How to Tackle Phylogenetic Discordance in Recent and Rapidly Radiating Groups? Developing a Workflow Using Loricaria (Asteraceae) as an Example

. 2021 ; 12 () : 765719. [epub] 20220107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35069621

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.

Zobrazit více v PubMed

Acosta M. C., Premoli A. C. (2010). Evidence of chloroplast capture in South American PubMed DOI

Anderson E., Hubricht L. (1938). Hybridization in DOI

Bagheri A., Maassoumi A. A., Rahiminejad M. R., Brassac J., Blattner F. R. (2017). Molecular phylogeny and divergence times of PubMed DOI PMC

Bagley J. C., Uribe-Convers S., Carlsen M. M., Muchhala N. (2020). Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: neotropical PubMed DOI

Barker M. S., Li Z., Kidder T. I., Reardon C. R., Lai Z., Oliveira L. O., et al. (2016). Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. PubMed DOI

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed DOI PMC

Bruen T. C., Philippe H., Bryant D. (2006). A simple and robust statistical test for detecting the presence of recombination. PubMed DOI PMC

Bryant D., Moulton V. (2004). Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. PubMed DOI

Bushnell B. (2014).

Carlsen M. M., Fér T., Schmickl R., Leong-Škorničková J., Newman M., Kress W. J. (2018). Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. PubMed DOI

Constantinides B., Robertson D. L. (2017). Kindel: indel-aware consensus for nucleotide sequence alignments.

Contreras-Ortiz N., Atchison G. W., Hughes C. E., Madriňán S. (2018). Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean DOI

Cortés A. J., Garzón L. N., Valencia J. B., Madriñán S. (2018). On the causes of rapid diversification in the páramos: isolation by ecology and genomic divergence in PubMed DOI PMC

Cosacov A., Sérsic A. N., Sosa V., De-Nova J. A., Nylinder S., Cocucci A. A. (2009). New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of PubMed DOI

Cuatrecasas J. (1954). Synopsis der Gattung DOI

Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. PubMed DOI PMC

Degnan J. H. (2018). Modeling hybridization under the network multispecies coalescent. PubMed DOI PMC

Degnan J. H., Rosenberg N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. PubMed DOI

Diazgranados M., Barber J. C. (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): a remarkable example of recent rapid radiation in sky islands. PubMed DOI PMC

Dillon M. O., Sagastegui Alva A. (1986). New species and status changes in Andean Inuleae (Asteraceae). DOI

Drummond C. S., Eastwood R. J., Miotto S. T. S., Hughes C. E. (2012). Multiple continental radiations and correlates of diversification in PubMed PMC

Escudero M., Nieto Feliner G., Pokorny L., Spalink D., Viruel J. (2020). Editorial: phylogenomic approaches to deal with particularly challenging plant lineages. PubMed DOI PMC

Esselstyn J. A., Oliveros C. H., Swanson M. T., Faircloth B. C. (2017). Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. PubMed DOI PMC

Fér T., Schmickl R. E. (2018). HybPhyloMaker: target enrichment data analysis from raw reads to species trees. PubMed DOI PMC

Fitch W. M. (1970). Distinguishing homologous from analogous proteins. PubMed DOI

Flantua S. G. A., O’Dea A., Onstein R. E., Giraldo C., Hooghiemstra H. (2019). The flickering connectivity system of the north Andean páramos. DOI

Folk R. A., Mandel J. R., Freudenstein J. V. (2015). A protocol for targeted enrichment of intron-containing sequence markers for recent radiations: a phylogenomic example from PubMed DOI PMC

Folk R. A., Soltis P. S., Soltis D. E., Guralnick R. (2018). New prospects in the detection and comparative analysis of hybridization in the tree of life. PubMed DOI

Gabaldón T. (2008). Large-scale assignment of orthology: back to phylogenetics? PubMed DOI PMC

Galbany-Casals M., Andrés-Sánchez S., Garcia-Jacas N., Susanna A., Rico E., Martínez-Ortega M. M. (2010). How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. DOI

Galbany-Casals M., Unwin M., Smissen R. D., Susanna A., Bayer R. J. (2014). Phylogenetic relationships in

Gardner E. M., Johnson M. G., Pereira J. T., Puad A. S. A., Arifiani D., Wickett N. J., et al. (2021). Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus ( PubMed DOI PMC

Givnish T. J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. PubMed

Gizaw A., Gorospe J. M., Kandziora M., Chala D., Gustafsson L., Zinaw A., et al. (2021). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios DOI

Grunewald S., Spillner A., Bastkowski S., Bogershausen A., Moulton V. (2013). SuperQ: computing supernetworks from quartets. PubMed DOI

Hind D. J. N. (2004). A new species of DOI

Hooghiemstra H., Van der Hammen T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. PubMed DOI PMC

Huang C.-H., Zhang C., Liu M., Hu Y., Gao T., Qi J., et al. (2016). Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. PubMed DOI PMC

Huson D. H. (1998). SplitsTree: analyzing and visualizing evolutionary data. PubMed DOI

Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. PubMed DOI

Jiang X., Edwards S. V., Liu L. (2020). The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets. PubMed DOI PMC

Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. (2016). HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. PubMed DOI PMC

Johnson M. G., Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., et al. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-Medoids clustering. PubMed DOI PMC

Jones K. E., Fér T., Schmickl R. E., Dikow R. B., Funk V. A., Herrando-Moraira S., et al. (2019). An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. PubMed DOI PMC

Kamneva O. K., Syring J., Liston A., Rosenberg N. A. (2017). Evaluating allopolyploid origins in strawberries ( PubMed DOI PMC

Kandziora M., Kadereit J. W., Gehrke B. (2016). Frequent colonization and little in situ speciation in PubMed DOI

Katoh K., Kuma K., Toh H., Miyata T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. PubMed DOI PMC

Kolář F., Dušková E., Sklenář P. (2016). Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes. PubMed DOI

Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. PubMed DOI PMC

Larridon I., Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., et al. (2020). Tackling rapid radiations with targeted sequencing. PubMed DOI PMC

Lee-Yaw J. A., Grassa C. J., Joly S., Andrew R. L., Rieseberg L. H. (2019). An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers ( PubMed DOI

Li H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. PubMed DOI PMC

Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. PubMed DOI PMC

Liu B.-B., Campbell C. S., Hong D.-Y., Wen J. (2020). Phylogenetic relationships and chloroplast capture in the PubMed DOI

Liu L., Edwards S. V. (2009). Phylogenetic analysis in the anomaly zone. PubMed DOI

Maddison W. P. (1997). Gene trees in species trees.

Madriñán S., Cortés A. J., Richardson J. E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. PubMed DOI PMC

Magallon S., Sanderson M. J. (2001). Absolute diversification rates in angiosperm clades. PubMed

Malinsky M., Matschiner M., Svardal H. (2021). Dsuite - Fast D-statistics and related admixture evidence from VCF files. PubMed DOI PMC

Mandel J. R., Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., et al. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. PubMed DOI PMC

Mandel J. R., Dikow R. B., Siniscalchi C. M., Thapa R., Watson L. E., Funk V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. PubMed DOI PMC

McLay T. G. B., Birch J. L., Gunn B. F., Ning W., Tate J. A., Nauheimer L., et al. (2021). New targets acquired: improving locus recovery from the Angiosperms353 probe set. PubMed DOI PMC

Meier J. I., Marques D. A., Mwaiko S., Wagner C. E., Excoffier L., Seehausen O. (2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. PubMed DOI PMC

Mirarab S., Bayzid M. S., Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. PubMed

Molloy E. K., Warnow T. (2018). To include or not to include: the impact of gene filtering on species tree estimation methods. PubMed DOI

Morales-Briones D. F., Kadereit G., Tefarikis D. T., Moore M. J., Smith S. A., Brockington S. F., et al. (2021). Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. PubMed DOI PMC

Morales-Briones D. F., Liston A., Tank D. C. (2018). Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus PubMed DOI

Mutke J., Jacobs R., Meyers K., Henning T., Weigend M. (2014). Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny. PubMed DOI PMC

Nevado B., Contreras-Ortiz N., Hughes C., Filatov D. A. (2018). Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. PubMed DOI

Nie Z.-L., Funk V. A., Meng Y., Deng T., Sun H., Wen J. (2016). Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). PubMed DOI

Nute M., Chou J., Molloy E. K., Warnow T. (2018). The performance of coalescent-based species tree estimation methods under models of missing data. PubMed DOI PMC

Ogutcen E., Christe C., Nishii K., Salamin N., Möller M., Perret M. (2021). Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. PubMed DOI

Ottenlips M. V., Mansfield D. H., Buerki S., Feist M. A. E., Downie S. R., Dodsworth S., et al. (2021). Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the PubMed DOI PMC

Page A. J., Taylor B., Delaney A. J., Soares J., Seemann T., Keane J. A., et al. (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. PubMed DOI PMC

Panero J. L., Crozier B. S. (2016). Macroevolutionary dynamics in the early diversification of Asteraceae. PubMed DOI

Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., et al. (2012). Ancient admixture in human history. PubMed DOI PMC

Pirie M. D., Oliver E. G. H., Mugrabi de Kuppler A., Gehrke B., Le Maitre N. C., Kandziora M., et al. (2016). The biodiversity hotspot as evolutionary hot-bed: spectacular radiation of PubMed DOI PMC

Quintana C., Pennington R. T., Ulloa C. U., Balslev H. (2017). Biogeographic barriers in the Andes: is the Amotape—Huancabamba zone a dispersal barrier for dry forest plants? DOI

Reddy S., Kimball R. T., Pandey A., Hosner P. A., Braun M. J., Hackett S. J., et al. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. PubMed DOI

Richter M., Diertl K.-H., Emck P., Peters T., Beck E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. DOI

Rieseberg L. H., Soltis D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants.

