening. Infect. Drug Resist. 2017;10:353–356. doi: 10.2147/IDR.S146748. PubMed DOI PMC
Watkins R.R., Holubar M., David M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob. Agents Chemother. 2019;63:e01216-19. doi: 10.1128/AAC.01216-19. PubMed DOI PMC
Birnie C.R., Malamud D., Schnaare R.L. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother. 2000;44:2514–2517. doi: 10.1128/AAC.44.9.2514-2517.2000. PubMed DOI PMC
Fagnani L., Nazzicone L., Brisdelli F., Giansanti L., Battista S., Iorio R., Petricca S., Amicosante G., Perilli M., Celenza G., et al. Cyclic and acyclic amine oxide alkyl derivatives as potential adjuvants in antimicrobial chemotherapy against methicillin-resistant Staphylococcus aureus with an MDR profile. Antibiotics. 2021;10:952. doi: 10.3390/antibiotics10080952. PubMed DOI PMC
Bosgelmez-Tinaz G., Ulusoy S., Aridogan B., Coskun-Ari F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. Eur. J. Clin. Microbiol. Infect. Dis. 2006;25:410–412. doi: 10.1007/s10096-006-0153-8. PubMed DOI
Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998;36:618–623. doi: 10.1128/JCM.36.3.618-623.1998. PubMed DOI PMC
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC
Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC
Bueno J. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. IntechOpen; Rijeka, Croatia: 2012. Antitubercular in vitro drug discovery: Tools for begin the search; pp. 147–168.
Abate G., Mshana R.N., Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed
Protocol Guide: WST-1 Assay for Cell Proliferation and Viability. Merck KGaA; Darmstadt, Germany: 2022. [(accessed on 28 April 2022)]. Available online: https://www.sigmaaldrich.com/CZ/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/cell-counting-and-health-analysis/cell-proliferation-reagent-wst-1.
Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing