Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34745168
PubMed Central
PMC8570840
DOI
10.3389/fpls.2021.734240
Knihovny.cz E-zdroje
- Klíčová slova
- RADseq, cryptic diversity, genome size, geometric morphometric, multivariate morphometric, orchids (Orchidaceae), partial endoreplication,
- Publikační typ
- časopisecké články MeSH
Knowledge of population variation across species' ranges is a prerequisite for correctly assessing the overall variability of any group of organisms and provides an invaluable basis for unraveling evolutionary history, optimizing taxonomy and devising effective conservation strategies. Here, we examine the genus Neotinea, which represents a relatively recently delimited monophyletic genus of orchids, for which a detailed study of its overall variability was lacking. We applied a suite of biosystematic methods, consisting of flow cytometry, multivariate and geometric morphometrics, and analysis of genomic SNP data, to identify phylogenetic lineages within the genus, to delineate phenotypic variation relevant to these lineages, and to identify potential cryptic taxa within lineages. We found clear differentiation into four major lineages corresponding to the groups usually recognized within the genus: Neotinea maculata as a distinct and separate taxon, the Neotinea lactea group comprising two Mediterranean taxa N. lactea and Neotinea conica, the Neotinea ustulata group comprising two phenologically distinct varieties, and the rather complex Neotinea tridentata group comprising two major lineages and various minor lineages of unclear taxonomic value. N. conica constitutes both a monophyletic group within N. lactea and a distinct phenotype within the genus and merits its proposed subspecies-level recognition. By contrast, the spring and summer flowering forms of N. ustulata (var. ustulata and var. aestivalis) were confirmed to be distinct only morphologically, not phylogenetically. The most complex pattern emerged in the N. tridentata group, which splits into two main clades, one containing lineages from the Balkans and eastern Mediterranean and the other consisting of plants from Central Europe and the central Mediterranean. These individual lineages differ in genome size and show moderate degrees of morphological divergence. The tetraploid Neotinea commutata is closely related to the N. tridentata group, but our evidence points to an auto- rather than an allopolyploid origin. Our broad methodological approach proved effective in recognizing cryptic lineages among the orchids, and we propose the joint analysis of flow cytometric data on genome size and endopolyploidy as a useful and beneficial marker for delineating orchid species with partial endoreplication.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Botany Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Aceto S., Caputo P., Cozzolino S., Gaudio L., Moretti A. (1999). Phylogeny and evolution of PubMed DOI
Addam K., Bou-Hamdan M., Takkoush J., Hout K., Ibrahim S. K., Ibrahim L., et al. (2016). Correcting data for validating the names, Neotinea tridentata var. libanotica K. Addam & M. Bou-Hamdan, Ophrys apifera var. libanotica K. Addam & M. Bou-hamdan and fixing minor errors for Ophrys omegaifera subsp. gharifensis K. Addam & M. Bou-Hamdan in papers published by K. Addam and coauthors. PubMed DOI
Addam K., Kebbe I., Bou-Hamdan M., Hout K. (2014).
Alibertis A. (2012). Quatre nouveaux taxons pour la flore de Grèce.
Alibertis A. (2015).
Amardeilh J., Dusak F. (2005). “Genre
Angelli N., Anghelescu D. (2020).
Arnold B., Kim S.-T., Bomblies K. (2015). Single geographic origin of a widespread autotetraploid PubMed DOI
Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., Lewis Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PubMed DOI PMC
Bateman R. M., Hollingsworth P. M., Preston J., Yi-Bo L., Pridgeon A. M., Chase M. W. (2003). Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). DOI
Bateman R. M., Hollingsworth P. M., Squirrell J., Hollingsworth M. L. (2005). “Tribe Neottieae,” in
Bateman R. M., Pridgeon A. M., Chase M. W. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of
Bateman R. M., Rudall P. J., Murphy A. R. M., Cowan R. S., Devey D. S., Peréz-Escobar O. A. (2021). Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade PubMed DOI
Bateman R. M., Sramkó G., Paun O. (2018). Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. PubMed DOI PMC
Baumann H., Lorenz R. (2005). Beiträge zur Taxonomie europäischer und mediterraner Orchideen.
Berg S., Kutra D., Kroeger T., Straehle C. N., Kausler B. X., Haubold C., et al. (2019). ilastik: interactive machine learning for (bio)image analysis. PubMed DOI
Bernardos S., Santos M. A., Tyteca D., Amich F. (2006). Phylogenetic relationships of Mediterranean Neottieae and Orchideae (Orchidaceae) inferred from nuclear ribosomal ITS sequences. DOI
Bonhomme V., Picq S., Gaucherel C., Claude J. (2014). Momocs: outline analysis using R. DOI
Bournérias M., Prat D. (2005).