Roch S., Steel M. (2015). Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. PubMed DOI

Sayyari E., Mirarab S. (2018). Testing for polytomies in phylogenetic species trees using quartet frequencies. PubMed PMC

Sayyari E., Whitfield J. B., Mirarab S. (2018). DiscoVista: interpretable visualizations of gene tree discordance. PubMed DOI

Schluter D. (2000).

Shah T., Schneider J. V., Zizka G., Maurin O., Baker W., Forest F., et al. (2021). Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. PubMed DOI

Siniscalchi C. M., Hidalgo O., Palazzesi L., Pellicer J., Pokorny L., Maurin O., et al. (2021). Lineage-specific vs. universal: a comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. PubMed DOI PMC

Siniscalchi C. M., Loeuille B., Funk V. A., Mandel J. R., Pirani J. R. (2019). Phylogenomics yields new insight into relationships within Vernonieae (Asteraceae). PubMed DOI PMC

Sklenář P., Dušková E., Balslev H. (2011). Tropical and Temperate: evolutionary history of Páramo Flora. DOI

Slatkin M., Pollack J. L. (2006). The concordance of gene trees and species trees at two linked loci. PubMed DOI PMC

Smissen R. D., Galbany-Casals M., Breitwieser I. (2011). Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades.

Smith S. A., Moore M. J., Brown J. W., Yang Y. (2015). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. PubMed DOI PMC

Smith S. A., Walker-Hale N., Walker J. F. (2020). Intragenic conflict in phylogenomic data sets. PubMed DOI

Solís-Lemus C., Bastide P., Ané C. (2017). PhyloNetworks: a package for phylogenetic networks. PubMed DOI

Song S., Liu L., Edwards S. V., Wu S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. PubMed DOI PMC

Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC

Sun M., Soltis D. E., Soltis P. S., Zhu X., Burleigh J. G., Chen Z. (2015). Deep phylogenetic incongruence in the angiosperm clade Rosidae. PubMed DOI

Than C., Ruths D., Nakhleh L. (2008). PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. PubMed DOI PMC

Thomas A. E., Igea J., Meudt H. M., Albach D. C., Lee W. G., Tanentzap A. J. (2021). Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand PubMed DOI

Townsend J. P. (2007). Profiling phylogenetic informativeness. PubMed DOI

Ufimov R., Zeisek V., Píšová S., Baker W. J., Fér T., Loo M., et al. (2021). Relative performance of customized and universal probe sets in target enrichment: a case study in subtribe Malinae. PubMed DOI PMC

Vachaspati P., Warnow T. (2015). ASTRID: accurate species TRees from internode distances. PubMed DOI PMC

Van der Hammen T. (1985). The Plio-Pleistocene climatic record of the tropical Andes. DOI

Vargas O. M., Ortiz E. M., Simpson B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: PubMed DOI

Watson L. E., Siniscalchi C. M., Mandel J. (2020). Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae. DOI

Weitemier K., Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. PubMed DOI PMC

Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. PubMed DOI

Whitfield J. B., Lockhart P. J. (2007). Deciphering ancient rapid radiations. PubMed DOI

Xiang Y., Huang C.-H., Hu Y., Wen J., Li S., Yi T., et al. (2017). Evolution of rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. PubMed DOI PMC

Yan Z., Smith M. L., Du P., Hahn M. W., Nakhleh L. (2021). Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. PubMed DOI PMC

Yang Y., Smith S. A. (2014). Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. PubMed DOI PMC

Zhang C., Huang C.-H., Liu M., Hu Y., Panero J. L., Luebert F., et al. (2021). Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. PubMed DOI

Zhang C., Sayyari E., Mirarab S. (2017). “ASTRAL-III: increased Scalability and Impacts of Contracting Low Support Branches,” in

Zhang C., Scornavacca C., Molloy E. K., Mirarab S. (2020a). ASTRAL-Pro: quartet-based species-tree inference despite paralogy. PubMed DOI PMC

Zhang C., Zhang T., Luebert F., Xiang Y., Huang C.-H., Hu Y., et al. (2020b). Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. PubMed DOI

Zhu J., Liu X., Ogilvie H. A., Nakhleh L. K. (2019). A divide-and-conquer method for scalable phylogenetic network inference from multilocus data. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...