How to Tackle Phylogenetic Discordance in Recent and Rapidly Radiating Groups? Developing a Workflow Using Loricaria (Asteraceae) as an Example
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35069621
PubMed Central
PMC8777076
DOI
10.3389/fpls.2021.765719
Knihovny.cz E-zdroje
- Klíčová slova
- cytonuclear discordance, gene tree discordance, hybridization, incomplete lineage sorting, rapid radiation, workflow,
- Publikační typ
- časopisecké články MeSH
A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany The Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Acosta M. C., Premoli A. C. (2010). Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54 235–242. 10.1016/j.ympev.2009.08.008 PubMed DOI
Anderson E., Hubricht L. (1938). Hybridization in Tradescantia. III. The evidence for introgressive hybridization. Am. J. Bot. 25 396–402. 10.2307/2436413 DOI
Bagheri A., Maassoumi A. A., Rahiminejad M. R., Brassac J., Blattner F. R. (2017). Molecular phylogeny and divergence times of Astragalus section Hymenostegis: an analysis of a rapidly diversifying species group in Fabaceae. Sci. Rep. 7:14033. 10.1038/s41598-017-14614-3 PubMed DOI PMC
Bagley J. C., Uribe-Convers S., Carlsen M. M., Muchhala N. (2020). Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: neotropical Burmeistera bellflowers as a case study. Mol. Phylogenet. Evol. 152:106769. 10.1016/j.ympev.2020.106769 PubMed DOI
Barker M. S., Li Z., Kidder T. I., Reardon C. R., Lai Z., Oliveira L. O., et al. (2016). Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am. J. Bot. 103 1203–1211. 10.3732/ajb.1600113 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bruen T. C., Philippe H., Bryant D. (2006). A simple and robust statistical test for detecting the presence of recombination. Genetics 172 2665–2681. 10.1534/genetics.105.048975 PubMed DOI PMC
Bryant D., Moulton V. (2004). Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21 255–265. 10.1093/molbev/msh018 PubMed DOI
Bushnell B. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner (No. LBNL-7065E). Berkeley, CA: Lawrence Berkeley National Lab (LBNL).
Carlsen M. M., Fér T., Schmickl R., Leong-Škorničková J., Newman M., Kress W. J. (2018). Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. Mol. Phylogenet. Evol. 128 55–68. 10.1016/j.ympev.2018.07.020 PubMed DOI
Constantinides B., Robertson D. L. (2017). Kindel: indel-aware consensus for nucleotide sequence alignments. J. Open Source Softw. 2:282.
Contreras-Ortiz N., Atchison G. W., Hughes C. E., Madriňán S. (2018). Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean Lupinus (Fabaceae). Botanical J. Linnean Soc. 187 118–136. 10.1093/botlinnean/box095 DOI
Cortés A. J., Garzón L. N., Valencia J. B., Madriñán S. (2018). On the causes of rapid diversification in the páramos: isolation by ecology and genomic divergence in Espeletia. Front. Plant Sci. 9:1700. 10.3389/fpls.2018.01700 PubMed DOI PMC
Cosacov A., Sérsic A. N., Sosa V., De-Nova J. A., Nylinder S., Cocucci A. A. (2009). New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am. J. Bot. 96 2240–2255. 10.3732/ajb.0900165 PubMed DOI
Cuatrecasas J. (1954). Synopsis der Gattung Loricaria Wedd. Feddes Repert 56 149–172. 10.1002/fedr.19540560204 DOI
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. Bioinformatics 27 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Degnan J. H. (2018). Modeling hybridization under the network multispecies coalescent. Syst. Biol. 67 786–799. 10.1093/sysbio/syy040 PubMed DOI PMC
Degnan J. H., Rosenberg N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24 332–340. 10.1016/j.tree.2009.01.009 PubMed DOI
Diazgranados M., Barber J. C. (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): a remarkable example of recent rapid radiation in sky islands. PeerJ 5:e2968. 10.7717/peerj.2968 PubMed DOI PMC
Dillon M. O., Sagastegui Alva A. (1986). New species and status changes in Andean Inuleae (Asteraceae). Phytologia 59 227–233. 10.5962/bhl.part.2767 PubMed DOI
