The relationship between transposable elements and ecological niches in the Greater Cape Floristic Region: A study on the genus Pteronia (Asteraceae)

. 2022 ; 13 () : 982852. [epub] 20220929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36247607

Non-coding repetitive DNA (repeatome) is an active part of the nuclear genome, involved in its structure, evolution and function. It is dominated by transposable elements (TEs) and satellite DNA and is prone to the most rapid changes over time. The TEs activity presumably causes the global genome reorganization and may play an adaptive or regulatory role in response to environmental challenges. This assumption is applied here for the first time to plants from the Cape Floristic hotspot to determine whether changes in repetitive DNA are related to responses to a harsh, but extremely species-rich environment. The genus Pteronia (Asteraceae) serves as a suitable model group because it shows considerable variation in genome size at the diploid level and has high and nearly equal levels of endemism in the two main Cape biomes, Fynbos and Succulent Karoo. First, we constructed a phylogeny based on multiple low-copy genes that served as a phylogenetic framework for detecting quantitative and qualitative changes in the repeatome. Second, we performed a comparative analysis of the environments of two groups of Pteronia differing in their TEs bursts. Our results suggest that the environmental transition from the Succulent Karoo to the Fynbos is accompanied by TEs burst, which is likely also driving phylogenetic divergence. We thus hypothesize that analysis of rapidly evolving repeatome could serve as an important proxy for determining the molecular basis of lineage divergence in rapidly radiating groups.

Zobrazit více v PubMed

Aiello-Lammens M. E., Boria R. A., Radosavljevic A., Vilela B., Anderson R. P. (2015). spThin: an r package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. doi: 10.1111/ecog.01132 DOI

Allsopp N., Colville J. F., Verboom G. A. eds. (2014). Fynbos: ecology, evolution, and conservation of a megadiverse region (Oxford; New York: Oxford University Press; ).

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. . (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. doi: 10.1111/mec.14123 PubMed DOI PMC

Balao F., Trucchi E., Wolfe T. M., Hao B.-H., Lorenzo M. T., Baar J., et al. . (2017). Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Mol. Ecol. 26, 3–6. doi: 10.1111/mec.14123. PubMed DOI PMC

Bello A. O. (2018). A systematic study of Pteronia l. (Asteraceae) (South Africa: University of Johannesburg; ).

Bello A. O., Boatwright J. S., Tilney P. M., van der Bank M., Magee A. R. (2017). A taxonomic revision of the Pteronia camphorata group (Astereae, Asteraceae). S. Afr J. Bot. 113, 277–287. doi: 10.1016/j.sajb.2017.08.017 DOI

Belyayev A. (2014). Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 27, 2573–2584. doi: 10.1111/jeb.12513 PubMed DOI

Belyayev A., Josefiová J., Jandová M., Mahelka V., Krak K., Mandák B. (2020). Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA 11, 20. doi: 10.1186/s13100-020-00219-7 PubMed DOI PMC

Belyayev A., Raskina O., Nevo E. (2001). Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosome Res. 9, 129–136. doi: 10.1023/A:1009231019833 PubMed DOI

Bennetzen J. L., Wang H. (2014). The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65, 505–530. doi: 10.1146/annurev-arplant-050213-035811 PubMed DOI

Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. doi: 10.1093/nar/27.2.573 PubMed DOI PMC

Bergh N. G., Verboom G. A., Rouget M., Cowling R. M. (2014). “Vegetation types of the greater cape floristic region,” in Fynbos: ecology, evolution, and conservation of a megadiverse region. Eds. Allsopp N., Colville J. F., Verboom G. A. (Oxford; New York: Oxford University Press; ), 26–46.

Biscotti M. A., Olmo E., Heslop-Harrison J. S. (2015). Repetitive DNA in eukaryotic genomes. Chromosome Res. 23, 415–420. doi: 10.1007/s10577-015-9499-z PubMed DOI

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 (15), 2114–21120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Bond W. J. (1997). “Fire,” in Vegetation of southern Africa. Eds. Cowling R. M., Richardson D. M., Pierce S. M. (Cambridge: Cambridge University Press; ), 421–446.

Bond W. J., Midgley G. F., Woodward F. I. (2003). What controls south African vegetation — climate or fire? S. Afr J. Bot. 69, 79–91. doi: 10.1016/S0254-6299(15)30362-8 DOI

Bond W. J., van Wilgen B. W. (1996). Fire and plants (London: Chapman and Hall; ).

Bonfield J. K., Marshall J., Danecek P., Li H., Ohan V., Whitwham A., et al. . (2021). HTSlib: C library for reading/writing high-throughput sequencing data. GigaScience 10, giab007. doi: 10.1093/gigascience/giab007 PubMed DOI PMC

Born J., Linder H. P., Desmet P. (2007). The Greater Cape Floristic Region. J. Biogeogr. 34, 147–162. doi: 10.1111/j.1365-2699.2006.01595.x DOI

Bouchenak-Khelladi Y., Linder H. P. (2017). Frequent and parallel habitat transitions as driver of unbounded radiations in the Cape flora. Evolution 71, 2548–2561. doi: 10.1111/evo.13364 PubMed DOI

Broennimann O., Fitzpatrick M. C., Pearman P. B., Petitpierre B., Pellissier L., Yoccoz N. G., et al. . (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. doi: 10.1111/j.1466-8238.2011.00698.x DOI

Brouillet L., Anderberg A. A., Nesom G. L., Lowrey T. K., Urbatsch L. E. (2009). Welwitschiella is a member of the African subtribe Grangeinae (Asteraceae Astereae): A new phylogenetic position based on ndhF and ITS sequence data. Kew Bull. 64, 645–660. doi: 10.1007/s12225-009-9164-9 DOI

Bushnell B., Rood J., Singer E. (2017). BBMerge – accurate paired shotgun read merging via overlap. PloS One 12 (10), e0185056. doi: 10.1371/journal.pone.0185056 PubMed DOI PMC

Camacho J. P. M., Cabrero J., López-León M. D., Martín-Peciña M., Perfectti F., Garrido-Ramos M. A., et al. . (2022). On the contingent nature of satellite DNA evolution. BMC Biol. 20, 36. doi: 10.1186/s12915-021-01216-9 PubMed DOI PMC

Chapman B., Chang J. (2000). Biopython: Python tools for computational biology. ACM SIGBIO Newsl. 20, 15–19. doi: 10.1145/360262.360268 DOI

Charlesworth B., Sniegowski P., Stephan W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220. doi: 10.1038/371215a0 PubMed DOI

Cock P. J. A., Antao T., Chang J. T., Chapman B. A., Cox C. J., Dalke A., et al. . (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423. doi: 10.1093/bioinformatics/btp163 PubMed DOI PMC

Cowling R. M., Pierce S. M. (1988). Secondary succession in coastal dune fynbos: variation due to site and disturbance. Vegetatio 76, 131–139. doi: 10.1007/BF00045474 DOI

Cramer M. D., Wootton L. M., van Mazijk R., Verboom G. A. (2019). New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Divers. Distrib. 25, 1736–1750. doi: 10.1111/ddi.12973 DOI

Danecek P., Bonfield J. K., Liddle J., Marshall J., Ohan V., Pollard M. O., et al. . (2021). Twelve years of SAMtools and BCFtools. GigaScience 10, giab008. doi: 10.1093/gigascience/giab008 PubMed DOI PMC

Danielson J., Gesch D. (2011). “Global multi-resolution terrain elevation data 2010 (GMTED2010),” in US Geological survey open file report 2011–1073.

Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772. doi: 10.1038/nmeth.2109 PubMed DOI PMC

Devos K. M., Brown J. K. M., Bennetzen J. L. (2002). Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis . Genome Res. 12, 1075–1079. doi: 10.1101/gr.132102 PubMed DOI PMC

Di Cola V., Broennimann O., Petitpierre B., Breiner F. T., D’Amen M., Randin C., et al. . (2017). ecospat: An r package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. doi: 10.1111/ecog.02671 DOI

Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244. doi: 10.1038/nprot.2007.310 PubMed DOI

Dray S., Dufour A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. J. Stat. Software 22, 1–20. doi: 10.18637/jss.v022.i04 DOI

Dubin M. J., Mittelsten Scheid O., Becker C. (2018). Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29. doi: 10.1016/j.pbi.2018.01.003 PubMed DOI

Duchoslav M., Jandová M., Kobrlová L., Šafářová L., Brus J., Vojtěchová K. (2021). Intricate distribution patterns of six cytotypes of Allium oleraceum at a continental scale: niche expansion and innovation followed by niche contraction with increasing ploidy level. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.591137 PubMed DOI PMC

Dupont L. M., Linder H. P., Rommerskirchen F., Schefuß E. (2011). Climate-driven rampant speciation of the cape flora. J. Biogeogr. 38, 1059–1068. doi: 10.1111/j.1365-2699.2011.02476.x DOI

Ferree P. M., Barbash D. A. (2009). Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila . PloS Biol. 7, e1000234. doi: 10.1371/journal.pbio.1000234 PubMed DOI PMC

Garrido-Ramos M. A. (2015). Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153–170. doi: 10.1159/000437008 PubMed DOI

Gizaw A., Gorospe J. M., Kandziora M., Chala D., Gustafsson L., Zinaw A., et al. . (2022). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae). Alp Bot. 132, 89–105. doi: 10.1007/s00035-021-00268-5 DOI

Good R. (1947). The geography of the flowering plants (London, New York, Toronto: Longmans, Green and Co; ).

Gower J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338. doi: 10.1093/biomet/53.3-4.325 DOI

Hall N. D., Goertzen L. R. (2016). Sequencing and characterization of the Del/Tekay chromovirus family in Marshallia obovata (Asteraceae). Paysonia 5, 1–7.

Heslop-Harrison J. S., Brandes A., Taketa S., Schmidt T., Vershinin A. V., Alkhimova E. G., et al. . (1997). The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197–204. doi: 10.1023/A:1018337831039 PubMed DOI

Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. doi: 10.1093/molbev/msx281 PubMed DOI PMC

Hutchinson J., Phillips E. P. (1917). A revision of the genus Pteronia (Compositae). Ann. S. Afr. Mus 9, 277–329.

Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. . (2016). HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1–7. doi: 10.3732/apps.1600016 PubMed DOI PMC

Jolliffe I. T. (Ed.) (2002). “Principal component analysis for special types of data,” in Principal component analysis springer series in statistics (New York, NY: Springer; ), 338–372. doi: 10.1007/0-387-22440-8_13 DOI

Kandziora M., Sklenář P., Kolář F., Schmickl R. (2022). How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using Loricaria (Asteraceae) as an example. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.765719 PubMed DOI PMC

Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122. doi: 10.1038/sdata.2017.122 PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. . (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC

Keeley J. E., Bond W. J., Bradstock R. A., Pausas J. G., Rundel P. W. (2012). Fire in Mediterranean ecosystems: ecology, evolution and management (Cambridge: Cambridge University Press; ).

Kirchheimer B., Schinkel C. C. F., Dellinger A. S., Klatt S., Moser D., Winkler M., et al. . (2016). A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. J. Biogeogr. 43, 716–726. doi: 10.1111/jbi.12663 PubMed DOI PMC

Klak C., Reeves G., Hedderson T. (2004). Unmatched tempo of evolution in southern African semi-desert ice plants. Nature 427, 63–65. doi: 10.1038/nature02243 PubMed DOI

Kolberg H., van Slageren M. (2014). A synopsis of the genus Pteronia (Compositae: Astereae) in Namibia including the resurrection of Pteronia quadrifaria . Kew Bull. 69, 9488. doi: 10.1007/s12225-014-9488-y DOI

Kong H., Condamine F. L., Yang L., Harris A. J., Feng C., Wen F., et al. . (2022). Phylogenomic and macroevolutionary evidence for an explosive radiation of a plant genus in the Miocene. Syst. Biol. 71, 589–609. doi: 10.1093/sysbio/syab068 PubMed DOI PMC

