Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea

. 2021 ; 12 () : 734240. [epub] 20211013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34745168

Knowledge of population variation across species' ranges is a prerequisite for correctly assessing the overall variability of any group of organisms and provides an invaluable basis for unraveling evolutionary history, optimizing taxonomy and devising effective conservation strategies. Here, we examine the genus Neotinea, which represents a relatively recently delimited monophyletic genus of orchids, for which a detailed study of its overall variability was lacking. We applied a suite of biosystematic methods, consisting of flow cytometry, multivariate and geometric morphometrics, and analysis of genomic SNP data, to identify phylogenetic lineages within the genus, to delineate phenotypic variation relevant to these lineages, and to identify potential cryptic taxa within lineages. We found clear differentiation into four major lineages corresponding to the groups usually recognized within the genus: Neotinea maculata as a distinct and separate taxon, the Neotinea lactea group comprising two Mediterranean taxa N. lactea and Neotinea conica, the Neotinea ustulata group comprising two phenologically distinct varieties, and the rather complex Neotinea tridentata group comprising two major lineages and various minor lineages of unclear taxonomic value. N. conica constitutes both a monophyletic group within N. lactea and a distinct phenotype within the genus and merits its proposed subspecies-level recognition. By contrast, the spring and summer flowering forms of N. ustulata (var. ustulata and var. aestivalis) were confirmed to be distinct only morphologically, not phylogenetically. The most complex pattern emerged in the N. tridentata group, which splits into two main clades, one containing lineages from the Balkans and eastern Mediterranean and the other consisting of plants from Central Europe and the central Mediterranean. These individual lineages differ in genome size and show moderate degrees of morphological divergence. The tetraploid Neotinea commutata is closely related to the N. tridentata group, but our evidence points to an auto- rather than an allopolyploid origin. Our broad methodological approach proved effective in recognizing cryptic lineages among the orchids, and we propose the joint analysis of flow cytometric data on genome size and endopolyploidy as a useful and beneficial marker for delineating orchid species with partial endoreplication.

Zobrazit více v PubMed

Aceto S., Caputo P., Cozzolino S., Gaudio L., Moretti A. (1999). Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol. Phylogenet. Evol. 13 67–76. 10.1006/mpev.1999.0628 PubMed DOI

Addam K., Bou-Hamdan M., Takkoush J., Hout K., Ibrahim S. K., Ibrahim L., et al. (2016). Correcting data for validating the names, Neotinea tridentata var. libanotica K. Addam & M. Bou-Hamdan, Ophrys apifera var. libanotica K. Addam & M. Bou-hamdan and fixing minor errors for Ophrys omegaifera subsp. gharifensis K. Addam & M. Bou-Hamdan in papers published by K. Addam and coauthors. J. Ecol. Environ. Sci. 7 176–179. 10.1006/mpev.1999.0628 PubMed DOI

Addam K., Kebbe I., Bou-Hamdan M., Hout K. (2014). Neotinea tridentata var. libanotica (Orchidaceae), a new species from Lebanon. J. Bot. Res. 5 35–38.

Alibertis A. (2012). Quatre nouveaux taxons pour la flore de Grèce. Orchid. Asnières 193 92–94.

Alibertis A. (2015). The Self-Sown Orchids of Greece: A Reference Book. Iraklion: Mystis Editions.

Amardeilh J., Dusak F. (2005). “Genre Neotinea,” in Les Orchidées de France, Belgique et Luxembourg, eds Bournérias M., Prat D. (Parthénope: Biotope; ), 262–271.

Angelli N., Anghelescu D. (2020). Orchids of Romania. Prahova: Asociatia Comori de pe Valea Prahovei.

Arnold B., Kim S.-T., Bomblies K. (2015). Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol. Biol. Evol. 32 1382–1395. 10.1093/molbev/msv089 PubMed DOI

Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., Lewis Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. 10.1371/journal.pone.0003376 PubMed DOI PMC

Bateman R. M., Hollingsworth P. M., Preston J., Yi-Bo L., Pridgeon A. M., Chase M. W. (2003). Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 142 1–40. 10.1046/j.1095-8339.2003.00157.x DOI

Bateman R. M., Hollingsworth P. M., Squirrell J., Hollingsworth M. L. (2005). “Tribe Neottieae,” in Genera Orchidacearum. Volume 4. Epidendroideae (Part One), eds Pridgeon A., Cribb P. J., Chase M. W., Rasmussen F. N. (Oxford: Oxford University Press; ), 487–495.

