Pervasive Introgression During Rapid Diversification of the European Mountain Genus Soldanella (L.) (Primulaceae)

. 2023 Jun 17 ; 72 (3) : 491-504.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36331548

Grantová podpora
EP-C-15-001 EPA - United States CEP - Centrální evidence projektů

Hybridization is a key mechanism involved in lineage diversification and speciation, especially in ecosystems that experienced repeated environmental oscillations. Recently radiated plant groups, which have evolved in mountain ecosystems impacted by historical climate change provide an excellent model system for studying the impact of gene flow on speciation. We combined organellar (whole-plastome) and nuclear genomic data (RAD-seq) with a cytogenetic approach (rDNA FISH) to investigate the effects of hybridization and introgression on evolution and speciation in the genus Soldanella (snowbells, Primulaceae). Pervasive introgression has already occurred among ancestral lineages of snowbells and has persisted throughout the entire evolutionary history of the genus, regardless of the ecology, cytotype, or distribution range size of the affected species. The highest extent of introgression has been detected in the Carpathian species, which is also reflected in their extensive karyotype variation. Introgression occurred even between species with dysploid and euploid cytotypes, which were considered to be reproductively isolated. The magnitude of introgression detected in snowbells is unprecedented in other mountain genera of the European Alpine System investigated hitherto. Our study stresses the prominent evolutionary role of hybridization in facilitating speciation and diversification on the one hand, but also enriching previously isolated genetic pools. [chloroplast capture; diversification; dysploidy; European Alpine system; introgression; nuclear-cytoplasmic discordance; ribosomal DNA.].

Zobrazit více v PubMed

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., Butlin R.K., Dieckmann U., Eroukhmanoff F., Grill A., Cahan S.H., Hermansen J.S., Hewitt G., Hudson A.G., Jiggins C., Jones J., Keller B., Marczewski T., Mallet J., Martinez-Rodriguez P., Möst M., Mullen S., Nichols R., Nolte A.W., Parisod C., Pfennig K., Rice A.M., Ritchie M.G., Seifert B., Smadja C.M., Stelkens R., Szymura J.M., Väinölä R., Wolf J.B., Zinner D.. 2013. Hybridization and speciation. J. Evol. Biol. 26:229–246. doi:10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Abbott R., Barton N.H., Good J.. 2016. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25(11):2325–2332. doi:10.1111/mec.13685. PubMed DOI

Acosta M.C., Premoli A.C.. 2010. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Biol. Evol. 54:235–242. doi:10.1016/j.ympev.2009.08.008. PubMed DOI

Antonelli A., Kissling W.D., Flantua S.G.A., Bermúdez M.A., Mulch A., Muellner-Riehl A.N., Kreft H., Linder H.P., Badgley C., Fjeldsa J., Fritz S.A., Rahbek C., Herman F., Hooghiemstra H., Hoorn C.. 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11:718–725. doi:10.1038/s41561-018-0236-z. DOI

Bateman R., Sramkó G., Paun O.. 2018. Integrating RAD-seq with morphological cladistic analysis clarifies evolutionary relationships among species groups of bee orchids. Ann. Bot. 121:85–105. doi:10.1093/aob/mcx129. PubMed DOI PMC

Bellino A., Bellino L., Baldantoni D., Saracino A.. 2015. Evolution, ecology and systematics of Soldanella (Primulaceae) in the southern Apennines (Italy). BMC Evol. Biol. 15(1):158. doi:10.1186/s12862-015-0433-y. PubMed DOI PMC

Blöch C., Weiss-Schneeweiss H., Schneeweiss G.M., Barfuss M.H., Rebernig C.A., Villaseñor J.L., Stuessy T.F.. 2009. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Mol. Phylogenet. Evol. 53(1):220–233. doi:10.1016/j.ympev.2009.02.021. PubMed DOI PMC

Bog M., Bässler C., Oberprieler C.. 2017. Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany). Evol. Ecol. 31:401–420. doi:10.1007/s10682-017-9890-7. DOI

Boucher F.C., Casazza G., Szövényi P., Conti E.. 2016. Sequence capture using RAD probes clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula. Mol. Phylogenet. Evol. 104:60–72. doi:10.1016/j.ympev.2016.08.003. PubMed DOI

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J.. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10(4):e1003537. doi:10.1371/journal.pcbi.1003537. PubMed DOI PMC

Brandrud M.K., Paun O., Lorenz R., Baar J., Hedrén M.. 2019. Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Mol. Phylogenet. Evol. 136:21–28. doi:10.1016/j.ympev.2019.03.018. PubMed DOI PMC

Brandrud M.K., Paun O., Lorenzo M.T., Nordal I., Brysting A.K.. 2017. RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Sci. Rep. 7(1):5573. doi:10.1038/s41598-017-05794-z. PubMed DOI PMC

Bryant D., Moulton V., Moulton V.. 2004. NeighborNet: an agglomerative algorithm for the construction of planar phylogenetic networks. Mol. Biol. Evol. 21:255–265. doi:10.1093/molbev/msh018. PubMed DOI

Catchen J., Hohenlohe P.A., Bassham S., Amores A., Cresko W.A.. 2013. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22:3124–3140. doi:10.1111/mec.12354. PubMed DOI PMC

Choler P., Erschbamer B., Tribsch A., Gielly L., Taberlet P.. 2004. Genetic introgression as a potential to widen a species’ niche: insights from alpine Carex curvula. PNAS 101(1):171–176. doi:10.1073/pnas.2237235100. PubMed DOI PMC

Cortés A.J., Garzón L.N., Valencia J.B., Madriñán S.. 2018. On the causes of rapid diversification in the Páramos: isolation by ecology and genomic divergence in Espeletia. Front. Plant Sci. 9:1700. doi:10.3389/fpls.2018.01700. PubMed DOI PMC

Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R., Lunter G., Marth G., Sherry S.T., McVean G., Durbin R., 1000 Genomes Project Analysis Group. 2011. The Variant Call Format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330. PubMed DOI PMC

De Vos J.M., Hughes C.E., Schneeweiss G.M., Moore B.R., Conti E.. 2014. Heterostyly accelerates diversification via reduced extinction in primroses. Proc. R. Soc. B 281:20140075. doi:10.1098/rspb.2014.0075. PubMed DOI PMC

Doyle J.J., Doyle J.L.. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Am. 19:11–15.

Drummond A.J., Bouckaert R.R.. 2015. Bayesian evolutionary analysis with BEAST. Cambridge, UK: Cambridge University Press.

Drummond A.J., Suchard M.A., Xie D., Rambaut A.. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29(8):1969–1973. PubMed PMC

Emadzade K., Lebmann M.J., Hoffmann M.H., Tkach N., Lone F.A., Hörandl E.. 2015. Phylogenetic relationships and evolution of high mountain buttercups (Ranunculus) in North America and Central Asia. Perspect. Plant Ecol. Evol. Syst. 17:131–141. doi:10.1016/j.ppees.2015.02.001. DOI

Evanno G., Regnaut S., Goudet J.. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Fehrer J., Gemeinholzer B., ChrtekBräutigam J.S. Jr.. 2007. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenet. Evol. 42(2):347–361. doi:10.1016/j.ympev.2006.07.004. PubMed DOI

Flantua S.G., O’Dea A., Onstein R.E., Giraldo C., Hooghiemstra H.. 2019. The flickering connectivity system of the north Andean páramos. J. Biogeogr. 46(8):1808–1825. doi:10.1111/jbi.13607. DOI

Folk R.A., Mandel J.R., Freudenstein J.V.. 2017. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66:320–337. doi:10.1093/sysbio/syw083. PubMed DOI

García N., Folk R.A., Meerow A.W., Chamala S., Gitzendanner M.A., Oliveira R.S., Soltis D.E., Soltis P.S.. 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Mol. Phylogenet. Evol. 111:231–247. doi:10.1016/j.ympev.2017.04.003. PubMed DOI

Gómez J.M., González-Megías A., Lorite J., Abdelaziz M., Perfectti F.. 2015. The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers. Conserv. 24(8):1843–1857. doi:10.1007/s10531-015-0909-5. DOI

Greig D., Louis E.J., Borts R.H., Travisano M.. 2002. Hybrid speciation in experimental populations of yeast. Science 298:1773–1775. doi:10.1126/science.1076374. PubMed DOI