Koonin E. V. (2009). Evolution of genome architecture. Int. J. Biochem. Cell Biol. 41, 298–306. doi: 10.1016/j.biocel.2008.09.015 PubMed DOI PMC

Kuhner M. K., Felsenstein J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11, 459–468. doi: 10.1093/oxfordjournals.molbev.a040126 PubMed DOI

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC

Le Rouzic A., Deceliere G. (2005). Models of the population genetics of transposable elements. Genet. Res. 85, 171–181. doi: 10.1017/S0016672305007585 PubMed DOI

Levyns M. R. (1964). Migrations and origin of the cape flora. Trans. R. Soc South Afr. 37, 85–107. doi: 10.1080/00359196409519059 DOI

Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997.

Lisch D. (2013). How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61. doi: 10.1038/nrg3374 PubMed DOI

Liu B., Wendel J. F. (2000). Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43, 874–880. doi: 10.1139/g00-058 PubMed DOI

Low A. B., Rebelo A. G., Bredenkamp G. J. (1996). “Vegetation of south Africa, Lesotho and Swaziland,” in A companion to the vegetation map of south Africa, Lesotho and Swaziland (Pretoria: Dept of Environmental Affairs & Tourism; ).

Mai U., Mirarab S. (2018). TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272. doi: 10.1186/s12864-018-4620-2 PubMed DOI PMC

Mandáková T., Lysak M. A. (2016. a). “Chromosome preparation for cytogenetic analyses in Arabidopsis,” in Current protocols in plant biology. Eds. Stacey G., Birchler J., Ecker J., Martin C. R., Stitt M., Zhou J.-M. (Hoboken, NJ, USA: John Wiley & Sons, Inc; ), 43–51. doi: 10.1002/cppb.20009 PubMed DOI

Mandáková T., Lysak M. A. (2016. b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1, 359–371. doi: 10.1002/cppb.20022 PubMed DOI

Mandel J. R., Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., et al. . (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the compositae. Appl. Plant Sci. 2, 1300085. doi: 10.3732/apps.1300085 PubMed DOI PMC

Mandel J. R., Dikow R. B., Siniscalchi C. M., Thapa R., Watson L. E., Funk V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. U.S.A. 116, 14083–14088. doi: 10.1073/pnas.1903871116 PubMed DOI PMC

Manning J., Goldblatt P. (Eds.) (2012). Plants of the greater cape floristic region (Pretoria: SANBI, Biodiversity for Life; ).

Martienssen R. A. (2003). Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 35, 213–214. doi: 10.1038/ng1252 PubMed DOI

McClintock B. (1984). The significance of responses of the genome to challenge. Science 226, 792–801. doi: 10.1126/science.15739260 PubMed DOI

Mehrotra S., Goyal V. (2014). Repetitive sequences in plant nuclear DNA: Types, distribution, evolution and function. Genomics Proteomics Bioinf. 12, 164–171. doi: 10.1016/j.gpb.2014.07.003 PubMed DOI PMC

Meštrović N., Mravinac B., Pavlek M., Vojvoda-Zeljko T., Šatović E., Plohl M. (2015). Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 23, 583–596. doi: 10.1007/s10577-015-9483-7 PubMed DOI

Mucina L., Roux A., Rutherford M. C., Schmiedel U., Esler K., Powrie L., et al. . (2006). “Succulent Karoo biome,” in The vegetation of South Africa, Lesotho and Swaziland; Strelitzia (Pretoria: SANBI; ), 220–299.

Naimi B., Hamm N. A. S., Groen T. A., Skidmore A. K., Toxopeus A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203. doi: 10.1111/j.1600-0587.2013.00205.x DOI

Nesom G. L. (2020). Revised subtribal classification of Astereae (Asteraceae). Phytoneuron 53, 1–39.