Drummond C. S., Eastwood R. J., Miotto S. T. S., Hughes C. E. (2012). Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst. Biol. 61 443–460. PubMed PMC
Escudero M., Nieto Feliner G., Pokorny L., Spalink D., Viruel J. (2020). Editorial: phylogenomic approaches to deal with particularly challenging plant lineages. Front. Plant Sci. 11:591762. 10.3389/fpls.2020.591762 PubMed DOI PMC
Esselstyn J. A., Oliveros C. H., Swanson M. T., Faircloth B. C. (2017). Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol. Evol. 9 2308–2321. 10.1093/gbe/evx168 PubMed DOI PMC
Fér T., Schmickl R. E. (2018). HybPhyloMaker: target enrichment data analysis from raw reads to species trees. Evol. Bioinform. 14:1176934317742613. 10.1177/1176934317742613 PubMed DOI PMC
Fitch W. M. (1970). Distinguishing homologous from analogous proteins. Syst. Biol. 19 99–113. 10.2307/2412448 PubMed DOI
Flantua S. G. A., O’Dea A., Onstein R. E., Giraldo C., Hooghiemstra H. (2019). The flickering connectivity system of the north Andean páramos. J. Biogeogr. 46 1808–1825. 10.1111/jbi.13607 DOI
Folk R. A., Mandel J. R., Freudenstein J. V. (2015). A protocol for targeted enrichment of intron-containing sequence markers for recent radiations: a phylogenomic example from Heuchera (Saxifragaceae). Appl. Plant Sci. 3:1500039. 10.3732/apps.1500039 PubMed DOI PMC
Folk R. A., Soltis P. S., Soltis D. E., Guralnick R. (2018). New prospects in the detection and comparative analysis of hybridization in the tree of life. Am. J. Bot. 105 364–375. 10.1002/ajb2.1018 PubMed DOI
Gabaldón T. (2008). Large-scale assignment of orthology: back to phylogenetics? Genome Biol. 9:235. 10.1186/gb-2008-9-10-235 PubMed DOI PMC
Galbany-Casals M., Andrés-Sánchez S., Garcia-Jacas N., Susanna A., Rico E., Martínez-Ortega M. M. (2010). How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 59 1671–1689. 10.1002/tax.596003 DOI
Galbany-Casals M., Unwin M., Smissen R. D., Susanna A., Bayer R. J. (2014). Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon 63 608–624.
Gardner E. M., Johnson M. G., Pereira J. T., Puad A. S. A., Arifiani D., Wickett N. J., et al. (2021). Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus (Artocarpus, Moraceae). Syst. Biol. 70 558–575. 10.1093/sysbio/syaa073 PubMed DOI PMC
Givnish T. J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207 297–303. PubMed
Gizaw A., Gorospe J. M., Kandziora M., Chala D., Gustafsson L., Zinaw A., et al. (2021). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios Dendrosenecio. Alpine Bot. 1–17. 10.1007/s00035-021-00268-5 DOI
Grunewald S., Spillner A., Bastkowski S., Bogershausen A., Moulton V. (2013). SuperQ: computing supernetworks from quartets. IEEE/ACM Trans. Computat. Biol. Bioinform. 10 151–160. 10.1109/TCBB.2013.8 PubMed DOI
Hind D. J. N. (2004). A new species of Loricaria (Compositae: Inuleae sensu lato) from Ecuador. Kew Bull. 59:541. 10.2307/4110908 DOI
Hooghiemstra H., Van der Hammen T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosop. Trans. R. Soc. B 359 173–181. 10.1098/rstb.2003.1420 PubMed DOI PMC
Huang C.-H., Zhang C., Liu M., Hu Y., Gao T., Qi J., et al. (2016). Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33 2820–2835. 10.1093/molbev/msw157 PubMed DOI PMC
Huson D. H. (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14 68–73. 10.1093/bioinformatics/14.1.68 PubMed DOI
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23 254–267. 10.1093/molbev/msj030 PubMed DOI
Jiang X., Edwards S. V., Liu L. (2020). The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets. Syst. Biol. 69 795–812. 10.1093/sysbio/syaa008 PubMed DOI PMC
Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. (2016). HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4:1600016. 10.3732/apps.1600016 PubMed DOI PMC
Johnson M. G., Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., et al. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-Medoids clustering. Syst. Biol. 68 594–606. 10.1093/sysbio/syy086 PubMed DOI PMC
Jones K. E., Fér T., Schmickl R. E., Dikow R. B., Funk V. A., Herrando-Moraira S., et al. (2019). An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. Appl. Plant Sci. 7:e11295. 10.1002/aps3.11295 PubMed DOI PMC
Kamneva O. K., Syring J., Liston A., Rosenberg N. A. (2017). Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evol. Biol. 17:180. 10.1186/s12862-017-1019-7 PubMed DOI PMC
Kandziora M., Kadereit J. W., Gehrke B. (2016). Frequent colonization and little in situ speciation in Senecio in the tropical alpine-like islands of eastern Africa. Am. J. Bot. 103 1483–1498. 10.3732/ajb.1600210 PubMed DOI
Katoh K., Kuma K., Toh H., Miyata T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33 511–518. 10.1093/nar/gki198 PubMed DOI PMC
Kolář F., Dušková E., Sklenář P. (2016). Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes. Mol. Ecol. 25 4593–4610. 10.1111/mec.13788 PubMed DOI
Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 4453–4455. 10.1093/bioinformatics/btz305 PubMed DOI PMC
Larridon I., Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., et al. (2020). Tackling rapid radiations with targeted sequencing. Front. Plant Sci. 10:1655. 10.3389/fpls.2019.01655 PubMed DOI PMC
Lee-Yaw J. A., Grassa C. J., Joly S., Andrew R. L., Rieseberg L. H. (2019). An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). New Phytol. 221 515–526. 10.1111/nph.15386 PubMed DOI
Li H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinform. 27 2987–2993. 10.1093/bioinformatics/btr509 PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinform. 25 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Liu B.-B., Campbell C. S., Hong D.-Y., Wen J. (2020). Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol. Phylogenet. Evol. 147:106784. 10.1016/j.ympev.2020.106784 PubMed DOI
Liu L., Edwards S. V. (2009). Phylogenetic analysis in the anomaly zone. Syst. Biol. 58 452–460. 10.1093/sysbio/syp034 PubMed DOI
Maddison W. P. (1997). Gene trees in species trees. Syst. Biol. 46 523–536.
Madriñán S., Cortés A. J., Richardson J. E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front. Genet. 4:192. 10.3389/fgene.2013.00192 PubMed DOI PMC
Magallon S., Sanderson M. J. (2001). Absolute diversification rates in angiosperm clades. Evolution 55 1762–1780. PubMed
Malinsky M., Matschiner M., Svardal H. (2021). Dsuite - Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21 584–595. 10.1111/1755-0998.13265 PubMed DOI PMC
Mandel J. R., Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., et al. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Appl. Plant Sci. 2:1300085. 10.3732/apps.1300085 PubMed DOI PMC
Mandel J. R., Dikow R. B., Siniscalchi C. M., Thapa R., Watson L. E., Funk V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. U.S.A. 116 14083–14088. 10.1073/pnas.1903871116 PubMed DOI PMC
McLay T. G. B., Birch J. L., Gunn B. F., Ning W., Tate J. A., Nauheimer L., et al. (2021). New targets acquired: improving locus recovery from the Angiosperms353 probe set. Appl. Plant Sci. 9:10.1002/as3.11420. 10.1002/aps3.11420 PubMed DOI PMC
Meier J. I., Marques D. A., Mwaiko S., Wagner C. E., Excoffier L., Seehausen O. (2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8:14363. 10.1038/ncomms14363 PubMed DOI PMC
Mirarab S., Bayzid M. S., Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Syst. Biol. 65 366–380. PubMed
Molloy E. K., Warnow T. (2018). To include or not to include: the impact of gene filtering on species tree estimation methods. Syst. Biol. 67 285–303. 10.1093/sysbio/syx077 PubMed DOI
Morales-Briones D. F., Kadereit G., Tefarikis D. T., Moore M. J., Smith S. A., Brockington S. F., et al. (2021). Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70 219–235. 10.1093/sysbio/syaa066 PubMed DOI PMC
Morales-Briones D. F., Liston A., Tank D. C. (2018). Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218 1668–1684. 10.1111/nph.15099 PubMed DOI
Mutke J., Jacobs R., Meyers K., Henning T., Weigend M. (2014). Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny. Front. Genet. 5:351. 10.3389/fgene.2014.00351 PubMed DOI PMC
