Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31215648
DOI
10.1111/nph.15996
Knihovny.cz E-zdroje
- Klíčová slova
- GC content, Ornstein-Uhlenbeck models, evolution, flow cytometry, genome size, orchids, partial endoreplication,
- MeSH
- biologická adaptace MeSH
- biologická evoluce MeSH
- délka genomu * MeSH
- endoreduplikace * MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- modely genetické MeSH
- Orchidaceae genetika MeSH
- podnebí MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In angiosperms, genome size and nucleobase composition (GC content) exhibit pronounced variation with possible adaptive consequences. The hyperdiverse orchid family possessing the unique phenomenon of partial endoreplication (PE) provides a great opportunity to search for interactions of both genomic traits with the evolutionary history of the family. Using flow cytometry, we report values of both genomic traits and the type of endoreplication for 149 orchid species and compare these with a suite of life-history traits and climatic niche data using phylogeny-based statistics. The evolution of genomic traits was further studied using the Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to access their adaptive potential. Pronounced variation in genome size (341-54 878 Mb), and especially in GC content (23.9-50.5%), was detected among orchids. Diversity in both genomic traits was closely related to the type of endoreplication, plant growth form and climatic conditions. GC content was also associated with the type of dormancy. In all tested scenarios, OU models always outperformed BM models. Unparalleled GC content variation was discovered in orchids, setting new limits for plants. Our study indicates that diversity in both genome size and GC content has adaptive consequences and is tightly linked with evolutionary transitions to PE.
Department of Botany Faculty of Science Charles University Benátská 2 Prague CZ 12801 Czech Republic
Institute of Botany Czech Academy of Sciences Zámek 1 Průhonice CZ 25243 Czech Republic
Prague Botanical Garden Trojská 800 196 Prague CZ 17100 Czech Republic
Zobrazit více v PubMed
Barow M, Meister A. 2002. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry Part A 47: 1-7.
Bateman RM, Guy JJ, Rudall PJ, Leitch IJ, Pellicer J, Leitch AR. 2018. Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. Annals of Botany 122: 133-150.
Beaulieu JM, Jhwueng D-C, Boettiger C, O'Meara BC. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66: 2369-2383.
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986.
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437.
Beaulieu JM, O'Meara BC. 2016. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Systematic Biology 65: 583-601.
Bennett MD, Leitch IJ. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590.
Bennetzen JL, Kellogg EA. 1997. Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509-1514.
Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics 14: e1007162.
Bory S, Catrice O, Brown S, Leitch IJ, Gigant R, Chiroleu F, Grisoni M, Duval M-F, Besse P. 2008. Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51: 816-826.
Brown SC, Bourge M, Maunoury N, Wong M, Wolfe Bianchi M, Lepers-Andrzejewski S, Besse P, Siljak-Yakovlev S, Dron M, Satiat-Jeunemaître B. 2017. DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biology and Evolution 9: 1051-1071.
Brummitt RK. 2001. World geographical scheme for recording plant distributions. Pittsburgh, PA, USA: Hunt Institute for Botanical Documentation, Carnegie Mellon University.
Carta A, Peruzzi L. 2016. Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. New Phytologist 210: 709-716.
Chase MW, Hanson L, Albert VA, Whitten WM, Williams NH. 2005. Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae). Annals of Botany 95: 191-199.
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. 2015. Genomic repeat abundances contain phylogenetic signal. Systematic Biology 64: 112-126.
Francis D, Davies MS, Barlow PW. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747-757.
Gillespie LM, Volaire FA. 2017. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. Annals of Botany 119: 311-323.
Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJ, Clements MA, Arroyo MT, Leebens-Mack J et al. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences 282: 20151553.
Govaerts R, Bernet P, Kratochvíl K, Gerlach G, Carr G, Alrich P, Pridgeon A, Pfahl J, Campacci M, Baptista D et al. 2018. World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. [WWW document] URL http://apps.kew.org/wcsp/ [Retrieved 30 December 2018].
Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel J, eds. Plant genome diversity volume 2: physical structure, behaviour and evolution of plant genomes. Vienna, Austria: Springer-Verlag, 323-344.
Gruner A, Hoverter N, Smith T, Knight CA. 2010. Genome size is a strong predictor of root meristem growth rate. Journal of Botany:, 390414.
Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. 2017. Is there an upper limit to genome size? Trends in Plant Science 22: 567-573.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, Kubátová B, Jersáková J, Čurn V, Suda J et al. 2016. The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biology and Evolution 8: 1996-2005.
Igea J, Miller EF, Papadopulos AST, Tanentzap AJ. 2017. Seed size and its rate of evolution correlate with species diversification across angiosperms. PLoS Biology 15: e2002792.
Jersáková J, Trávníček P, Kubátová B, Krejčíková J, Urfus T, Liu Z-J, Lamb A, Ponert J, Schulte K, Čurn V et al. 2013. Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Botanical Journal of the Linnean Society 172: 95-105.
Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ. 2015. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytologist 205: 608-617.
Karremans AP. 2016. Genera Pleurothallidinarum: an updated phylogenetic overview of Pleurothallidinae. Lankesteriana 16: 219-241.
Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM. 2010. On the relationship between pollen size and genome size. Journal of Botany, 612017.
Kraaijeveld K. 2010. Genome size and species diversification. Evolutionary Biology 37: 227-233.
Krahulcová A, Trávníček P, Krahulec F, Rejmánek M. 2017. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae). Annals of Botany 119: 957-964.
Krejčíková J, Sudová R, Lučanová M, Trávníček P, Urfus T, Vít P, Weiss-Schneeweiss H, Kolano B, Oberlander K, Dreyer LL et al. 2013. High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany 111: 641-649.
Lang GA. 1987. Dormancy: a new universal terminology. HortScience 22: 817-820.
Leitch IJ, Dodsworth S. 2017. Endopolyploidy in plants. In: Hetherington AM (ed.), Encyclopedia of life sciences. Chichester, UK: John Wiley & Sons, 1-10.
Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF. 2009. Genome size diversity in orchids: consequences and evolution. Annals of Botany 104: 469-481.
Linder HP, Suda J, Weiss-Schneeweiss H, Trávníček P, Bouchenak-Khelladi Y. 2017. Patterns, causes and consequences of genome size variation in Restionaceae of the Cape flora. Botanical Journal of the Linnean Society 183: 515-531.
Meister A, Barow M. 2007. DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J, eds. Flow cytometry with plant cells. Weinheim, Germany: John Wiley & Sons, 177-215.
Meudt HM, Rojas-Andrés BM, Prebble JM, Low E, Garnock-Jones PJ, Albach DC. 2015. Is genome downsizing associated with diversification in polyploid lineages of Veronica? Botanical Journal of the Linnean Society 178: 243-266.
Morgan HD, Westoby M. 2005. The relationship between nuclear DNA content and leaf strategy in seed plants. Annals of Botany 96: 1321-1330.
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC et al. 2001. Terrestrial ecoregions of the world: a new map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51: 933-938.
O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60: 922-933.
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2018. caper: Comparative analyses of phylogenetics and evolution in R. R package v.1.0.1 [WWW document] URL https://rdrr.io/cran/caper/.
Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods in Cell Biology 33: 105-110.
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.
Pérez-Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, Matzke NJ, Silvestro D, Antonelli A. 2017. Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. New Phytologist 215: 891-905.
Puttick MN, Clark J, Donoghue PCJ. 2015. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proceedings of the Royal Society B-Biological Sciences 282: 20152289.
Pyšek P, Skálová H, Čuda J, Guo W-Y, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T et al. 2018. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99: 79-90.
R Core Team. 2018. A language and environment for statistical computing R Foundation for statistical computing. Vienna, Austria: R Core Team.
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
Roberts DL, Dixon KW. 2008. Orchids. Current Biology 18: R325-R329.
Simonin KA, Roddy AB. 2018. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biology 16: e2003706.
Šímová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 279: 867-875.
Šmarda P, Bureš P. 2012. The variation of base composition in plant genomes. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ, eds. Plant genome diversity volume 1: plant genomes, their residents, and their evolutionary dynamics. Vienna: Springer Vienna, 209-235.
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. 2008. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Annals of Botany 101: 421-433.
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, Tichý L, Grulich V, Rotreklová O. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences 111: E4096-E4102.
Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge, UK: Cambridge University Press.
Suda J, Meyerson LA, Leitch IJ, Pyšek P. 2015. The hidden side of plant invasions: the role of genome size. New Phytologist 205: 994-1007.
Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. 2016. Testing the link between genome size and growth rate in maize. PeerJ 4: e2408.
Trávníček P, Ponert J, Urfus T, Jersáková J, Vrána J, Hřibová E, Doležel J, Suda J. 2015. Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry Part A 87A: 958-966.
Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytologist 203: 22-28.
Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409-416.
Veselý P, Bureš P, Šmarda P. 2013. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non-geophytic relatives. Annals of Botany 112: 1193-1200.
Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65-75.
Vinogradov AE. 2003. DNA helix: the importance of being GC-rich. Nucleic Acids Research 31: 1838-1844.
Werger MJA, Huber H. 2006. Tuber size variation and organ preformation constrain growth responses of a spring geophyte. Oecologia 147: 396-405.
Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. 2006. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research 34: 564-574.
Zotz G. 2016. Plants on plants - the biology of vascular epiphytes. Cham: Springer International Publishing.
Zotz G, Hietz P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 2067-2078.
Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution
The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity
Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea