A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
067439
Wellcome Trust - United Kingdom
PubMed
18511464
PubMed Central
PMC2475608
DOI
10.1093/nar/gkn333
PII: gkn333
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- DNA metabolismus MeSH
- exodeoxyribonukleasa V chemie MeSH
- kinetika MeSH
- molekulární sekvence - údaje MeSH
- mutageneze MeSH
- podjednotky proteinů chemie MeSH
- restrikční endonukleasy typu I chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- substituce aminokyselin MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- endodeoxyribonuclease EcoR124I MeSH Prohlížeč
- exodeoxyribonukleasa V MeSH
- podjednotky proteinů MeSH
- restrikční endonukleasy typu I MeSH
The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted alpha-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed.
Zobrazit více v PubMed
Janscak P, Abadjieva A, Firman K. The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. J. Mol. Biol. 1996;257:977–991. PubMed
Szczelkun MD, Janscak P, Firman K, Halford SE. Selection of non–specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I. J. Mol. Biol. 1997;271:112–123. PubMed
Seidel R, van Noort J, van der Scheer C, Bloom JG, Dekker NH, Dutta CF, Blundell A, Robinson T, Firman K, Dekker C. Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat. Struct. Mol. Biol. 2004;11:838–843. PubMed
McClelland SE, Dryden DT, Szczelkun MD. Continuous assays for DNA translocation using fluorescent triplex dissociation: application to type I restriction endonucleases. J. Mol. Biol. 2005;348:895–915. PubMed
Stanley LK, Seidel R, van der Scheer C, Dekker NH, Szczelkun MD, Dekker C. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO J. 2006;25:2230–2239. PubMed PMC
Titheradge AJB, Ternent D, Murray NE. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol. Microbiol. 1996;22:437–447. PubMed
Janscak P, Sandmeier U, Bickle TA. Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme EcoAI uncouple the DNA translocation and DNA cleavage activities of the enzyme. Nucleic Acids Res. 1999;27:2638–2643. PubMed PMC
Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DTF. On the structure and operation of type I DNA restriction enzymes. J. Mol. Biol. 1999;290:565–579. PubMed
Davies GP, Kemp P, Molineux IJ, Murray NE. The DNA translocation and ATPase activities of restriction–deficient mutants of Eco KI. J. Mol. Biol. 1999;292:787–796. PubMed
Aravind L, Makarova KS, Koonin EV. SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 2000;28:3417–3432. PubMed PMC
Bujnicki JM. Molecular phylogenetics of restriction endonucleases. In: Pingound A, editor. Restriction Endonucleases, Nucleic Acids and Molecular Biology. Vol. 14. Germany: Springer; 2004. pp. 63–93.
Skirgaila R, Grazulis S, Bozic D, Huber R, Siksnys V. Structure–based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues. J. Mol. Biol. 1998;279:473–481. PubMed
Pingoud A, Fuxreiter M, Pingoud V, Wende W. Type II restriction endonucleases: structure and mechanism. Cell Mol. Life Sci. 2005;62:685–707. PubMed PMC
Obarska–Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG. HsdR subunit of the type I restriction–modification enzyme EcoR124I: biophysical characterisation and structural modelling. J. Mol. Biol. 2008;376:438–452. PubMed PMC
Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature. 2004;432:187–193. PubMed
Yu M, Souaya J, Julin DA. Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme. J. Mol. Biol. 1998;283:797–808. PubMed
Wang J, Chen R, Julin DA. A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single–stranded DNA degradation in both directions. J. Biol. Chem. 2000;275:507–513. PubMed
Quiberoni A, Biswas I, El Karoui M, Rezaïki L, Tailliez P, Gruss A. In vivo evidence for two active nuclease motifs in the double–strand break repair enzyme RexAB of Lactococcus lactis. J. Bacteriol. 2001;183:4071–4078. PubMed PMC
Chang HW, Julin DA. Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J. Biol. Chem. 2001;276:46004–46010. PubMed
Yeeles JT, Dillingham MS. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. J. Mol. Biol. 2007;371:66–78. PubMed
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE-enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 2007;35:D269–D270. PubMed PMC
Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–427. PubMed
Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14:892–893. PubMed
Janscak P, Dryden DTF, Firman K. Analysis of the subunit assembly of the type IC restriction-modification enzyme EcoR124I. Nucleic Acids Res. 1998;26:4439–4445. PubMed PMC
Reid SL, Parry D, Liu HH, Connolly BA. Binding and recognition of GATATC target sequences by the EcoRV restriction endonuclease: a study using fluorescent oligonucleotides and fluorescence polarization. Biochemistry. 2001;40:2484–2494. PubMed
Seidel R, Bloom JG, van Noort J, Dutta CF, Dekker NH, Firman K, Szczelkun MD, Dekker C. Dynamics of initiation, termination and reinitiation of DNA translocation by the motor protein EcoR124I. EMBO J. 2005;24:4188–4197. PubMed PMC
Stanley LK, Szczelkun MD. Direct and random routing of a molecular motor protein at a DNA junction. Nucleic Acids Res. 2006;34:4387–4394. PubMed PMC
Szczelkun MD, Dillingham MS, Janscak P, Firman K, Halford SE. Repercussions of DNA tracking by the type IC restriction endonuclease EcoR124I on linear, circular and catenated substrates. EMBO J. 1996;15:6335–6347. PubMed PMC
Suri B, Bickle TA. EcoA: the first member of a new family of type I restriction modification systems. Gene organization and enzymatic activities. J. Mol. Biol. 1985;186:77–85. PubMed
Dryden DT, Cooper LP, Thorpe PH, Byron O. The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochemistry. 1997;36:1065–1076. PubMed
Szczelkun MD. Kinetic models of translocation, head-on collision, and DNA cleavage by type I restriction endonucleases. Biochemistry. 2002;41:2067–2074. PubMed
Bilcock DT, Daniels LE, Bath AJ, Halford SE. Reactions of type II restriction endonucleases with 8-base pair recognition sites. J. Biol. Chem. 1999;274:36379–36386. PubMed
Kurpiewski MR, Koziolkiewicz M, Wilk A, Stec WJ, Jen-Jacobson L. Chiral phosphorothioates as probes of protein interactions with individual DNA phosphoryl oxygens: essential interactions of EcoRI endonuclease with the phosphate at pGAATTC. Biochemistry. 1996;35:8846–8854. PubMed
Grigorescu A, Horvath M, Wilkosz K, Chandrasekhar K, Rosenberg JM. The integration of recognition and cleavage: X-ray structures of pre-transition state complex, post-reactive complex and the DNA-free endonuclease. In: Pingound A, editor. Restriction Endonucleases, Nucleic Acids and Molecular Biology. Vol. 14. Germany: Springer; 2004. pp. 137–177.
Allemand JF, Bensimon D, Lavery R, Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA. 1998;95:14152–14157. PubMed PMC
McClelland SE, Szczelkun MD. Molecular motors that process DNA in restriction enzymes. In: Pingound A, editor. Restriction Endonucleases, Nucleic Acids and Molecular Biology. Vol. 14. Germany: Springer; 2004. pp. 111–135.
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 2007;76:23–50. PubMed
Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme
General and molecular microbiology and microbial genetics in the IM CAS