A residue of motif III positions the helicase domains of motor subunit HsdR in restriction-modification enzyme EcoR124I

. 2018 Jun 26 ; 24 (7) : 176. [epub] 20180626

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29943199
Odkazy

PubMed 29943199
DOI 10.1007/s00894-018-3722-8
PII: 10.1007/s00894-018-3722-8
Knihovny.cz E-zdroje

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.

Zobrazit více v PubMed

Nat Struct Mol Biol. 2009 Jan;16(1):94-5 PubMed

EMBO J. 1999 May 4;18(9):2638-47 PubMed

Nucleic Acids Res. 2008 Jul;36(12):3939-49 PubMed

Proteins. 2002 May 15;47(3):393-402 PubMed

Anal Biochem. 1986 Sep;157(2):375-80 PubMed

EMBO J. 2006 May 17;25(10):2230-9 PubMed

Structure. 1998 Jan 15;6(1):89-100 PubMed

Gene. 2006 Feb 15;367:17-37 PubMed

Bioinformatics. 2013 Apr 1;29(7):845-54 PubMed

Proteins. 2006 Nov 15;65(3):712-25 PubMed

Nucleic Acids Res. 2008 Apr;36(6):1881-90 PubMed

Gene. 1992 Mar 1;112(1):21-7 PubMed

J Comput Chem. 2004 Jul 15;25(9):1157-74 PubMed

Mol Cell. 2007 Aug 3;27(3):339-52 PubMed

Proteins. 1993 Dec;17(4):412-25 PubMed

J Mol Biol. 1996 Apr 19;257(5):977-91 PubMed

J Chem Phys. 2007 Jan 7;126(1):014101 PubMed

J Biol Chem. 2004 Jun 4;279(23):24081-8 PubMed

PeerJ. 2017 Jan 18;5:e2887 PubMed

Folia Microbiol (Praha). 1998;43(4):353-9 PubMed

PLoS One. 2013 Dec 20;8(12):e82630 PubMed

Genetics. 1965 Nov;52(5):1043-50 PubMed

Ann Inst Pasteur (Paris). 1955 Jun;88(6):724-49 PubMed

Microbiology. 2002 Jan;148(Pt 1):3-20 PubMed

Curr Opin Struct Biol. 2002 Feb;12(1):123-33 PubMed

Nucleic Acids Res. 1992 Jan 25;20(2):179-86 PubMed

Nucleic Acids Res. 1998 Nov 1;26(21):4828-36 PubMed

J Mol Model. 2014 Jul;20(7):2334 PubMed

Mol Cell. 2001 Aug;8(2):251-62 PubMed

J Mol Biol. 1999 Jul 9;290(2):565-79 PubMed

Nucleic Acids Res. 1994 Feb 11;22(3):308-13 PubMed

J Comput Chem. 2005 Dec;26(16):1701-18 PubMed

Proteins. 2006 Aug 15;64(3):559-74 PubMed

Gene. 1985;33(1):103-19 PubMed

EMBO J. 1996 Apr 15;15(8):2003-9 PubMed

Nat Struct Mol Biol. 2005 Apr;12(4):350-6 PubMed

Biochem Biophys Res Commun. 2004 Jun 25;319(2):375-80 PubMed

PLoS One. 2013 Dec 16;8(12):e82184 PubMed

FEBS Lett. 1991 Oct 21;291(2):277-81 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace