Insectivorous birds can see and smell systemically herbivore-induced pines
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32953066
PubMed Central
PMC7487227
DOI
10.1002/ece3.6622
PII: ECE36622
Knihovny.cz E-zdroje
- Klíčová slova
- herbivory, olfaction, systemic induction, vision, volatile organic compounds,
- Publikační typ
- časopisecké články MeSH
Several studies have shown that insectivorous birds are attracted to herbivore-damaged trees even when they cannot see or smell the actual herbivores or their feces. However, it often remained an open question whether birds are attracted by herbivore-induced changes in leaf odor or in leaf light reflectance or by both types of changes. Our study addressed this question by investigating the response of great tits (Parus major) and blue tits (Cyanistes caeruleus) to Scots pine (Pinus sylvestris) damaged by pine sawfly larvae (Diprion pini). We released the birds individually to a study booth, where they were simultaneously offered a systemically herbivore-induced and a noninfested control pine branch. In the first experiment, the birds could see the branches, but could not smell them, because each branch was kept inside a transparent, airtight cylinder. In the second experiment, the birds could smell the branches, but could not see them, because each branch was placed inside a nontransparent cylinder with a mesh lid. The results show that the birds were more attracted to the herbivore-induced branch in both experiments. Hence, either type of the tested cues, the herbivore-induced visual plant cue alone as well as the olfactory cues per se, is attractive to the birds.
Animal Behaviour Institute of Biology Freie Universität Berlin Berlin Germany
Applied Zoology Animal Ecology Institute of Biology Freie Universität Berlin Berlin Germany
Faculty of Science University of South Bohemia České Budĕjovice Czech Republic
Section of Ecology Department of Biology University of Turku Turku Finland
Zobrazit více v PubMed
Amo, L. , Dicke, M. , & Visser, M. E. (2016). Are naïve birds attracted to herbivore‐induced plant defences? Behaviour, 153, 353–366.
Amo, L. , Galvan, I. , Tomás, G. , & Sanz, J. J. (2008). Predator odour recognition and avoidance in a songbird. Functional Ecology, 22, 289–293. 10.1111/j.1365-2435.2007.01361.x DOI
Amo, L. , Jansen, J. J. , van Dam, N. M. , Dicke, M. , & Visser, M. E. (2013). Birds exploit herbivore‐induced plant volatiles to locate herbivorous prey. Ecology Letters, 16, 1348–1355. 10.1111/ele.12177 PubMed DOI
Amo, L. , Tomás, G. , & López‐García, A. (2017). Role of chemical and visual cues of mammalian predators in nest defense in birds. Behavioral Ecology and Sociobiology, 71, 49 10.1007/s00265-017-2281-9 DOI
Amo, L. , Visser, M. E. , & van Oers, K. (2011). Smelling out predators is innate in birds. Ardea, 99, 177–184. 10.5253/078.099.0207 DOI
Bansal, S. , Hallsby, G. , Löfvenius, M. O. , & Nilsson, M.‐C. (2013). Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: Leaf, tissue and whole‐plant responses and recovery. Tree Physiology, 33, 451–463. PubMed
Beyaert, I. , Wäschke, N. , Scholz, A. , Varama, M. , Reinecke, A. , & Hilker, M. (2010). Relevance of resource‐indicating key volatiles and habitat odour for insect orientation. Animal Behavior, 79, 1077–1086. 10.1016/j.anbehav.2010.02.001 DOI
Blande, J. D. , Turunen, K. , & Holopainen, J. K. (2009). Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet‐B radiation. Environmental Pollution, 157, 174–180. 10.1016/j.envpol.2008.07.007 PubMed DOI
Bombosch, S. , & Ramakers, P. M. J. (1976). Zur Dauerzucht von Gilpinia hercyniae (Htg). Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz., 83, 40–44.
Chen, M.‐S. (2008). Inducible direct plant defense against insect herbivores: A review. Insect Science, 15, 101–114. 10.1111/j.1744-7917.2008.00190.x PubMed DOI
Copolovici, L. , Kannaste, A. , Remmel, T. , Vislap, V. , & Niinemets, Ü. (2011). Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. Journal of Chemical Ecology, 37, 18–28. 10.1007/s10886-010-9897-9 PubMed DOI
Cuthill, I. C. (2006). Color perception In Hill G. E., & McGraw K. J. (Eds.), Bird coloration, mechanisms and measurements (pp. 3–40). Cambridge, MA: Harvard University Press.
D’Alessandro, M. , & Turlings, T. C. J. (2006). Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst, 131, 24–32. 10.1039/B507589K PubMed DOI
Dicke, M. (2009). Behavioural and community ecology of plants that cry for help. Plant, Cell and Environment, 32, 654–665. 10.1111/j.1365-3040.2008.01913.x PubMed DOI
Dingemanse, N. J. , Both, C. , Drent, P. J. , van Oers, K. , & van Noordwijk, A. (2002). Repeatability and heritability of exploratory behaviour in great tits from the wild. Animal Behavior, 64, 929–938. 10.1006/anbe.2002.2006 DOI
Erb, M. , Foresti, N. , & Turlings, T. C. J. (2010). A tritrophic signal that attracts parasitoids to host‐damaged plants withstands disruption by non‐host herbivores. BMC Plant Biology, 10, 247 10.1186/1471-2229-10-247 PubMed DOI PMC
Eyles, A. , Smith, D. , Pinkard, E. A. , Smith, I. , Corkrey, R. , Elms, S. , … Mohammed, C. (2011). Photosynthetic responses of field‐grown Pinus radiata trees to artificial and aphid‐induced defoliation. Tree Physiology, 31, 592–603. 10.1093/treephys/tpr046 PubMed DOI
Gagliardo, A. (2013). Forty years of olfactory navigation in birds. Journal of Experimental Biology, 216, 2165–2171. 10.1242/jeb.070250 PubMed DOI
Gibb, J. A. , & Betts, M. M. (1963). Food and food supply of nestling tits (Paridae) in Breckland pine. Journal of Animal Ecology, 32, 489–533. 10.2307/2605 DOI
Gwinner, H. , & Berger, S. (2008). Starling males select green nest material by olfaction using experience‐independent and experience‐dependent cues. Animal Behavior, 75, 971–976. 10.1016/j.anbehav.2007.08.008 DOI
Heil, M. (2008). Indirect defence via tritrophic interactions. New Phytologist, 178, 41–61. 10.1111/j.1469-8137.2007.02330.x PubMed DOI
Herborn, K. A. , Macleod, R. , Miles, W. T. S. , Schofield, A. N. B. , Alexander, L. , & Arnold, K. E. (2010). Personality in captivity reflects personality in the wild. Animal Behavior, 79, 835–843. 10.1016/j.anbehav.2009.12.026 DOI
Holland, R. A. , Thorup, K. , Gagliardo, A. , Bisson, I. A. , Knecht, E. , Mizrahi, D. , & Wikelski, M. (2009). Testing the role of sensory systems in the migratory heading of a songbird. Journal of Experimental Biology, 212, 4065–4071. 10.1242/jeb.034504 PubMed DOI
Holopainen, J. K. (2004). Multiple functions of inducible plant volatiles. Trends in Plant Science, 9, 529–533. 10.1016/j.tplants.2004.09.006 PubMed DOI
Holopainen, J. K. (2011). Can forest trees compensate for stress‐generated growth losses by induced production of volatile compounds? Tree Physiology, 31, 1356–1377. 10.1093/treephys/tpr111 PubMed DOI
Howe, G. A. , & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66. 10.1146/annurev.arplant.59.032607.092825 PubMed DOI
Jones, M. P. , Pierce, K. E. , & Ward, D. (2007). Avian vision: A review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine, 16, 69–87. 10.1053/j.jepm.2007.03.012 DOI
Karban, R. , & Baldwin, I. T. (1997). Induced responses to herbivory. Chicago, IL: University of Chicago Press.
Karban, R. , Yang, L. H. , & Edwards, K. F. (2014). Volatile communication between plants that affects herbivory: A meta‐analysis. Ecology Letters, 17, 44–52. 10.1111/ele.12205 PubMed DOI
Kiziroglu, I. (1982). Ernährungsbiologische Untersuchungen an vier Meisenarten (Parus spp.). Anzeiger Für Schädlingskunde, Pflanzenschutz, Umweltschutz, 55, 170–174.
Koski, T.‐M. , Lindstedt, C. , Klemola, T. , Troscianko, J. , Mäntylä, E. , Tyystjärvi, E. , … Laaksonen, T. (2017). Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behavioral Ecology and Sociobiology, 71, 97 10.1007/s00265-017-2326-0 DOI
Krause, E. T. , Brummet, C. , Kohlwey, S. , Baier, M. C. , Müller, C. , Bonadonna, F. , & Caspers, B. A. (2014). Differences in olfactory species recognition in the females of two Australian songbird species. Behavioral Ecology and Sociobiology, 68, 1819–1827. 10.1007/s00265-014-1791-y DOI
Krause, E. T. , Krüger, O. , Kohlmeier, P. , & Caspers, B. A. (2012). Olfactory kin recognition in a songbird. Biology Letters, 8, 327–329. 10.1098/rsbl.2011.1093 PubMed DOI PMC
Lin, H. , Day, D. E. , & Stoffer, J. O. (1992). Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites. Polymer Engineering & Science, 32, 344–350. 10.1002/pen.760320507 DOI
Lind, O. , Mitkus, M. , Olsson, P. , & Kelber, A. (2014). Ultraviolet vision in birds: The importance of transparent eye media. Proceedings of the Royal Society B‐Biological Sciences, 281, 20132209 10.1098/rspb.2013.2209 PubMed DOI PMC
Lindstedt, C. , Huttunen, H. , Kakko, M. , & Mappes, J. (2011). Disentangling the evolution of weak warning signals: High detection risk and low production costs of chemical defences in gregarious pine sawfly larvae. Evolutionary Ecology, 2, 1029–1046.
Lundmark, T. , Hällgren, J.‐E. , & Hedén, J. (1988). Recovery from winter depression of photosynthesis in pine and spruce. Trees, 2, 110–114. 10.1007/BF00196757 DOI
Mäntylä, E. , Alessio, G. A. , Blande, J. D. , Heijari, J. , Holopainen, J. K. , Laaksonen, T. , … Klemola, T. (2008). From plants to birds: Higher avian predation rates in trees responding to insect herbivory. PLoS One, 3, e2832 10.1371/journal.pone.0002832 PubMed DOI PMC
Mäntylä, E. , Blande, J. D. , & Klemola, T. (2014). Do birches treated with methyl jasmonate attract insectivorous birds in the nature? Arthropod‐Plant Interact, 8, 143–153.
Mäntylä, E. , Kleier, S. , Kipper, S. , & Hilker, M. (2017). The attraction of insectivorous tit species to herbivore‐damaged Scots pines. Journal of Ornithology, 158, 479–491. 10.1007/s10336-016-1412-9 DOI
Mäntylä, E. , Kleier, S. , Lindstedt, C. , Kipper, S. , & Hilker, M. (2018). Insectivorous birds are attracted by plant traits induced by insect egg deposition. Journal of Chemical Ecology, 44, 1127–1138. 10.1007/s10886-018-1034-1 PubMed DOI
Mäntylä, E. , Klemola, T. , & Haukioja, E. (2004). Attraction of willow warblers to sawfly‐damaged mountain birches: Novel function of inducible plant defenses? Ecology Letters, 7, 915–918.
Mäntylä, E. , Klemola, T. , & Laaksonen, T. (2011). Birds help plants: A meta‐analysis of top‐down trophic cascades caused by avian predators. Oecologia, 165, 143–151. 10.1007/s00442-010-1774-2 PubMed DOI
Mäntylä, E. , Klemola, T. , Sirkiä, P. , & Laaksonen, T. (2008). Low light reflectance may explain the attraction of birds to defoliated trees. Behavioral Ecology, 19, 325–330. 10.1093/beheco/arm135 DOI
Mennerat, A. , Bonadonna, F. , Perret, P. , & Lambrechts, M. M. (2005). Olfactory conditioning experiments in a food‐searching passerine bird in semi‐natural conditions. Behavioural Processes, 70, 264–270. 10.1016/j.beproc.2005.07.005 PubMed DOI
Mooney, K. A. , Gruner, D. S. , Barber, N. A. , Van Bael, S. A. , Philpott, S. M. , & Greenberg, R. (2010). Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 7335–7340. 10.1073/pnas.1001934107 PubMed DOI PMC
Moore, G. E. , & Clark, E. W. (1968). Suppressing microorganisms and maintaining turgidity in coniferous foliage used to rear insects in laboratory. Journal of Economic Entomology, 61, 1030–1031.
Morris, D. (1956). The feather postures of birds and the problem of the origin of social signals. Behaviour, 9, 75–111. 10.1163/156853956X00264 DOI
Mrazova, A. , Sam, K. , & Amo, L. (2019). What do we know about birds’ use of plant volatile cues in tritrophic interactions? Current Opinion in Insect Science, 32, 131–136. 10.1016/j.cois.2019.02.004 PubMed DOI
Nabity, P. D. , Zavala, J. A. , & DeLucia, E. H. (2009). Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany, 103, 655–663. 10.1093/aob/mcn127 PubMed DOI PMC
Nykänen, H. , & Koricheva, J. (2004). Damaged‐induced changes in woody plants and their effects on insect herbivore performance: A meta‐analysis. Oikos, 104, 247–268.
Orians, C. (2005). Herbivores, vascular pathways, and systemic induction: Facts and artifacts. Journal of Chemical Ecology, 31, 2231–2242. PubMed
Peñuelas, J. , Munné‐Bosch, S. , Llusià, J. , & Filella, I. (2004). Leaf reflectance and photo‐ and antioxidant protection in field‐grown summer‐stressed Phillyrea angustifolia. Optical signals of oxidative stress? New Phytologist, 162, 115–124. 10.1046/j.1469-8137.2004.01007.x DOI
Petit, C. , Hossaert‐McKey, M. , Perret, P. , Blondel, J. , & Lambrechts, M. M. (2002). Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters, 5, 585–589. 10.1046/j.1461-0248.2002.00361.x DOI
Pinkard, E. A. , Battagla, M. , Roxburgh, S. , & O’Grady, A. P. (2011). Estimating forest net primary production under changing climate: Adding pests into the equation. Tree Physiology, 31, 686–699. 10.1093/treephys/tpr054 PubMed DOI
Ponzio, C. , Gols, R. , Weldegergis, B. T. , & Dicke, M. (2014). Caterpillar‐induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non‐host insect herbivore. Plant, Cell and Environment, 37, 1924–1935. 10.1111/pce.12301 PubMed DOI
Potier, S. , Duriez, O. , Célérier, A. , Liegeois, J.‐L. , & Bonadonna, F. (2019). Sight or smell: Which senses do scavenging raptors use to find food? Animal Cognition, 22, 49–59. 10.1007/s10071-018-1220-0 PubMed DOI PMC
Roper, T. J. (1999). Olfaction in birds. Advances in the Study of Behavior, 28, 247–332.
Rubene, D. , Leidefors, M. , Ninkovic, V. , Eggers, S. , & Low, M. (2019). Disentangling olfactory and visual information used by field foraging birds. Ecology and Evolution, 9, 545–552. 10.1002/ece3.4773 PubMed DOI PMC
Sam, K. , Koane, B. , & Novotny, V. (2015). Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 38, 293–300. 10.1111/ecog.00979 DOI
Simpraga, M. , Takabayashi, J. , & Holopainen, J. K. (2016). Language of plants: Where is the word? Journal of Integrative Plant Biology, 58, 343–349. 10.1111/jipb.12447 PubMed DOI
Steeneken, S. F. , Buma, A. G. J. , & Gieskes, W. W. C. (1995). Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light. Photochemistry and Photobiology, 61, 276–280. 10.1111/j.1751-1097.1995.tb03971.x DOI
Steiger, S. S. , Fidler, A. E. , Valcu, M. , & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: Evidence for a well‐developed sense of smell in birds? Proceedings of the Royal Society B‐Biological Sciences, 275, 2309–2317. 10.1098/rspb.2008.0607 PubMed DOI PMC
Thanikkul, P. , Piyasaengthong, N. , Menezes‐Netto, A. C. , Taylor, D. , & Kainoh, Y. (2017). Effects of quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested maize on the attraction of the larval parasitoid Cotesia kariyai . Entomologia Experimentalis et Applicata, 163, 60–69.
Van Bael, S. A. , Philpott, S. M. , Greenberg, R. , Bichier, P. , Barber, N. A. , Mooney, K. A. , & Gruner, D. S. (2008). Birds as predators in tropical agroforestry systems. Ecology, 89, 928–934. 10.1890/06-1976.1 PubMed DOI
Vanderklein, D. W. , & Reich, P. B. (2000). European larch and eastern white pine respond similarly during three years of partial defoliation. Tree Physiology, 20, 283–287. 10.1093/treephys/20.4.283 PubMed DOI
Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 19, 195–216. 10.1007/s003440000026 PubMed DOI
Wallraff, H. G. , Kiepenheuer, J. , Neumann, M. F. , & Streng, A. (1995). Homing experiments with starlings deprived of the sense of smell. The Condor, 97, 20–26. 10.2307/1368979 DOI
Wu, J. , & Baldwin, I. T. (2009). Herbivory‐induced signalling in plants: Perception and action. Plant, Cell and Environment, 32, 1161–1174. 10.1111/j.1365-3040.2009.01943.x PubMed DOI
Yang, S.‐Y. , Walther, B. A. , & Weng, G.‐J. (2015). Stop and smell the pollen: The role of olfaction and vision of the oriental honey buzzard in identifying food. PLoS One, 10, e0130191 10.1371/journal.pone.0130191 PubMed DOI PMC
Zangerl, A. R. , Hamilton, J. G. , Miller, T. J. , Crofts, A. R. , Oxborough, K. , Berenbaum, M. R. , & de Lucia, E. H. (2002). Impact of folivory on photosynthesis is greater than the sum of its holes. Proceedings of the National Academy of Sciences of the United States of America, 99, 1088–1091. 10.1073/pnas.022647099 PubMed DOI PMC
Zhou, S. , Lou, Y.‐R. , Tzin, V. , & Jander, G. (2015). Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 169, 1488–1498. 10.1104/pp.15.01405 PubMed DOI PMC
Dryad
10.5061/dryad.gb5mkkwmw