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC

Noé L., Kucherov G. (2005). YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 33, W540–W543. doi: 10.1093/nar/gki478 PubMed DOI PMC

Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111. doi: 10.1093/nar/gkx257 PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. doi: 10.1093/bioinformatics/btt054 PubMed DOI

Oliver K. R., Greene W. K. (2009). Transposable elements: powerful facilitators of evolution. BioEssays 31, 703–714. doi: 10.1002/bies.200800219 PubMed DOI

Paradis E., Schliep K. (2019). Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. doi: 10.1093/bioinformatics/bty633 PubMed DOI

Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. (2020). Using SPAdes de novo assembler. Curr. Protoc. Bioinf. 70, e102. doi: 10.1002/cpbi.102 PubMed DOI

Raskina O., Barber J. C., Nevo E., Belyayev A. (2008). Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120, 351–357. doi: 10.1159/000121084 PubMed DOI

Raskina O., Brodsky L., Belyayev A. (2011). Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides . Chromosome Res. 19, 607–623. doi: 10.1007/s10577-011-9220-9 PubMed DOI

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rebelo A. G., Boucher C., Helme N., Mucina L., Rutherford M. C. (2006). “Fynbos biome,” in The vegetation of South Africa, Lesotho and Swaziland; Strelitzia. Eds. Mucina L., Rutherford M. C. (Pretoria: SANBI; ), 53–219.

Revell L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. doi: 10.1111/j.2041-210X.2011.00169.x DOI

Satović E., Vojvoda Zeljko T., Luchetti A., Mantovani B., Plohl M. (2016). Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics 17, 997. doi: 10.1186/s12864-016-3347-1 PubMed DOI PMC

Saunders V. A., Houben A. (2001). The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44, 955–961. doi: 10.1139/g01-092 PubMed DOI

Sayyari E., Mirarab S. (2016). Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654–1668. doi: 10.1093/molbev/msw079 PubMed DOI PMC

Schoener T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726. doi: 10.2307/1935534 DOI

Slater G. S. C., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 6, 31. doi: 10.1186/1471-2105-6-31 PubMed DOI PMC

Sliwinska E., Loureiro J., Leitch I. J., Šmarda P., Bainard J., Bureš P., et al. . (2022). Application-based guidelines for best practices in plant flow cytometry. Cytometry Part A. 101, 749–781. doi: 10.1002/cyto.a.24499 PubMed DOI

Snijman D. (Ed.) (2013). The extra Cape flora (Pretoria: SANBI; ).

Staton S. E., Burke J. M. (2015). Transposome: a toolkit for annotation of transposable element families from unassembled sequence reads. Bioinformatics 31, 1827–1829. doi: 10.1093/bioinformatics/btv059 PubMed DOI

Štorchová H., Hrdličková R., Chrtek J., Tetera M., Fitze D., Fehrer J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. doi: 10.2307/1223934 DOI

Tamura K., Stecher G., Kumar S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. doi: 10.1093/molbev/msab120 PubMed DOI PMC

Tange O. (2018) GNU parallel 2018 (Lulu.com; ). Available at: https://isbnsearch.org/isbn/9781387509881 (Accessed June 28, 2022).

Temsch E. M., Greilhuber J., Krisai R. (2010). Genome size in liveworts. Preslia 82, 63–80.

Tetreault H. M., Ungerer M. C. (2016). Long terminal repeat retrotransposon content in eight diploid sunflower species inferred from next-generation sequence data. G3 Genes|Genomes|Genetics 6, 2299–2308. doi: 10.1534/g3.116.029082 PubMed DOI PMC

Theodoridis S., Randin C., Broennimann O., Patsiou T., Conti E. (2013). Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia . J. Biogeograph. 40, 1278–1289. doi: 10.1111/jbi.12085 DOI

Thomas G. H., Freckleton R. P. (2012). MOTMOT: models of trait macroevolution on trees. Methods Ecol. Evol. 3, 145–151. doi: 10.1111/j.2041-210X.2011.00132.x DOI

Trávníček P., Čertner M., Ponert J., Chumová Z., Jersáková J., Suda J. (2019). Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytol. 224, 1642–1656. doi: 10.1111/nph.15996 PubMed DOI

Ufimov R., Zeisek V., Píšová S., Baker W. J., Fér T., van Loo M., et al. . (2021). Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae. Appl. Plant Sci. 9, e11442. doi: 10.1002/aps3.11442 PubMed DOI PMC

Valentin S. (2022) Geobuffer: Geodesic buffer around points (long, lat) using metric radius. r package version 0.0.0.9000. Available at: https://github.com/valentinitnelav/geobuffer (Accessed 4/4/2022).

Verboom G. A., Archibald J. K., Bakker F. T., Bellstedt D. U., Conrad F., Dreyer L. L., et al. . (2009). Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Mol. Phylogenet. Evol. 51, 44–53. doi: 10.1016/j.ympev.2008.01.037 PubMed DOI

Verboom G. A., Linder H. P., Forest F., Hoffmann V., Bergh N. G., Cowling R. M. (2014). “Cenozoic assembly of the greater cape flora,” in Fynbos: ecology, evolution, and conservation of a megadiverse region. Eds. Allsopp N., Colville J. F., Verboom G. A. (Oxford; New York: Oxford University Press; ), 93–118.

Veselý P., Bureš P., Šmarda P., Pavlíček T. (2012). Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 109, 65–75. doi: 10.1093/aob/mcr267 PubMed DOI PMC

Vitales D., Álvarez I., Garcia S., Hidalgo O., Nieto Feliner G., Pellicer J., et al. . (2020). Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Ann. Bot. 125, 611–623. doi: 10.1093/aob/mcz183 PubMed DOI PMC

Warren D. L., Glor R. E., Turelli M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x PubMed DOI

Warren D. L., Glor R. E., Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. doi: 10.1111/j.1600-0587.2009.06142.x DOI

Wei K. H.-C., Lower S. E., Caldas I. V., Sless T. J. S., Barbash D. A., Clark A. G. (2018). Variable rates of simple satellite gains across the Drosophila phylogeny. Mol. Biol. Evol. 35, 925–941. doi: 10.1093/molbev/msy005 PubMed DOI PMC

Wessler S. R. (1996). Plant retrotransposons: Turned on by stress. Curr. Biol. 6, 959–961. doi: 10.1016/S0960-9822(02)00638-3 PubMed DOI

Weyenberg G., Huggins P. M., Schardl C. L., Howe D. K., Yoshida R. (2014). Kdetrees: non-parametric estimation of phylogenetic tree distributions. Bioinformatics 30, 2280–2287. doi: 10.1093/bioinformatics/btu258 PubMed DOI PMC

Wüest R. O., Boucher F. C., Bouchenak-Khelladi Y., Karger D. N., Linder H. P. (2019). Dissecting biodiversity in a global hotspot: Uneven dynamics of immigration and diversification within the Cape Floristic Region of South Africa. J. Biogeogr. 46, 1936–1947. doi: 10.1111/jbi.13625 DOI

Yamada K. D., Tomii K., Katoh K. (2016). Application of the MAFFT sequence alignment program to large data — reexamination of the usefulness of chained guide trees. Bioinformatics 32, 3246–3251. doi: 10.1093/bioinformatics/btw412 PubMed DOI PMC

Yu Y., Ouyang Z., Guo J., Zeng W., Zhao Y., Huang L. (2021). Complete chloroplast genome sequence of Erigeron breviscapus and characterization of chloroplast regulatory elements. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.758290 PubMed DOI PMC

Zagorski D., Hartmann M., Bertrand Y. J. K., Paštová L., Slavíková R., Josefiová J., et al. . (2020). Characterization and dynamics of repeatomes in closely related species of Hieracium (Asteraceae) and their synthetic and apomictic hybrids. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.591053 PubMed DOI PMC

Zeh D. W., Zeh J. A., Ishida Y. (2009). Transposable elements and an epigenetic basis for punctuated equilibria. BioEssays 31, 715–726. doi: 10.1002/bies.200900026 PubMed DOI

Zhang C., Rabiee M., Sayyari E., Mirarab S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153. doi: 10.1186/s12859-018-2129-y PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.1cs77qn

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace