The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28133570
PubMed Central
PMC5248579
DOI
10.7717/peerj.2887
PII: 2887
Knihovny.cz E-zdroje
- Klíčová slova
- DNA restriction enzymes, Domain interactions, E. coli, Molecular modeling, Multisubunit enzyme complex,
- Publikační typ
- časopisecké články MeSH
Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.
Chemistry Department Princeton University Princeton NJ United States
College of Medical Sciences Nova Southeastern University Fort Lauderdale FL United States
Faculty of Sciences University of South Bohemia in Ceske Budejovice Nove Hrady Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Abadjieva A, Firman K. The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. Journal of Molecular Biology. 1996;257(5):977–991. doi: 10.1006/jmbi.1996.0217. PubMed DOI
Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with Image. J Biophotonics International. 2004;11:36–42.
Amadei A, Linnssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins. 1993;17(4):412–425. doi: 10.1002/prot.340170408. PubMed DOI
Berendsen HJC, Van der Spoel D, Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Bickle TA, Brack C, Yuan R. ATP-induced conformational changes in the restriction endonuclease from Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America. 1978;75:3099–3103. doi: 10.1073/pnas.75.7.3099. PubMed DOI PMC
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. Journal of Chemical Physics. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Colson C, Glover SW, Symons N, Stanley KA. The location of the genes for host-controlled modification and restriction in Escherichia coli K-12. Genetics. 1965;52:1043–1050. PubMed PMC
Csefalvay E, Lapkouski M, Guzanova A, Csefalvay L, Baikova T, Shevelev I, Bialevich V, Shamayeva K, Janscak P, Kuta Smatanova I, Panjikar S, Carey J, Weiserova M, Ettrich R. Functional coupling of duplex translocation to DNA cleavage in a Type I restriction enzyme. PLOS ONE. 2015;10:e0128700. doi: 10.1371/journal.pone.0128700. PubMed DOI PMC
Darden T, York D, Pedersen L, Ewald P. An N ⋅ log(N) method for Ewald sums in large systems. Journal of Chemical Physics. 1993;98:10089–10092.
Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT. On the structure and operation of type I DNA restriction enzymes. Journal of Molecular Biology. 1999;290(2):565–579. doi: 10.1006/jmbi.1999.2908. PubMed DOI
Dryden DTF, Murray NE, Rao DN. Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Research. 2001;29(18):3728–3741. doi: 10.1093/nar/29.18.3728. PubMed DOI PMC
Dürr H, Körner C, Müller M, Hickmann V, Hopfner KP. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell. 2005;121:363–373. PubMed
Ellis DJ, Dryden DTF, Berge T, Edwardson JM, Henderson RM. Direct observation of DNA translocation and cleavage by the EcoKI endonuclease using atomic force microscopy. Nature Structural & Molecular Biology. 1999;6:15–17. doi: 10.1038/4864. PubMed DOI
Firman K, Szczelkun MD. Measuring motion on DNA by the type I restriction endonuclease EcoR1241 using triplex displacement. EMBO Journal. 2000;19:2094–2102. doi: 10.1093/emboj/19.9.2094. PubMed DOI PMC
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. GAUSSIAN 03 (revision C.02) Gaussian, Inc; Wallingford: 2004.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18(12):1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Holubová I, Vejsadová S, Firman K, Weiserová M. Cellular localization of type I restriction-modification enzymes is family dependent. Biochemical and Biophysical Research Communications. 2004;319:375–380. PubMed
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins. 2006;65(3):712–725. doi: 10.1002/prot.21123. PubMed DOI PMC
Hubácek J, Holubová I, Weiserová M. The effect of recA mutation on the expression of EcoKI and EcoR124I hsd genes cloned in a multicopy plasmid. Folia Microbiologica. 1998;43(4):353–359. doi: 10.1007/BF02818573. PubMed DOI
Jacob F, Wollman EL. Etude génétique d’un bactériophage tempéré d’Escherichia coli. III. Effet du rayonnement ultraviolet sur la recombinaison génétique. Annales de l’Institut Pasteur. 1954;87:653–673. PubMed
Janscak P, Abadjieva A, Firman K. The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. Journal of Molecular Biology. 1996;257:977–991. PubMed
Janscak P, Bickle TA. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI. Journal of Molecular Biology. 2000;295(4):1089–1099. doi: 10.1006/jmbi.1999.3414. PubMed DOI
Janscak P, Dryden DTF, Firman K. Analysis of the subunit assembly of the type IC restriction–modification enzyme EcoR124I. Nucleic Acids Research. 1998;26(19):4439–4445. doi: 10.1093/nar/26.19.4439. PubMed DOI PMC
Janscak P, MacWilliams MP, Sandmeier U, Nagaraja V, Bickle TA. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO Journal. 1999;18:2638–2647. doi: 10.1093/emboj/18.9.2638. PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Kennaway CK, Taylor JE, Song CF, Potrzebowski W, Nicholson W, White JH, Swiderska A, Obarska-Kosinska A, Callow P, Cooper LP, Roberts GA, Artero J-B, Bujnicki JM, Trinick J, Kneale GG, Dryden DTF. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes & Development. 2012;26(1):92–104. doi: 10.1101/gad.179085.111. PubMed DOI PMC
Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM. MUSTANG: a multiple structural alignment algorithm. Proteins. 2006;64(3):559–574. doi: 10.1002/prot.20921. PubMed DOI
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA; a self-parameterizing force field. Proteins. 2002;47:393–402. PubMed
Lapkouski M, Panjikar S, Janscak P, Smatanova IK, Carey J, Ettrich R, Csefalvay E. Structure of the motor subunit of type I restriction-modification complex EcoR124I. Nature Structural & Molecular Biology. 2009;16:94–95. doi: 10.1038/nsmb.1523. PubMed DOI
Lewis R, Dürr H, Hopfner KP, Michaelis J. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Research. 2008;36(6):1881–1890. doi: 10.1093/nar/gkn040. PubMed DOI PMC
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Research. 2014;42(1):3–19. doi: 10.1093/nar/gkt990. PubMed DOI PMC
Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair. 2012;11:789–798. doi: 10.1016/j.dnarep.2012.05.007. PubMed DOI PMC
McClelland SE, Dryden DT, Szczelkun MD. Continuous assays for DNA translocation using fluorescent triplex dissociation: application to type I restriction endonucleases. Journal of Molecular Biology. 2005;348:895–915. PubMed
McClelland SE, Szczelkun MD. The Type I and III restriction endonucleases: structural elements in molecular motors that process DNA. In: Pingound A, editor. Nucleic acids and molecular biology—restriction endonucleases. vol. 14. Springer Verlag; Berlin: 2004. pp. 111–135.
