How to Tackle Phylogenetic Discordance in Recent and Rapidly Radiating Groups? Developing a Workflow Using Loricaria (Asteraceae) as an Example
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35069621
PubMed Central
PMC8777076
DOI
10.3389/fpls.2021.765719
Knihovny.cz E-zdroje
- Klíčová slova
- cytonuclear discordance, gene tree discordance, hybridization, incomplete lineage sorting, rapid radiation, workflow,
- Publikační typ
- časopisecké články MeSH
A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany The Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Acosta M. C., Premoli A. C. (2010). Evidence of chloroplast capture in South American PubMed DOI
Anderson E., Hubricht L. (1938). Hybridization in DOI
Bagheri A., Maassoumi A. A., Rahiminejad M. R., Brassac J., Blattner F. R. (2017). Molecular phylogeny and divergence times of PubMed DOI PMC
Bagley J. C., Uribe-Convers S., Carlsen M. M., Muchhala N. (2020). Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: neotropical PubMed DOI
Barker M. S., Li Z., Kidder T. I., Reardon C. R., Lai Z., Oliveira L. O., et al. (2016). Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed DOI PMC
Bruen T. C., Philippe H., Bryant D. (2006). A simple and robust statistical test for detecting the presence of recombination. PubMed DOI PMC
Bryant D., Moulton V. (2004). Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. PubMed DOI
Bushnell B. (2014).
Carlsen M. M., Fér T., Schmickl R., Leong-Škorničková J., Newman M., Kress W. J. (2018). Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. PubMed DOI
Constantinides B., Robertson D. L. (2017). Kindel: indel-aware consensus for nucleotide sequence alignments.
Contreras-Ortiz N., Atchison G. W., Hughes C. E., Madriňán S. (2018). Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean DOI
Cortés A. J., Garzón L. N., Valencia J. B., Madriñán S. (2018). On the causes of rapid diversification in the páramos: isolation by ecology and genomic divergence in PubMed DOI PMC
Cosacov A., Sérsic A. N., Sosa V., De-Nova J. A., Nylinder S., Cocucci A. A. (2009). New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of PubMed DOI
Cuatrecasas J. (1954). Synopsis der Gattung DOI
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. PubMed DOI PMC
Degnan J. H. (2018). Modeling hybridization under the network multispecies coalescent. PubMed DOI PMC
Degnan J. H., Rosenberg N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. PubMed DOI
Diazgranados M., Barber J. C. (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): a remarkable example of recent rapid radiation in sky islands. PubMed DOI PMC
Dillon M. O., Sagastegui Alva A. (1986). New species and status changes in Andean Inuleae (Asteraceae). DOI
Drummond C. S., Eastwood R. J., Miotto S. T. S., Hughes C. E. (2012). Multiple continental radiations and correlates of diversification in PubMed PMC
Escudero M., Nieto Feliner G., Pokorny L., Spalink D., Viruel J. (2020). Editorial: phylogenomic approaches to deal with particularly challenging plant lineages. PubMed DOI PMC
Esselstyn J. A., Oliveros C. H., Swanson M. T., Faircloth B. C. (2017). Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. PubMed DOI PMC
Fér T., Schmickl R. E. (2018). HybPhyloMaker: target enrichment data analysis from raw reads to species trees. PubMed DOI PMC
Fitch W. M. (1970). Distinguishing homologous from analogous proteins. PubMed DOI
Flantua S. G. A., O’Dea A., Onstein R. E., Giraldo C., Hooghiemstra H. (2019). The flickering connectivity system of the north Andean páramos. DOI
Folk R. A., Mandel J. R., Freudenstein J. V. (2015). A protocol for targeted enrichment of intron-containing sequence markers for recent radiations: a phylogenomic example from PubMed DOI PMC
Folk R. A., Soltis P. S., Soltis D. E., Guralnick R. (2018). New prospects in the detection and comparative analysis of hybridization in the tree of life. PubMed DOI
Gabaldón T. (2008). Large-scale assignment of orthology: back to phylogenetics? PubMed DOI PMC
Galbany-Casals M., Andrés-Sánchez S., Garcia-Jacas N., Susanna A., Rico E., Martínez-Ortega M. M. (2010). How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. DOI
Galbany-Casals M., Unwin M., Smissen R. D., Susanna A., Bayer R. J. (2014). Phylogenetic relationships in
Gardner E. M., Johnson M. G., Pereira J. T., Puad A. S. A., Arifiani D., Wickett N. J., et al. (2021). Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus ( PubMed DOI PMC
Givnish T. J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. PubMed
Gizaw A., Gorospe J. M., Kandziora M., Chala D., Gustafsson L., Zinaw A., et al. (2021). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios DOI
Grunewald S., Spillner A., Bastkowski S., Bogershausen A., Moulton V. (2013). SuperQ: computing supernetworks from quartets. PubMed DOI
Hind D. J. N. (2004). A new species of DOI
Hooghiemstra H., Van der Hammen T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. PubMed DOI PMC
Huang C.-H., Zhang C., Liu M., Hu Y., Gao T., Qi J., et al. (2016). Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. PubMed DOI PMC
Huson D. H. (1998). SplitsTree: analyzing and visualizing evolutionary data. PubMed DOI
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. PubMed DOI