Bateman R. M., Pridgeon A. M., Chase M. W. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis sensu stricto. Lindleyana 12 113–141.

Bateman R. M., Rudall P. J., Murphy A. R. M., Cowan R. S., Devey D. S., Peréz-Escobar O. A. (2021). Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. J. Exp. Bot. 72 654–681. 10.1093/jxb/eraa467 PubMed DOI

Bateman R. M., Sramkó G., Paun O. (2018). Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Ann. Bot. 121 85–105. 10.1093/aob/mcx129 PubMed DOI PMC

Baumann H., Lorenz R. (2005). Beiträge zur Taxonomie europäischer und mediterraner Orchideen. J. Eur. Orchid. 37 705–743.

Berg S., Kutra D., Kroeger T., Straehle C. N., Kausler B. X., Haubold C., et al. (2019). ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16 1226–1232. 10.1038/s41592-019-0582-9 PubMed DOI

Bernardos S., Santos M. A., Tyteca D., Amich F. (2006). Phylogenetic relationships of Mediterranean Neottieae and Orchideae (Orchidaceae) inferred from nuclear ribosomal ITS sequences. Acta Bot. Gallica 153 153–165. 10.1080/12538078.2006.10515534 DOI

Bonhomme V., Picq S., Gaucherel C., Claude J. (2014). Momocs: outline analysis using R. J. Stat. Softw. 56 1–24. 10.18637/jss.v056.i13 DOI

Bournérias M., Prat D. (2005). Les orchidées de France, Belgique et Luxembourg, 2nd Edn. Mèze: Biotope.

Brandrud M. K., Baar J., Lorenzo M. T., Athanasiadis A., Bateman R. M., Chase M. W., et al. (2020). Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 69 91–109. 10.1093/sysbio/syz035 PubMed DOI PMC

Brandrud M. K., Paun O., Lorenz R., Baar J. (2019). Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Mol. Phylogenet. Evol. 136 21–28. 10.1016/j.ympev.2019.03.018 PubMed DOI PMC

Breitkopf H., Onstein R. E., Cafasso D., Schlüter P. M., Cozzolino S. (2015). Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. New Phytol. 207 377–389. 10.1111/nph.13219 PubMed DOI

Brock J. R., Mandáková T., Lysak M. A., Al-Shehbaz I. A. (2019). Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys 115 51–57. 10.3897/phytokeys.115.31704 PubMed DOI PMC

Brown S. C., Bourge M., Maunoury N., Wong M., Wolfe Bianchi M., Lepers-Andrzejewski S., et al. (2017). DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biol. Evol. 9 1051–1071. 10.1093/gbe/evx063 PubMed DOI PMC

Carnicero P., Sáez L., Garcia-Jacas N., Galbany-Casals M. (2017). Different speciation types meet in a Mediterranean genus: the biogeographic history of Cymbalaria (Plantaginaceae). Taxon 66 393–407. 10.12705/662.7 DOI

Catchen J., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A. (2013). Stacks: an analysis tool set for population genomics. Mol. Ecol. 22 3124–3140. 10.1111/mec.12354 PubMed DOI PMC

Cauwet-Marc A. M., Balayser M. (1984). Les genres Orchis L., Dactylorhiza Necker ex Newski, Neotinea Reichb. et Traunsteinera Reichb.?: caryologie et proposition de phylogénie et d’évolution. Bot. Helvetica 94 391–406. 10.5169/seals-65888 DOI

Chumová Z., Krejčíková J., Mandáková T., Suda J., Trávníček P. (2015). Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). Plos One 10:e0133748. 10.1371/journal.pone.0133748 PubMed DOI PMC

Chumová Z., Záveská E., Hloušková P., Ponert J., Schmidt P.-A., Čertner M., et al. (2021). Repeat proliferation and partial endoreplication jointly drive the genome size evolution of orchids. Plant J. 107 511–524. 10.1111/tpj.15306 PubMed DOI

Cozzolino S., Caputo P., Aceto S., Widmer A., Dafni A. (2001). Speciation processes in Eastern Mediterranean Orchis s.l. species: molecular evidence and the role of pollination biology. Isr. J. Plant Sci. 49 91–103. 10.1560/QV6M-E7A0-QFC7-G6BL DOI

Craig D. W., Pearson J. V., Szelinger S., Sekar A., Redman M., Corneveaux J. J., et al. (2008). Identification of genetic variants using bar-coded multiplexed sequencing. Nat. Methods 5 887–893. 10.1038/nmeth.1251 PubMed DOI PMC

Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. Bioinformatics 27 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC

Delforge P. (2016). Orchidées d’Europe, d’Afrique du Nord et du Proche-Orient. 4e édition Revue et Augmentée. Paris: Delachaux et Niestlé.