Nevado B., Contreras-Ortiz N., Hughes C., Filatov D. A. (2018). Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytologist 219 779–793. 10.1111/nph.15243 PubMed DOI
Nie Z.-L., Funk V. A., Meng Y., Deng T., Sun H., Wen J. (2016). Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytologist 209 1795–1806. 10.1111/nph.13740 PubMed DOI
Nute M., Chou J., Molloy E. K., Warnow T. (2018). The performance of coalescent-based species tree estimation methods under models of missing data. BMC Genomics 19:286. 10.1186/s12864-018-4619-8 PubMed DOI PMC
Ogutcen E., Christe C., Nishii K., Salamin N., Möller M., Perret M. (2021). Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. Mol. Phylogenet. Evol. 157:107068. 10.1016/j.ympev.2021.107068 PubMed DOI
Ottenlips M. V., Mansfield D. H., Buerki S., Feist M. A. E., Downie S. R., Dodsworth S., et al. (2021). Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex. Am. J. Bot. 108 1217–1233. 10.1002/ajb2.1676 PubMed DOI PMC
Page A. J., Taylor B., Delaney A. J., Soares J., Seemann T., Keane J. A., et al. (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genomics 2:e000056. 10.1099/mgen.0.000056 PubMed DOI PMC
Panero J. L., Crozier B. S. (2016). Macroevolutionary dynamics in the early diversification of Asteraceae. Mol. Phylogenet. Evol. 99 116–132. 10.1016/j.ympev.2016.03.007 PubMed DOI
Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., et al. (2012). Ancient admixture in human history. Genetics 192 1065–1093. 10.1534/genetics.112.145037 PubMed DOI PMC
Pirie M. D., Oliver E. G. H., Mugrabi de Kuppler A., Gehrke B., Le Maitre N. C., Kandziora M., et al. (2016). The biodiversity hotspot as evolutionary hot-bed: spectacular radiation of Erica in the Cape Floristic Region. BMC Evol. Biol. 16:190. 10.1186/s12862-016-0764-3 PubMed DOI PMC
Quintana C., Pennington R. T., Ulloa C. U., Balslev H. (2017). Biogeographic barriers in the Andes: is the Amotape—Huancabamba zone a dispersal barrier for dry forest plants? Ann. Missouri Botanical Garden 102 542–550. 10.3417/D-17-00003A DOI
Reddy S., Kimball R. T., Pandey A., Hosner P. A., Braun M. J., Hackett S. J., et al. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66 857–879. 10.1093/sysbio/syx041 PubMed DOI
Richter M., Diertl K.-H., Emck P., Peters T., Beck E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online 12 1–35. 10.3097/LO.200912 DOI
Rieseberg L. H., Soltis D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5 65–84.
Roch S., Steel M. (2015). Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theoretical Popul. Biol. 100 56–62. 10.1016/j.tpb.2014.12.005 PubMed DOI
Sayyari E., Mirarab S. (2018). Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes 9:132. PubMed PMC
Sayyari E., Whitfield J. B., Mirarab S. (2018). DiscoVista: interpretable visualizations of gene tree discordance. Mol. Phylogenet. Evol. 122 110–115. 10.1016/j.ympev.2018.01.019 PubMed DOI
Schluter D. (2000). The Ecology of Adaptive Radiation. Oxford: Oxford University Press.
Shah T., Schneider J. V., Zizka G., Maurin O., Baker W., Forest F., et al. (2021). Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. Am. J. Bot. 108 1201–1216. 10.1002/ajb2.1682 PubMed DOI
Siniscalchi C. M., Hidalgo O., Palazzesi L., Pellicer J., Pokorny L., Maurin O., et al. (2021). Lineage-specific vs. universal: a comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Appl. Plant Sci. 9:10.1002/as3.11422. 10.1002/aps3.11422 PubMed DOI PMC
Siniscalchi C. M., Loeuille B., Funk V. A., Mandel J. R., Pirani J. R. (2019). Phylogenomics yields new insight into relationships within Vernonieae (Asteraceae). Front. Plant Sci. 10:1224. 10.3389/fpls.2019.01224 PubMed DOI PMC
Sklenář P., Dušková E., Balslev H. (2011). Tropical and Temperate: evolutionary history of Páramo Flora. Bot. Rev. 77 71–108. 10.1007/s12229-010-9061-9 DOI
Slatkin M., Pollack J. L. (2006). The concordance of gene trees and species trees at two linked loci. Genetics 172 1979–1984. 10.1534/genetics.105.049593 PubMed DOI PMC
Smissen R. D., Galbany-Casals M., Breitwieser I. (2011). Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60 649–662.