Jiang X., Edwards S. V., Liu L. (2020). The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets. PubMed DOI PMC
Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. (2016). HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. PubMed DOI PMC
Johnson M. G., Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., et al. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-Medoids clustering. PubMed DOI PMC
Jones K. E., Fér T., Schmickl R. E., Dikow R. B., Funk V. A., Herrando-Moraira S., et al. (2019). An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. PubMed DOI PMC
Kamneva O. K., Syring J., Liston A., Rosenberg N. A. (2017). Evaluating allopolyploid origins in strawberries ( PubMed DOI PMC
Kandziora M., Kadereit J. W., Gehrke B. (2016). Frequent colonization and little in situ speciation in PubMed DOI
Katoh K., Kuma K., Toh H., Miyata T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. PubMed DOI PMC
Kolář F., Dušková E., Sklenář P. (2016). Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes. PubMed DOI
Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. PubMed DOI PMC
Larridon I., Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., et al. (2020). Tackling rapid radiations with targeted sequencing. PubMed DOI PMC
Lee-Yaw J. A., Grassa C. J., Joly S., Andrew R. L., Rieseberg L. H. (2019). An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers ( PubMed DOI
Li H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. PubMed DOI PMC
Liu B.-B., Campbell C. S., Hong D.-Y., Wen J. (2020). Phylogenetic relationships and chloroplast capture in the PubMed DOI
Liu L., Edwards S. V. (2009). Phylogenetic analysis in the anomaly zone. PubMed DOI
Maddison W. P. (1997). Gene trees in species trees.
Madriñán S., Cortés A. J., Richardson J. E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. PubMed DOI PMC
Magallon S., Sanderson M. J. (2001). Absolute diversification rates in angiosperm clades. PubMed
Malinsky M., Matschiner M., Svardal H. (2021). Dsuite - Fast D-statistics and related admixture evidence from VCF files. PubMed DOI PMC
Mandel J. R., Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., et al. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. PubMed DOI PMC
Mandel J. R., Dikow R. B., Siniscalchi C. M., Thapa R., Watson L. E., Funk V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. PubMed DOI PMC
McLay T. G. B., Birch J. L., Gunn B. F., Ning W., Tate J. A., Nauheimer L., et al. (2021). New targets acquired: improving locus recovery from the Angiosperms353 probe set. PubMed DOI PMC
Meier J. I., Marques D. A., Mwaiko S., Wagner C. E., Excoffier L., Seehausen O. (2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. PubMed DOI PMC
Mirarab S., Bayzid M. S., Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. PubMed
Molloy E. K., Warnow T. (2018). To include or not to include: the impact of gene filtering on species tree estimation methods. PubMed DOI
Morales-Briones D. F., Kadereit G., Tefarikis D. T., Moore M. J., Smith S. A., Brockington S. F., et al. (2021). Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. PubMed DOI PMC
Morales-Briones D. F., Liston A., Tank D. C. (2018). Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus PubMed DOI
Mutke J., Jacobs R., Meyers K., Henning T., Weigend M. (2014). Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny. PubMed DOI PMC
Nevado B., Contreras-Ortiz N., Hughes C., Filatov D. A. (2018). Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. PubMed DOI
Nie Z.-L., Funk V. A., Meng Y., Deng T., Sun H., Wen J. (2016). Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). PubMed DOI
Nute M., Chou J., Molloy E. K., Warnow T. (2018). The performance of coalescent-based species tree estimation methods under models of missing data. PubMed DOI PMC
Ogutcen E., Christe C., Nishii K., Salamin N., Möller M., Perret M. (2021). Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. PubMed DOI
Ottenlips M. V., Mansfield D. H., Buerki S., Feist M. A. E., Downie S. R., Dodsworth S., et al. (2021). Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the PubMed DOI PMC
Page A. J., Taylor B., Delaney A. J., Soares J., Seemann T., Keane J. A., et al. (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. PubMed DOI PMC
Panero J. L., Crozier B. S. (2016). Macroevolutionary dynamics in the early diversification of Asteraceae. PubMed DOI
Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., et al. (2012). Ancient admixture in human history. PubMed DOI PMC
Pirie M. D., Oliver E. G. H., Mugrabi de Kuppler A., Gehrke B., Le Maitre N. C., Kandziora M., et al. (2016). The biodiversity hotspot as evolutionary hot-bed: spectacular radiation of PubMed DOI PMC
Quintana C., Pennington R. T., Ulloa C. U., Balslev H. (2017). Biogeographic barriers in the Andes: is the Amotape—Huancabamba zone a dispersal barrier for dry forest plants? DOI
Reddy S., Kimball R. T., Pandey A., Hosner P. A., Braun M. J., Hackett S. J., et al. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. PubMed DOI
Richter M., Diertl K.-H., Emck P., Peters T., Beck E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. DOI
Rieseberg L. H., Soltis D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants.
Roch S., Steel M. (2015). Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. PubMed DOI
Sayyari E., Mirarab S. (2018). Testing for polytomies in phylogenetic species trees using quartet frequencies. PubMed PMC
Sayyari E., Whitfield J. B., Mirarab S. (2018). DiscoVista: interpretable visualizations of gene tree discordance. PubMed DOI
Schluter D. (2000).
Shah T., Schneider J. V., Zizka G., Maurin O., Baker W., Forest F., et al. (2021). Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. PubMed DOI
Siniscalchi C. M., Hidalgo O., Palazzesi L., Pellicer J., Pokorny L., Maurin O., et al. (2021). Lineage-specific vs. universal: a comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. PubMed DOI PMC
Siniscalchi C. M., Loeuille B., Funk V. A., Mandel J. R., Pirani J. R. (2019). Phylogenomics yields new insight into relationships within Vernonieae (Asteraceae). PubMed DOI PMC
Sklenář P., Dušková E., Balslev H. (2011). Tropical and Temperate: evolutionary history of Páramo Flora. DOI
Slatkin M., Pollack J. L. (2006). The concordance of gene trees and species trees at two linked loci. PubMed DOI PMC
Smissen R. D., Galbany-Casals M., Breitwieser I. (2011). Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades.
Smith S. A., Moore M. J., Brown J. W., Yang Y. (2015). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. PubMed DOI PMC
Smith S. A., Walker-Hale N., Walker J. F. (2020). Intragenic conflict in phylogenomic data sets. PubMed DOI
Solís-Lemus C., Bastide P., Ané C. (2017). PhyloNetworks: a package for phylogenetic networks. PubMed DOI
Song S., Liu L., Edwards S. V., Wu S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC
Sun M., Soltis D. E., Soltis P. S., Zhu X., Burleigh J. G., Chen Z. (2015). Deep phylogenetic incongruence in the angiosperm clade Rosidae. PubMed DOI
Than C., Ruths D., Nakhleh L. (2008). PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. PubMed DOI PMC
Thomas A. E., Igea J., Meudt H. M., Albach D. C., Lee W. G., Tanentzap A. J. (2021). Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand PubMed DOI
Townsend J. P. (2007). Profiling phylogenetic informativeness. PubMed DOI
Ufimov R., Zeisek V., Píšová S., Baker W. J., Fér T., Loo M., et al. (2021). Relative performance of customized and universal probe sets in target enrichment: a case study in subtribe Malinae. PubMed DOI PMC
Vachaspati P., Warnow T. (2015). ASTRID: accurate species TRees from internode distances. PubMed DOI PMC
Van der Hammen T. (1985). The Plio-Pleistocene climatic record of the tropical Andes. DOI
Vargas O. M., Ortiz E. M., Simpson B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: PubMed DOI
Watson L. E., Siniscalchi C. M., Mandel J. (2020). Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae. DOI
Weitemier K., Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. PubMed DOI PMC
Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. PubMed DOI
Whitfield J. B., Lockhart P. J. (2007). Deciphering ancient rapid radiations. PubMed DOI
Xiang Y., Huang C.-H., Hu Y., Wen J., Li S., Yi T., et al. (2017). Evolution of rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. PubMed DOI PMC
Yan Z., Smith M. L., Du P., Hahn M. W., Nakhleh L. (2021). Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. PubMed DOI PMC
Yang Y., Smith S. A. (2014). Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. PubMed DOI PMC
Zhang C., Huang C.-H., Liu M., Hu Y., Panero J. L., Luebert F., et al. (2021). Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. PubMed DOI
Zhang C., Sayyari E., Mirarab S. (2017). “ASTRAL-III: increased Scalability and Impacts of Contracting Low Support Branches,” in
Zhang C., Scornavacca C., Molloy E. K., Mirarab S. (2020a). ASTRAL-Pro: quartet-based species-tree inference despite paralogy. PubMed DOI PMC
Zhang C., Zhang T., Luebert F., Xiang Y., Huang C.-H., Hu Y., et al. (2020b). Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. PubMed DOI
Zhu J., Liu X., Ogilvie H. A., Nakhleh L. K. (2019). A divide-and-conquer method for scalable phylogenetic network inference from multilocus data. PubMed DOI PMC