Devey D. S., Bateman R. M., Fay M. F., Hawkins J. A. (2008). Friends or relatives? Phylogenetics and species delimitation in the controversial European orchid genus Ophrys. Ann. Bot. 101 385–402. 10.1093/aob/mcm299 PubMed DOI PMC

Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2 2233–2244. 10.1038/nprot.2007.310 PubMed DOI

Doro D. (2020). Anacamptis berica – Una nuova specie tetraploide del gruppo di Anacamptis pyramidalis. J. Eur. Orchid. 52 427–460.

Dryden I. L. (2018). Shapes: Statistical Shape Analysis. Available online at: https://CRAN.R-project.org/package=shapes. (accessed April 1, 2021).

Fernández-Mazuecos M., Mellers G., Vigalondo B., Sáez L., Vargas P., Glover B. J. (2018). Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. Syst. Biol. 67 250–268. 10.1093/sysbio/syx062 PubMed DOI

Foelsche G., Foelsche W. (2002). Ophrys corsica und Orchis corsica, zwei zu Unrecht vergessene Namen. J. Eur. Orchid. 34 823–885.

Gamarra R., Dorda E., Scrugli A., Galán P., Ortúnez E. (2007). Seed micromorphology in the genus Neotinea Rchb.f. (Orchidaceae, Orchidinae). Bot. J. Linn. Soc. 153 133–140. 10.1111/j.1095-8339.2006.00603.x DOI

Habibi F., Vít P., Rahiminejad M., Mandák B. (2018). Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: a karyological, cytometric and morphometric investigation. J. Syst. Evol. 56 231–242. 10.1111/jse.12306 DOI

Haraštová-Sobotková M., Jersáková J., Kindlmann P., Čurn L. (2005). Morphometric and genetic divergence among populations of Neotinea ustulata (Orchidaceae) with different flowering phenologies. Folia Geobot. 40 385–405. 10.1007/BF02804287 DOI

Harrap A., Harrap S. (2010). Orchids of Britain and Ireland. A Field and Site Guide. London: Bloomsbury Publishing.

Hirth M., Paulus H. F. (2020). Ophrys eretriae, eine neue Art aus dem Ophrys mammosa Komplex von der Insel Euböa (Griechenland). J. Eur. Orchid. 51 127–150.

Hodálová I., Mártonfiová L., Skokanová K., Majerová M., Somlyay L., Mered’a P. (2020). The utility of genome size in plant identification: a case study on Sesleria (Poaceae) from Croatia and Slovenia. Plant Syst. Evol. 306:87. 10.1007/s00606-020-01715-2 DOI

Hřibová E., Holušová K., Trávníček P., Petrovská B., Ponert J., Šimková H., et al. (2016). The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biol. Evol. 8 1996–2005. 10.1093/gbe/evw141 PubMed DOI PMC

Hürkan K., Taşkın K. M. (2021). Internal transcribed spacer (ITS) fails barcoding of the genus Neotinea Rchb.f. (Orchidaceae). J. Agr. Sci.-Tarim Bili. 27 69–75. 10.15832/ankutbd.615848 DOI

Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23 254–267. 10.1093/molbev/msj030 PubMed DOI

Jombart T., Ahmed I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27 3070–3071. 10.1093/bioinformatics/btr521 PubMed DOI PMC

Klein L. L., Svoboda H. T. (2017). Comprehensive methods for leaf geometric morphometric analyses. Bio Protoc. 7:e2269. 10.21769/BioProtoc.2269 PubMed DOI PMC

Kretzschmar H., Eccarius W., Dietrich H. (2007). Die Orchideengattungen Anacamptis, Orchis, Neotinea. Phylogenie, Taxonomie, Morphologie, Biologie, Verbreitung, Ökologie und Hybridisation. Bürgel: EchinoMedia Verlag.

Kreutz K. (2004a). Kompendium der Europäischen Orchideen / Catalogue of European Orchids, 1st Edn. Landgraaf: Kreutz Publisher.

Kreutz K. (2004b). The Orchids of Cyprus: Description, Pattern of Life, Distribution, Threat, Conservation and Iconography. Iver: Kreutz Publishers.