Brandrud M. K., Baar J., Lorenzo M. T., Athanasiadis A., Bateman R. M., Chase M. W., et al. (2020). Phylogenomic relationships of diploids and the origins of allotetraploids in PubMed DOI PMC
Brandrud M. K., Paun O., Lorenz R., Baar J. (2019). Restriction-site associated DNA sequencing supports a sister group relationship of PubMed DOI PMC
Breitkopf H., Onstein R. E., Cafasso D., Schlüter P. M., Cozzolino S. (2015). Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive PubMed DOI
Brock J. R., Mandáková T., Lysak M. A., Al-Shehbaz I. A. (2019). PubMed DOI PMC
Brown S. C., Bourge M., Maunoury N., Wong M., Wolfe Bianchi M., Lepers-Andrzejewski S., et al. (2017). DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. PubMed DOI PMC
Carnicero P., Sáez L., Garcia-Jacas N., Galbany-Casals M. (2017). Different speciation types meet in a Mediterranean genus: the biogeographic history of DOI
Catchen J., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A. (2013). Stacks: an analysis tool set for population genomics. PubMed DOI PMC
Cauwet-Marc A. M., Balayser M. (1984). Les genres DOI
Chumová Z., Krejčíková J., Mandáková T., Suda J., Trávníček P. (2015). Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus PubMed DOI PMC
Chumová Z., Záveská E., Hloušková P., Ponert J., Schmidt P.-A., Čertner M., et al. (2021). Repeat proliferation and partial endoreplication jointly drive the genome size evolution of orchids. PubMed DOI
Cozzolino S., Caputo P., Aceto S., Widmer A., Dafni A. (2001). Speciation processes in Eastern Mediterranean DOI
Craig D. W., Pearson J. V., Szelinger S., Sekar A., Redman M., Corneveaux J. J., et al. (2008). Identification of genetic variants using bar-coded multiplexed sequencing. PubMed DOI PMC
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. PubMed DOI PMC
Delforge P. (2016).
Devey D. S., Bateman R. M., Fay M. F., Hawkins J. A. (2008). Friends or relatives? Phylogenetics and species delimitation in the controversial European orchid genus PubMed DOI PMC
Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. PubMed DOI
Doro D. (2020).
Dryden I. L. (2018).
Fernández-Mazuecos M., Mellers G., Vigalondo B., Sáez L., Vargas P., Glover B. J. (2018). Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. PubMed DOI
Foelsche G., Foelsche W. (2002).
Gamarra R., Dorda E., Scrugli A., Galán P., Ortúnez E. (2007). Seed micromorphology in the genus DOI
Habibi F., Vít P., Rahiminejad M., Mandák B. (2018). Towards a better understanding of the DOI
Haraštová-Sobotková M., Jersáková J., Kindlmann P., Čurn L. (2005). Morphometric and genetic divergence among populations of DOI
Harrap A., Harrap S. (2010).
Hirth M., Paulus H. F. (2020).
Hodálová I., Mártonfiová L., Skokanová K., Majerová M., Somlyay L., Mered’a P. (2020). The utility of genome size in plant identification: a case study on DOI
Hřibová E., Holušová K., Trávníček P., Petrovská B., Ponert J., Šimková H., et al. (2016). The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. PubMed DOI PMC
Hürkan K., Taşkın K. M. (2021). Internal transcribed spacer (ITS) fails barcoding of the genus DOI
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. PubMed DOI
Jombart T., Ahmed I. (2011). PubMed DOI PMC
Klein L. L., Svoboda H. T. (2017). Comprehensive methods for leaf geometric morphometric analyses. PubMed DOI PMC
Kretzschmar H., Eccarius W., Dietrich H. (2007).
Kreutz K. (2004a).
Kreutz K. (2004b).
Kreutz K., Colak A. H. (2009).
Kühn R., Pederson H., Cribb P. (2019).