Harris K., Nielsen R., Nielsen R.. 2016. The genetic cost of Neanderthal introgression. Genetics 203(2):881–891. doi:10.1534/genetics.116.186890. PubMed DOI PMC

Heckenhauer J., Paun O., Chase M.W., Ashton P.S., Kamariah A.S., Samuel R.. 2019. Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. Ann. Bot. (Lond.) 123:857–865. doi:10.1093/aob/mcy220. PubMed DOI PMC

Heckenhauer J., Samuel R., Aston P.S., Salim K.A., Paun O.. 2018. Phylogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae. Mol. Phylogenet. Evol. 127:1–13. doi:10.1016/j.ympev.2018.05.010. PubMed DOI

Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58(3):247–276. doi:10.1006/bijl.1996.0035. DOI

Hewitt G.M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405(6789):907–913. doi:10.1038/35016000. PubMed DOI

Hewitt G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. B: Biol. Sci. 359(1442):183–195. doi:10.1098/rstb.2003.1388. PubMed DOI PMC

Huson D.H., Bryant D.. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254–267. doi:10.1093/molbev/msj030. PubMed DOI

Huxel G.R. 1999. Rapid displacement of native species by invasive species: effects of hybridization. Biol. Conserv. 89(2):143–152. doi:10.1016/S0006-3207(98)00153-0. DOI

Irisarri I., Singh P., Koblmüller S., Torres-Dowdall J., Henning F., Franchini P., Fischer C., Lemmon A.R., Lemmon E.M., Thallinger G.G., Sturmbauer C., Meyer A.. 2018. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9:3159. doi:10.1038/s41467-018-05479-9. PubMed DOI PMC

Jiggins C.D., Salazar C., Linares M., Mavarez J.. 2008. Hybrid trait speciation and Heliconius butterflies. Philos. Trans. R. Soc. Lond. B Biol. Sci 363(1506):3047–3054. doi:10.1098/rstb.2008.0065. PubMed DOI PMC

Kandziora M., Sklenář P., Kolář F., Schmickl R.. 2022. How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using Loricaria (Asteraceae) as an example. Front. Plant Sci. 12:765719. doi:10.3389/fpls.2021.765719. PubMed DOI PMC

Kearns A.M., Restani M., Szabo I., Schrøder-Nielsen A., Kim J.A., Richardson H.M., Marzluff J.M., Fleischer R.C., Johnsen A., Omland K.E.. 2018. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9:906. doi:10.1038/s41467-018-03294-w. PubMed DOI PMC

Klein J.T., Kadereit J.W.. 2016. Allopatric hybrids as evidence for past range dynamics in Sempervivum (Crassulaceae), a western Eurasian high mountain oreophyte. Alp. Bot. 126(2):119–133. doi:10.1007/s00035-016-0164-8. DOI

Korneliussen T.S., Albrechtsen A., Nielsen R.. 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15:356. doi:10.1186/s12859-014-0356-4. PubMed DOI PMC

Körner C., Spehn E.M.. 2002. Mountain biodiversity: A global assessment. Parthenon Pub. Group, Boca Raton, 14, 336.

Lawson D.J., van Dorp L., Falush, D.A.. 2018. A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat. Commun. 9:3258. doi:10.1038/s41467-018-05257-7. PubMed DOI PMC

Lewis P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50:913–925. doi:10.1080/106351501753462876. PubMed DOI

Li H., Durbin R., Durbin R.. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698. PubMed DOI PMC

Litsios G., Salamin N., Salamin N.. 2014. Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol. Biol. 14:245. doi:10.1186/s12862-014-0245-5. PubMed DOI PMC

Magallón S., Gómez-Acevedo S., Sánchez-Reyes L.L., Hernández-Hernández T.. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207(2):437–453. doi:10.1111/nph.13264. PubMed DOI

Malinsky M., Matschiner M., Svardal H.. 2021. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21:584–595. doi:10.1111/1755-0998.13265. PubMed DOI PMC

Mallet J. 2007. Hybrid speciation. Nature 446:279–283. doi:10.1038/nature05706. PubMed DOI

Mallet J., Besansky N., Hahn M.W.. 2016. How reticulated are species? Bioessays 38(2):140–149. doi:10.1002/bies.201500149. PubMed DOI PMC

Mandáková T., Lysak M.A.. 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42:55–65. doi:10.1016/j.pbi.2018.03.001. PubMed DOI