Kreutz K., Colak A. H. (2009). Türkiye Orkideleri / Botanik Özellikleri, Ekolojik Ïstekleri, Dogal Yayilis Alanlari, Yasam Tehditleri, Koruma Önlemleri. Istanbul: Rota Yayıinlari.

Kühn R., Pederson H., Cribb P. (2019). Field Guide to the Orchids of Europe and the Mediterranean. Kew: Royal Botanic Gardens.

Leaché A. D., Banbury B. L., Felsenstein J., De Oca A. N. M., Stamatakis A. (2015). Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64 1032–1047. 10.1093/sysbio/syv053 PubMed DOI PMC

Lefort V., Longueville J. E., Gascuel O. (2017). SMS: smart model selection in PhyML. Mol. Biol. Evol. 34 2422–2424. 10.1093/molbev/msx149 PubMed DOI PMC

Leitch I. J., Dodsworth S. (2017). “Endopolyploidy in plants,” in Encyclopedia of Life Sciences, ed. Hetherington A. M. (Chichester: John Wiley & Sons; ), 1–10.

Lepší M., Lepší P., Koutecký P., Lučanová M., Koutecká E., Kaplan Z. (2019). Stellaria ruderalis, a new species in the Stellaria media group from central Europe. Preslia 91 391–420. 10.23855/preslia.2019.391 DOI

Lysak M. A., Koch M. A., Beaulieu J. M., Meister A., Leitch I. J. (2009). The dynamic ups and downs of genome size evolution in Brassicaceae. Mol. Biol. Evol. 26 85–98. 10.1093/molbev/msn223 PubMed DOI

Mandáková T., Lysak M. A. (2016). Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1 43–51. 10.1002/cppb.20009 PubMed DOI

Molins A., Bacchetta G., Rosato M., Rosselló J. A., Mayol M. (2011). Molecular phylogeography of Thymus herba-barona (Lamiaceae): insight into the evolutionary history of the flora of the western Mediterranean islands. Taxon 60 1295–1305. 10.1002/tax.605006 DOI

Molnár V. A., Csábi M. (2021). Magyarország orchideái (Orchid of Hungary). Debrecen: Debreceni Egyetem Természettudományi és Technológiai Kar Növénytani Tanszék.

Murdoch D., Chow E. D. (2018). Ellipse: Functions for Drawing Ellipses and Ellipse-Like Confidence Regions. Available onlijne at: https://CRAN.R-project.org/package=ellipse. (accessed April 1, 2021).

Okuyama Y., Goto N., Nagano A. J., Yasugi M., Kokubugata G., Kudoh H., et al. (2020). Radiation history of Asian Asarum (sect. Heterotropa, Aristolochiaceae) resolved using a phylogenomic approach based on double-digested RAD-seq data. Ann. Bot. 126 245–260. 10.1093/aob/mcaa072 PubMed DOI PMC

Ortiz E. M. (2019). vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. Zenodo 10.5281/zenodo.2540861 DOI

Paris J. R., Stevens J. R., Catchen J. M. (2017). Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8 1360–1373. 10.1111/2041-210X.12775 DOI

Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A. (2010). How many bootstrap replicates are necessary? J. Comput. Biol. 17 337–354. 10.1089/cmb.2009.0179 PubMed DOI

Pavarese G., Tranchida-Lombardo V., Galesi R., D’Emerico S., Casotti R., Cristaudo A., et al. (2013). When polyploidy and hybridization produce a fuzzy taxon: the complex origin of the insular neoendemic Neotinea commutata (Orchidaceae). Bot. J. Linn. Soc. 173 707–720. 10.1111/boj.12093 DOI

Pérez-Escobar O. A., Bogarín D., Schley R., Bateman R. M., Gerlach G., Harpke D., et al. (2020). Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Mol. Phylogenet. Evol. 144:106672. 10.1016/j.ympev.2019.106672 PubMed DOI

Peterson B. K., Weber J. N., Kay E. H., Fisher H. S., Hoekstra H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135. 10.1371/journal.pone.0037135 PubMed DOI PMC

Petrou N., Petrou M., Giannakoulias M. (2011). Orchids of Greece. KOAN Publishing House. Athens: Hellenic Society for the Protection of Nature.

Pridgeon A. M., Bateman R. M., Richard M., Cox A. V. (1997). Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear its sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato. Lindleyana 12 89–109.

Průša D. (2019). Orchideje České Republiky 2. Rozšír̃ené Vydání. Brno: CPress.

R Core Team. (2020). A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. Vienna: R Core Team.

Rohlf F. J. (2004). tpsDig, Digitize Landmarks and Outlines - https://life.bio.sunysb.edu/morph/. Department of Ecology and Evolution. New York, NY: State University of New York at Stony Brook.

Sliwinska E., Loureiro J., Leitch I. J., Šmarda P., Bainard J., Bureš P., et al. (2021). Application-based guidelines for best practices in plant flow cytometry. Cytometry A 99. 10.1002/cyto.a.24499 PubMed DOI

Spriggs E. L., Schlutius C., Eaton D. A., Park B., Sweeney P. W., Edwards E. J., et al. (2019). Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. Am. J. Bot. 106 833–849. 10.1002/ajb2.1292 PubMed DOI

Sramkó G., Paun O., Brandrud M. K., Laczkó L., Molnár A. V., Bateman R. M. (2019). Iterative allogamy–autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). Ann. Bot. 124 481–497. 10.1093/aob/mcz103 PubMed DOI PMC

Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Štorchová H., Hrdličková R., Chrtek J., Tetera M., Fitze D., Fehrer J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49 79–84. 10.2307/1223934 DOI

Tali K., Fay M. F., Bateman R. M. (2006). Little genetic differentiation across Europe between early-flowering and late-flowering populations of the rapidly declining orchid Neotinea ustulata. Biol. J. Linn. Soc. 87 13–25. 10.1111/j.1095-8312.2006.00550.x DOI

Telesca L., Michalek K., Sanders T., Peck L., Thyrring J., Harper L. (2017). Supplementary Data and Codes: “Blue Mussel Shell Shape Plasticity and Natural Environments: A Quantitative Approach” [Dataset]. Available online at: 10.17863/CAM.12536 PubMed DOI PMC

Telesca L., Michalek K., Sanders T., Peck L. S., Thyrring J., Harper E. M. (2018). Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8:2865. 10.1038/s41598-018-20122-9 PubMed DOI PMC

Trávníček P., Čertner M., Ponert J., Chumová Z., Jersáková J., Suda J. (2019). Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytol. 224 1642–1656. 10.1111/nph.15996 PubMed DOI

Trávníček P., Kubátová B., Čurn V., Rauchová J., Krajníková E., Jersáková J., et al. (2011). Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann. Bot. 107 77–87. 10.1093/aob/mcq217 PubMed DOI PMC

Trávníček P., Ponert J., Urfus T., Jersáková J., Vrána J., Hřibová E., et al. (2015). Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A 87A 958–966. 10.1002/cyto.a.22681 PubMed DOI

Tsiftsis S., Antonopoulos Z. (2017). Atlas of the Greek Orchids. Rethymno: Mediterraneo editions.

Tyteca D., Pessoa J., Borges L. (2020). The Orchid Flora of Portugal – Addendum N° 8 – Ophrys beirana, a new species in the Ophrys scolopax group. J. Eur. Orchid. 52 324–348.

van der Cingel N. A. (1995). An Atlas of Orchid Pollination: European Orchids. Rotterdam: A. A. Balkema.

Vela E., Viglione J. (2015). Recent inputs to the Lebanese orchid flora and proposal of a national checklist for Orchidaceae family. Acta Bot. Gallica 162 271–285. 10.1080/12538078.2015.1105148 DOI

Vela E., Youssef S., Mahmood A. (2013). First survey on Orchids (Orchidaceae) of Duhok province in Kurdistan region (N-Iraq). J. Eur. Orchid. 45 235–254.

Vít P., Douda J., Krak K., Havrdová A., Mandák B. (2017). Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa – An analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon 66 567–583. 10.12705/663.4 DOI

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York. Available online at: http://ggplot2.org (Accessed April 1, 2021).

Wickham H., Danenberg P., Eugster M. (2018a). roxygen2: In-Line Documentation for R. Available online at: https://CRAN.R-project.org/package=roxygen2 (accessed April 1, 2021).

Wickham H., Hester J., Chang W. (2018b). devtools: Tools to Make Developing R Packages Easier. Available online at: https://CRAN.R-project.org/package=devtools. (accessed April 1, 2021).

World Checklist of Selected Plant Families [WCSP] (2021). ‘World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Available online at: http://wcsp.science.kew.org (Accessed April 20, 2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...