Mernagh DR, Janscak P, Firman K, Kneale GG. Protei-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I. Biological Chemistry. 1998;379:497–503. doi: 10.1515/bchm.1998.379.4-5.497. PubMed DOI
Murray NE. Immigration control of DNA in bacteria: self versus non-self. Microbiology. 2002;148:3–20. PubMed
Obarska-Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG. HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. Journal of Molecular Biology. 2008;376(2):438–452. doi: 10.1016/j.jmb.2007.11.024. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics. 1981;52(12):7182–7190. doi: 10.1063/1.328693. DOI
Patel J, Taylor I, Dutta CF, Kneale G, Firman K. High-level expression of the cloned genes encoding the subunits of and the intact DNA methyltransferase, M.EcoR124. Gene. 1992;112:21–27. PubMed
Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van der Spoel D, Hess B, Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Randerath K, Randerath E. Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-celluslose thin layers. Journal of Chromatography. 1964;16:111–125. PubMed
Seidel R, Bloom JGP, Dekker C, Szczelkun MD. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO Journal. 2008;27(9):1388–1398. doi: 10.1038/emboj.2008.69. PubMed DOI PMC
Seidel R, Van Noort J, Van der Scheer C, Bloom JG, Dekker NH, Dutta CF, Blundell A, Robinson T, Firman K, Dekker C. Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nature Structural & Molecular Biology. 2004;11:838–843. PubMed
Simons M, Szczelkun MD. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes. Nucleic Acids Research. 2011;39(17):7656–7666. doi: 10.1093/nar/gkr479. PubMed DOI PMC
Sinha D, Shamayeva K, Ramasubramani V, Řeha D, Bialevich V, Khabiri M, Guzanová A, Milbar N, Weiserová M, Csefalvay E, Carey J, Ettrich R. Interdomain communication in the endonuclease/motor subunit of Type I restrictionmodification enzyme EcoR124I. Journal of Molecular Modeling. 2014;20 doi: 10.1007/s00894-014-2334-1. Article 2334. PubMed DOI
Sisáková E, Stanley LK, Weiserová M, Szczelkun MD. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I. Nucleic Acids Research. 2008a;36(12):3939–3949. doi: 10.1093/nar/gkn333. PubMed DOI PMC
Sisáková E, Weiserová M, Dekker C, Seidel R, Szczelkun MD. The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. Journal of Molecular Biology. 2008b;384(5):1273–1286. doi: 10.1016/j.jmb.2008.10.017. PubMed DOI PMC
Stanley LK, Seidel R, Van der Scheer C, Dekker NH, Szczelkun MD, Dekker C. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO Journal. 2006;25:2230–2239. doi: 10.1038/sj.emboj.7601104. PubMed DOI PMC
Stanley LK, Szczelkun MD. Direct and random routing of a molecular motor protein at a DNA junction. Nucleic Acids Research. 2006;34:4387–4394. doi: 10.1093/nar/gkl569. PubMed DOI PMC
Studier FW, Bandyopadhyay PK. Model for how type I restriction enzymes select cleavage sites in DNA. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(13):4677–4681. doi: 10.1073/pnas.85.13.4677. PubMed DOI PMC
Szczelkun MD, Dillingham MS, Janscak P, Firman K, Halford SE. Repercussions of DNA tracking by the type IC restriction endonuclease EcoR124I on linear, circular and catenated substrates. EMBO Journal. 1996;15:6335–6347. PubMed PMC
Taylor JE, Callow P, Swiderska A, Kneale GG. Structural and functional analysis of the engineered type I DNA methyltransferase EcoR124I(NT) Journal of Molecular Biology. 2010;398(3):391–399. doi: 10.1016/j.jmb.2010.03.008. PubMed DOI PMC
Taylor I, Patel J, Firman K, Kneale G. Purification and biochemical characterisation of the EcoR124 type I modification methylase. Nucleic Acids Research. 1992;20(2):179–186. doi: 10.1093/nar/20.2.179. PubMed DOI PMC
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. Journal of Computational Chemistry. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general AMBER force field. Journal of Computational Chemistry. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. PubMed DOI
Yuan R. Structure and mechanism of multifunctional restriction endonucleases. Annual Review of Biochemistry. 1981;50:285–315. doi: 10.1146/annurev.bi.50.070181.001441. PubMed DOI