Mandáková T., Lysak M.A., Lysak M.A.. 2016a. Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol 1:43–51. doi:10.1002/cppb.20009. PubMed DOI

Mandáková T., Lysak M.A., Lysak M.A.. 2016b. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol 1(2):359–371. doi:10.1002/cppb.20022. PubMed DOI

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A.. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. doi:10.1101/gr.107524.110. PubMed DOI PMC

Meier J.I., Marques D.A., Mwaiko S., Wagner C.E., Excoffier L., Seehausen O.. 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8:14363. doi:10.1038/ncomms14363. PubMed DOI PMC

Meisner J., Albrechtsen A., Albrechtsen A.. 2018. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210:719–731. PubMed PMC

Melichárková A., Šlenker M., Zozomová-Lihová J., Skokanová K., Šingliarová B., Kačmárová T., Caboňová M., Kempa M., Šrámková G., Mandáková T., Lysák M.A., Svitok M., Mártonfiová L., Marhold K.. 2020. So closely related and yet so different: strong contrasts between the evolutionary histories of species of the Cardamine pratensis. Polyploid complex in central Europe. Front. Plant Sci. 11:588856. doi:10.3389/fpls.2020.588856. PubMed DOI PMC

Meyer F.K. 1985. Beitrag zur Kenntniss ost und südosteuropäischer Soldanella-Arten. Haussknechtia 2:7–41.

Moraes A.P., Olmos Simões A., Ojeda Alayon D.I., de Barros F., Forni-Martins E.R.. 2016. Detecting mechanisms of karyotype evolution in Heterotaxis (Orchidaceae). PLoS One 11:e0165960. doi:10.1371/journal.pone.0165960. PubMed DOI PMC

Morales-Briones D.F., Liston A., Tank D.C.. 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218(4):1668–1684. doi:10.1111/nph.15099. PubMed DOI

Niederle J. 2003. Remarks on the genus Soldanella L. in the West Carpathians. Acta Mus. Richnoviensis, Sect. Natur. 10:171–174.

Niederle J. 2016. Dřípatky ze Srbska. Skalničkářův rok 73:16.

Nieto Feliner G., Casacuberta J., Wendel J.F.. 2020. Genomics of evolutionary novelty in hybrids and polyploids. Front. Genet. 11:792. doi:10.3389/fgene.2020.00792 PubMed DOI PMC

Olšavská K., Slovák M., Marhold K., Štubňová E., Kučera J.. 2016. On the origins of Balkan endemics: the complex evolutionary history of the Cyanus napulifer group (Asteraceae). Ann. Bot. 118(6):1071–1088. doi:10.1093/aob/mcw142. PubMed DOI PMC

Ottenburghs J. 2020. Ghost introgression: spooky gene flow in the distant past. Bioessays 42(6):2000012. doi:10.1002/bies.202000012. PubMed DOI

Ozenda P. 1985. La végétation de la chaîne alpine dans l’espace montagnard européen. Paris, Masson.

Paradise E., Claude J., Strimmer K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412. PubMed DOI

Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster T., Reich D.. 2012. Ancient admixture in human history. Genetics 192:1065–1093. doi:10.1534/genetics.112.145037. PubMed DOI PMC

Paun O., Schönswetter P., Winkler M., Tribsch A.. 2008. Evolutionary history of the Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 14(19):4263–4275. doi:10.1111/j.1365-294X.2008.03908.x. PubMed DOI PMC

Pawłowska S. 1972. Soldanella. In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A., editors. Flora Europaea, vol. 3, Cambridge University Press, UK, p. 23–24.