Leaché A. D., Banbury B. L., Felsenstein J., De Oca A. N. M., Stamatakis A. (2015). Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. PubMed DOI PMC
Lefort V., Longueville J. E., Gascuel O. (2017). SMS: smart model selection in PhyML. PubMed DOI PMC
Leitch I. J., Dodsworth S. (2017). “Endopolyploidy in plants,” in
Lepší M., Lepší P., Koutecký P., Lučanová M., Koutecká E., Kaplan Z. (2019). DOI
Lysak M. A., Koch M. A., Beaulieu J. M., Meister A., Leitch I. J. (2009). The dynamic ups and downs of genome size evolution in Brassicaceae. PubMed DOI
Mandáková T., Lysak M. A. (2016). Chromosome preparation for cytogenetic analyses in PubMed DOI
Molins A., Bacchetta G., Rosato M., Rosselló J. A., Mayol M. (2011). Molecular phylogeography of DOI
Molnár V. A., Csábi M. (2021).
Murdoch D., Chow E. D. (2018).
Okuyama Y., Goto N., Nagano A. J., Yasugi M., Kokubugata G., Kudoh H., et al. (2020). Radiation history of Asian PubMed DOI PMC
Ortiz E. M. (2019). vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. DOI
Paris J. R., Stevens J. R., Catchen J. M. (2017). Lost in parameter space: a road map for stacks. DOI
Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A. (2010). How many bootstrap replicates are necessary? PubMed DOI
Pavarese G., Tranchida-Lombardo V., Galesi R., D’Emerico S., Casotti R., Cristaudo A., et al. (2013). When polyploidy and hybridization produce a fuzzy taxon: the complex origin of the insular neoendemic DOI
Pérez-Escobar O. A., Bogarín D., Schley R., Bateman R. M., Gerlach G., Harpke D., et al. (2020). Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. PubMed DOI
Peterson B. K., Weber J. N., Kay E. H., Fisher H. S., Hoekstra H. E. (2012). Double digest RADseq: an inexpensive method for PubMed DOI PMC
Petrou N., Petrou M., Giannakoulias M. (2011).
Pridgeon A. M., Bateman R. M., Richard M., Cox A. V. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear its sequences. 1. Intergeneric relationships and polyphyly of
Průša D. (2019).
R Core Team. (2020).
Rohlf F. J. (2004).
Sliwinska E., Loureiro J., Leitch I. J., Šmarda P., Bainard J., Bureš P., et al. (2021). Application-based guidelines for best practices in plant flow cytometry. PubMed DOI
Spriggs E. L., Schlutius C., Eaton D. A., Park B., Sweeney P. W., Edwards E. J., et al. (2019). Differences in flowering time maintain species boundaries in a continental radiation of PubMed DOI
Sramkó G., Paun O., Brandrud M. K., Laczkó L., Molnár A. V., Bateman R. M. (2019). Iterative allogamy–autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC
Štorchová H., Hrdličková R., Chrtek J., Tetera M., Fitze D., Fehrer J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. DOI
Tali K., Fay M. F., Bateman R. M. (2006). Little genetic differentiation across Europe between early-flowering and late-flowering populations of the rapidly declining orchid DOI
Telesca L., Michalek K., Sanders T., Peck L., Thyrring J., Harper L. (2017). PubMed DOI PMC
Telesca L., Michalek K., Sanders T., Peck L. S., Thyrring J., Harper E. M. (2018). Blue mussel shell shape plasticity and natural environments: a quantitative approach. PubMed DOI PMC
Trávníček P., Čertner M., Ponert J., Chumová Z., Jersáková J., Suda J. (2019). Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. PubMed DOI
Trávníček P., Kubátová B., Čurn V., Rauchová J., Krajníková E., Jersáková J., et al. (2011). Remarkable coexistence of multiple cytotypes of the PubMed DOI PMC
Trávníček P., Ponert J., Urfus T., Jersáková J., Vrána J., Hřibová E., et al. (2015). Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. PubMed DOI
Tsiftsis S., Antonopoulos Z. (2017).
Tyteca D., Pessoa J., Borges L. (2020). The Orchid Flora of Portugal – Addendum N° 8 –
van der Cingel N. A. (1995).
Vela E., Viglione J. (2015). Recent inputs to the Lebanese orchid flora and proposal of a national checklist for Orchidaceae family. DOI
Vela E., Youssef S., Mahmood A. (2013). First survey on Orchids (Orchidaceae) of Duhok province in Kurdistan region (N-Iraq).
Vít P., Douda J., Krak K., Havrdová A., Mandák B. (2017). Two new polyploid species closely related to DOI
Wickham H. (2016).
Wickham H., Danenberg P., Eugster M. (2018a).
Wickham H., Hester J., Chang W. (2018b).
World Checklist of Selected Plant Families [WCSP] (2021).