Smith S. A., Moore M. J., Brown J. W., Yang Y. (2015). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15:150. 10.1186/s12862-015-0423-0 PubMed DOI PMC
Smith S. A., Walker-Hale N., Walker J. F. (2020). Intragenic conflict in phylogenomic data sets. Mol. Biol. Evol. 37 3380–3388. 10.1093/molbev/msaa170 PubMed DOI
Solís-Lemus C., Bastide P., Ané C. (2017). PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34 3292–3298. 10.1093/molbev/msx235 PubMed DOI
Song S., Liu L., Edwards S. V., Wu S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl. Acad. Sci. U.S.A. 109 14942–14947. 10.1073/pnas.1211733109 PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Sun M., Soltis D. E., Soltis P. S., Zhu X., Burleigh J. G., Chen Z. (2015). Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83 156–166. 10.1016/j.ympev.2014.11.003 PubMed DOI
Than C., Ruths D., Nakhleh L. (2008). PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 9:322. 10.1186/1471-2105-9-322 PubMed DOI PMC
Thomas A. E., Igea J., Meudt H. M., Albach D. C., Lee W. G., Tanentzap A. J. (2021). Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. Am. J. Bot. 108 1289–1306. 10.1002/ajb2.1678 PubMed DOI
Townsend J. P. (2007). Profiling phylogenetic informativeness. Syst. Biol. 56 222–231. 10.1080/10635150701311362 PubMed DOI
Ufimov R., Zeisek V., Píšová S., Baker W. J., Fér T., Loo M., et al. (2021). Relative performance of customized and universal probe sets in target enrichment: a case study in subtribe Malinae. Appl. Plant Sci. 9:e11442. 10.1002/aps3.11442 PubMed DOI PMC
Vachaspati P., Warnow T. (2015). ASTRID: accurate species TRees from internode distances. BMC Genomics 16:S3. 10.1186/1471-2164-16-S10-S3 PubMed DOI PMC
Van der Hammen T. (1985). The Plio-Pleistocene climatic record of the tropical Andes. J. Geol. Soc. 142 483–489. 10.1144/gsjgs.142.3.0483 DOI
Vargas O. M., Ortiz E. M., Simpson B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytologist 214 1736–1750. 10.1111/nph.14530 PubMed DOI
Watson L. E., Siniscalchi C. M., Mandel J. (2020). Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae. J. Syst. Evol. 58 841–852. 10.1111/jse.12698 DOI
Weitemier K., Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2:1400042. 10.3732/apps.1400042 PubMed DOI PMC
Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. Am. J. Bot. 102 1753–1756. 10.3732/ajb.1500320 PubMed DOI
Whitfield J. B., Lockhart P. J. (2007). Deciphering ancient rapid radiations. Trends Ecol. Evol. 22 258–265. 10.1016/j.tree.2007.01.012 PubMed DOI
Xiang Y., Huang C.-H., Hu Y., Wen J., Li S., Yi T., et al. (2017). Evolution of rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34 262–281. 10.1093/molbev/msw242 PubMed DOI PMC
Yan Z., Smith M. L., Du P., Hahn M. W., Nakhleh L. (2021). Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. Syst. Biol. syab056. 10.1093/sysbio/syab056 PubMed DOI PMC
Yang Y., Smith S. A. (2014). Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Mol. Biol. Evol. 31 3081–3092. 10.1093/molbev/msu245 PubMed DOI PMC
Zhang C., Huang C.-H., Liu M., Hu Y., Panero J. L., Luebert F., et al. (2021). Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J. Integrat. Plant Biol. 63 1273–1293. 10.1111/jipb.13078 PubMed DOI
Zhang C., Sayyari E., Mirarab S. (2017). “ASTRAL-III: increased Scalability and Impacts of Contracting Low Support Branches,” in Comparative Genomics, Lecture Notes in Computer Science, eds Meidanis J., Nakhleh L. (Cham: Springer International Publishing; ), 53–75.
Zhang C., Scornavacca C., Molloy E. K., Mirarab S. (2020a). ASTRAL-Pro: quartet-based species-tree inference despite paralogy. Mol. Biol. Evol. 37 3292–3307. 10.1093/molbev/msaa139 PubMed DOI PMC
Zhang C., Zhang T., Luebert F., Xiang Y., Huang C.-H., Hu Y., et al. (2020b). Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. Mol. Biol. Evol. 37 3188–3210. 10.1093/molbev/msaa160 PubMed DOI
Zhu J., Liu X., Ogilvie H. A., Nakhleh L. K. (2019). A divide-and-conquer method for scalable phylogenetic network inference from multilocus data. Bioinformatics 35 i370–i378. 10.1093/bioinformatics/btz359 PubMed DOI PMC