Pease J.B., Haak D.C., Hahn M.W., Moyle L.C.. 2016. Phylogenomics reveals three sources of adaptive variation during rapid radiation. PLoS Biol. 14:e1002379. doi:10.1371/journal.pbio.1002379. PubMed DOI PMC

Pickrell J.K., Pritchard J.K.. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8:e1002967. doi:10.1371/journal.pgen.1002967. PubMed DOI PMC

Pouchon C., Fernández A., Nassar J.M., Boyer F., Aubert S., Lavergne S., Mavárez J.. 2018. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 67(6):1041–1060. doi:10.1093/sysbio/syy022. PubMed DOI

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A.. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67:901–904. doi:10.1093/sysbio/syy032. PubMed DOI PMC

Raskina O., Barber J.C., Nevo E., Belyayev A.. 2008. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytog. Gen. Res. 120:351–357. doi:10.1159/000121084. PubMed DOI

Raven P.H. 1973. Evolution of subalpine and alpine plant groups in New Zealand. N. Z. J. Bot. 11:177–200. doi:10.1080/0028825X.1973.10430272. DOI

Rose J.P., Toledo C.A., Lemmon E.M., Lemmon A.R., Sytsma K.J.. 2020. Out of sight, out of mind: widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70:162–180. doi:10.1093/sysbio/syaa049. PubMed DOI

Schönswetter P., Tribsch A., Barfuss M., Niklfeld H.. 2002. Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium Sternb. and Hoppe (Campanulaceae) in the European Alps. Mol. Ecol. 11:2637–2647. doi:10.1046/j.1365-294x.2002.01651.x. PubMed DOI

Seehausen O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19:198–207. doi:10.1016/j.tree.2004.01.003. PubMed DOI

Sefc K.M., Mattersdorfer K., Ziegelbecker A., Neuhüttler N., Steiner O., Goessler W., Koblmüller S.. 2017. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20(5):651–662. doi:10.1111/ele.12766. PubMed DOI PMC

Singhal V.K., Kumar R., Singhal H., Kumar P., Kaur D., Kaur M., Rana P.K., Gupta R.C.. 2017. A profile of male meiosis, chromosomal variation and status in species of Impatiens from North-West Himalaya in India. Caryologia 70:258–269. doi:10.1080/00087114.2017.1344084. DOI

Skotte L., Korneliussen T.S., Albrechtsen A.. 2013. Estimating individual admixture proportions from next generation sequencing data. Genetics 195:693–702. doi:10.1534/genetics.113.154138. PubMed DOI PMC

Smyčka J., Roquet C., Boleda M., Alberti A., Boyer F., Douzet R., Perrier CH., Rome M., Valay J.G., Denoeud F., Šemberová K., Zimmermann N.E., Thuiller W., Wincker P., Alsos I.E., Coissac E.The PhyloAlps consortium, Lavergne S.. 2022. Tempo and drivers of plant diversification in the European mountain system. Nat. Commun. (preprint). doi:10.21203/rs.3.rs-959411/v1. PubMed DOI PMC

Soltis D.E., Soltis P.S.. 1995. The dynamic nature of polyploid genomes. Proc. Natl. Acad. Sci. U.S.A. 92(18):8089–8091. doi:10.1073/pnas.92.18.8089. PubMed DOI PMC

Soltis P.S., Soltis D.E.. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60:561–588. doi:10.1146/annurev.arplant.043008.092039. PubMed DOI

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC

Stankowski S., Streisfeld M.A.. 2015. Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers. Proc. R. Soc. B 282:20151666. doi:10.1098/rspb.2015.1666. PubMed DOI PMC

Stebbins G.L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Mo. Bot. Gard. 72(4):824–832. doi:10.2307/2399224. DOI

Steffen S., Kadereit J.W.. 2014. Parallel evolution of flower reduction in two alpine Soldanella species (Primulaceae). Bot. J. Linn. 175:409–422. doi:10.1111/boj.12174. DOI

Štubňová E., Hodálová I., Kučera J., Mártonfiová L., Svitok M., Slovák M.. 2017. Karyological patterns in the European endemic genus Soldanella L.: absolute genome size variation uncorrelated with cytotype chromosome numbers. Am. J. Bot. 104:1241–1253. doi:10.3732/ajb.1700153. PubMed DOI

Suarez-Gonzalez A., Lexer C., Cronk Q.C.. 2018. Adaptive introgression: a plant perspective. Biol. Lett. 14(3):20170688. doi:10.1098/rsbl.2017.0688. PubMed DOI PMC

Svardal H., Quah F.X., Malinsky M., Ngatunga B.P., Miska E.A., Salzburger W., Genner M.J., Turner G.F., Durbin R.. 2020. Ancestral hybridization facilitated species diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. Mol. Biol. Evol. 37(4):1100–1113. doi:10.1093/molbev/msz294. PubMed DOI PMC

Taylor S.A., Larson E.L.. 2019. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3(2):170–177. doi:10.1038/s41559-018-0777-y. PubMed DOI

Todesco M., Pascual M.A., Owens G.L., Ostevik K.L., Moyers B.T., Hübner S., Heredia S.M., Hahn M.A., Caseys C., Bock D.G., Rieseberg L.H.. 2016. Hybridization and extinction. Evol. Appl. 9(7):892–908. doi:10.1111/eva.12367. PubMed DOI PMC

Valachovič M., Štubňová E., Senko D., Kochjarová J., Coldea G.. 2019. Ecology and species distribution pattern of Soldanella sect. Soldanella (Primulaceae) within vegetation types in the Carpathians and the adjacent mountains. Biologia 74:733–750. doi:10.2478/s11756-019-00200-7. DOI

Vierhapper F. 1904b. Neue Pflanzen-Hybriden. Österr. Bot. Z. 54:349–350.

Vierhapper F. 1904a. Übersicht über die Arten und Hybriden der Gattung Soldanella. In: Urban I., Graebner P., editors. Festschrift zur Feier des siebzigsten Geburtstages des Herrn Prof. Dr. Paul Ascherson. Verlag Gebrüder Borntraeger, Leipzig, p. 500–508.

vonHoldt B.M., Cahill J.A., Fan Z., Gronau I., Robinson J., Pollinger J.P., Shapiro B., Wall J., Wayne R.K.. 2016. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2:e1501714. doi:10.1126/sciadv.1501714. PubMed DOI PMC

Waminal N.E., Pellerin R.J., Kang S.-H., Kim H.H.. 2021. Chromosomal mapping of tandem repeats revealed massive chromosomal rearrangements and insights into Senna tora dysploidy. Front. Plant Sci. 2021(12):629898. doi:10.3389/fpls.2021.629898. PubMed DOI PMC

Warnes G.R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., Lumley T., Maechler M., Magnusson A., Moeller S., Schwartz M., Venables B., Galili T.. 2020. gplots: various R programming tools for plotting data. R package version 3. Accessed on Jan 01, 2022. https://github.com/talgalili/gplots.

Wendel J.F., Doyle J.J.. 1998. Phylogenetic Incongruence: Window into Genome History and Molecular Evolution. In: Soltis D.E., Soltis P.S., Doyle J.J., editors. Molecular systematics of plants II. Springer, Boston, MA, p. 265–296 doi:10.1007/978-1-4615-5419-6_10. DOI

White O.W., Reyes-Betancort J.A., Chapman M.A., Carine M.A.. 2020. Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae). New Phytol. 228(6):1953–1971. doi:10.1111/nph.16980. PubMed DOI

Whitney K.D., Ahern J.R., Campbell L.G., Albert L.P., King M.S.. 2010. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 12(3):175–182. doi:10.1016/j.ppees.2010.02.002. DOI

Winterfeld G., Becher H., Voshell S., Hilu K., Röser M.. 2018. Karyotype evolution in Phalaris (Poaceae): the role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus. PLoS One 13:e0192869. doi:10.1371/journal.pone.0192869. PubMed DOI PMC

Xu B., Wu N., Gao X.-F., Zhang L.-B.. 2012. Analysis of DNA sequences of six chloroplast and nuclear genes suggests incongruence, introgression, and incomplete lineage sorting in the evolution of Lespedeza (Fabaceae). Mol. Phylogenet. Evol. 62:346–358. doi:10.1016/j.ympev.2011.10.007. PubMed DOI

Yi T.-S., Jin G.-H., Wen J.. 2015. Chloroplast capture and intra- and intercontinental biogeographic diversification in the Asian-New World disjunct plant genus Osmorhiza (Apiaceae). Mol. Phylogenet. Evol. 85:10–21. PubMed

Zhang L.-B., Comes H.P., Kadereit J.W.. 2001. Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Am. J. Bot. 88:2331–2345. doi:10.2307/3558393. PubMed DOI

Zhang L.-B., Kadereit J.W.. 2002. The systematics of Soldanella (Primulaceae) based on morphological and molecular (ITS, AFLPs) evidence. Nord. J. Bot. 22:129–169. doi:10.1111/j.1756-1051.2002.tb01360.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...