So Closely Related and Yet So Different: Strong Contrasts Between the Evolutionary Histories of Species of the Cardamine pratensis Polyploid Complex in Central Europe
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33391302
PubMed Central
PMC7775393
DOI
10.3389/fpls.2020.588856
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, environmental niche, genome size, hybridization, microsatellites, phylogeography, polyploidy, target enrichment,
- Publikační typ
- časopisecké články MeSH
Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.
Botanical Garden Pavol Jozef Šafárik University Košice Slovakia
Central European Institute of Technology Masaryk University Brno Czechia
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Ančev M. (2006). Polyploidy and hybridization in Bulgarian Brassicaceae (Cruciferae): distribution and evolutionary role. Phytol. Balcan. 12 357–366.
Ančev M., Yurukova-Grancharova P., Ignatova P., Goranova V., Stoyanov S., Yankova-Tsvetkova E., et al. (2013). Cardamine × rhodopaea (Brassicaceae), a triploid hybrid from the West Rhodope Mts: Morphology, distribution, relationships and origin. Phytol. Balcan. 19 323–338.
Anderson M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62 245–253. 10.1111/j.1541-0420.2005.00440.x PubMed DOI
Arrigo N., de La Harpe M., Litsios G., Zozomová-Lihová J., Španiel S., Marhold K., et al. (2016). Is hybridization driving the evolution of climatic niche in Alyssum montanum? Amer. J. Bot. 103 1348–1357. 10.3732/ajb.1500368 PubMed DOI
Baduel P., Bray S., Vallejo-Marin M., Kolář F., Yant L. (2018). The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 6:117 10.3389/fevo.2018.00117 DOI
Baer K. C., Maron J. L. (2019). Declining demographic performance and dispersal limitation influence the geographic distribution of the perennial forb Astragalus utahensis (Fabaceae). J. Ecol. 107 1250–1262. 10.1111/1365-2745.13086 DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Bardy K. E., Albach D. C., Schneeweiss G. M., Fischer M. A., Schönswetter P. (2010). Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molec. Phylogen. Evol. 57 771–786. 10.1016/j.ympev.2010.06.025 PubMed DOI PMC
Bastkowski S., Mapleson D., Spillner A., Wu T., Balvociute M., Moulton V. (2018). SPECTRE: a suite of phylogenetic tools for reticulate evolution. Bioinformatics 34 1056–1057. 10.1093/bioinformatics/btx740 PubMed DOI PMC
Bennetzen J. L., Ma J., Devos K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95 127–132. 10.1093/aob/mci008 PubMed DOI PMC
Birks H. J. B., Willis K. J. (2008). Alpines, trees, and refugia in Europe. Pl. Ecol. Div. 1 147–160. 10.1080/17550870802349146 DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Borowiec M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ. 4:e1660. 10.7717/peerj.1660 PubMed DOI PMC
Brandrud M. K., Baar J., Lorenzo M. T., Athanasiadis A., Bateman R. M., Chase M. W., et al. (2020). Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 69 91–109. 10.1093/sysbio/syz035 PubMed DOI PMC
Brukhin V., Osadtchiy J. V., Florez-Rueda A. M., Smetanin D., Bakin E., Nobre M. S., et al. (2019). The Boechera genus as a resource for apomixis research. Front. Plant Sci. 10:392. 10.3389/fpls.2019.00392 PubMed DOI PMC
Bruvo R., Michiels N. K., D’Souza T. G., Schulenburg H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec. Ecol. 13 2101–2106. 10.1111/j.1365-294X.2004.02209.x PubMed DOI
Carter K. A., Liston A., Bassil N. V., Alice L. A., Bushakra J. M., Sutherland B. L., et al. (2019). Target capture sequencing unravels Rubus evolution. Front. Plant Sci. 10:1615. 10.3389/fpls.2019.01615 PubMed DOI PMC
Castro M., Loureiro J., Serrano M., Tavares D., Husband B. C., Siopa C., et al. (2019). Mosaic distribution of cytotypes in a mixed-ploidy plant species, Jasione montana: nested environmental niches but low geographical overlap. Biol. J. Linn. Soc. 190 51–66. 10.1093/botlinnean/boz007 DOI
Chernomor O., von Haeseler A., Minh B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65 997–1008. 10.1093/sysbio/syw037 PubMed DOI PMC
Clark L. V., Jasieniuk M. (2011). POLYSAT: an R package for polyploid microsatellite analysis. Molec. Ecol. Resour. 11 562–566. 10.1111/j.1755-0998.2011.02985.x PubMed DOI
Coyne J. A., Orr H. A. (2004). Speciation. Sunderland: Sinauer Associates.
Dauphin B., Grant J. R., Farrar D. R., Rothfels C. J. (2018). Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions. Molec. Phylogen. Evol. 120 342–353. 10.1016/j.ympev.2017.11.025 PubMed DOI
Dersch G. (1969). Über das Vorkommen von diploidem Wiesenschaumkraut (Cardamine pratensis L.) in Mitteleuropa. Ber. Deutsch. Bot. Ges. 82 201–207.
Doležel J., Greilhuber J., Suda J. (2007a). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2 2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Doležel J., Greilhuber J., Suda J. (2007b). “Flow cytometry with plants: an overview,” in Flow cytometry with plant cells, analysis of genes, chromosomes and genomes, eds Doležel J., Greilhuber J., Suda J. (Weinheim: Wiley–VCH; ), 41–65. 10.1002/9783527610921 DOI
Doležel J., Sgorbati S., Lucretti S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Pl. 85 625–631. 10.1111/j.1399-3054.1992.tb04764.x DOI
Dormann C. F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 27–46. 10.1111/j.1600-0587.2012.07348.x DOI
Doyle J. J., Doyle J. L., Brown A. H., Grace J. P. (1990). Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc. Natl. Acad. Sci. U S A. 87 714–717. 10.1073/pnas.87.2.714 PubMed DOI PMC
Dray S., Dufour A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22 1–20. 10.18637/jss.v022.i04 DOI
Dufresne F., Stift M., Vergilino R., Mable B. K. (2014). Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molec. Ecol. 23 40–69. 10.1111/mec.12581 PubMed DOI
Durović S., Schönswetter P., Niketić M., Tomović G., Frajman B. (2017). Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae): Phylogenetic structure is geographically rather than taxonomically segregated. Taxon 66 343–364. 10.12705/662.4 DOI
Ehrich D. (2006). AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec. Ecol. Notes 6 603–604. 10.1111/j.1471-8286.2006.01380.x DOI
Esselink G. D., Nybom H., Vosman B. (2004). Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor. Appl. Genet. 109 402–408. 10.1007/s00122-004-1645-5 PubMed DOI
Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec. Ecol. 14 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Excoffier L., Smouse P. E., Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 479–491. PubMed PMC
Feulner M., Weig A., Voss T., Schott L. F., Aas G. (2019). Central European polyploids of Sorbus subgenus Aria (Rosaceae) recurrently evolved from diploids of central and south-eastern Europe: evidence from microsatellite data. Bot. J. Linn. Soc. 191 315–324. 10.1093/botlinnean/boz053 DOI
Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 4302–4315. 10.1002/joc.5086 DOI
Frajman B., Rešetnik I., Niketić M., Ehrendorfer F., Schönswetter P. (2016). Patterns of rapid diversification in heteroploid Knautia sect. Trichera (Caprifoliaceae, Dipsacoideae), one of the most intricate taxa of the European flora. BMC Evol. Biol. 16:204. 10.1186/s12862-016-0773-2 PubMed DOI PMC
Franzke A., Hurka H. (2000). Molecular systematics and biogeography of the Cardamine pratensis complex (Brassicaceae). Pl. Syst. Evol. 224 213–234. 10.1007/BF00986344 DOI
Friedman J., Hastie T., Tibshirani R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1–22. 10.18637/jss.v033.i01 PubMed DOI PMC
Gómez A., Lunt D. H. (2007). “Refugia within Refugia: Patterns of Phylogeographic Concordance in the Iberian Peninsula,” in Phylogeography of Southern European Refugia, eds Weiss S., Ferrand N. (Dordrecht: Springer; ), 155–188. 10.1007/1-4020-4904-8_5 DOI
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Greilhuber J., Dolezel J., Lysák M. A., Bennett M. D. (2005). The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 95 255–260. 10.1093/aob/mci019 PubMed DOI PMC
Grünewald S., Spillner A., Bastkowski S., Bögershausen A., Moulton V. (2013). SuperQ: computing supernetworks from quartets. IEEE/ACM Trans. Comput. Biol. Bioinform. 10 151–160. 10.1109/TCBB.2013.8 PubMed DOI
Hanušová K., Čertner M., Urfus T., Koutecký P., Košnar J., Rothfels C. J., et al. (2019). Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization. Ann. Bot. 123 845–855. 10.1093/aob/mcy219 PubMed DOI PMC
Heibl C. (2008). PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. URL: Available online at: http://www.christophheibl.de/Rpackages.html
Heuertz M., Carnevale S., Fineschi S., Sebastiani F., Hausman J. F., Paule L., et al. (2006). Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): roles of hybridization and life history traits. Molec. Ecol. 15 2131–2140. 10.1111/j.1365-294X.2006.02897.x PubMed DOI
Heuertz M., Fineschi S., Anzidei M., Pastorelli R., Salvini D., Paule, et al. (2004). Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Molec. Ecol. 13 3437–3452. 10.1111/j.1365-294X.2004.02333.x PubMed DOI
Hewitt G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405 907–913. 10.1038/35016000 PubMed DOI
Hewitt G. M. (1999). Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68 87–112. 10.1006/bijl.1999.0332 DOI
Hewitt G. M. (2001). Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Molec. Ecol. 10 537–549. PubMed
Hewitt G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. Roy. Soc. London B Biol. Sci. 359 183–195. 10.1098/rstb.2003.1388 PubMed DOI PMC
Hodel R. G., Segovia-Salcedo M. C., Landis J. B., Crowl A. A., Sun M., Liu X., et al. (2016). The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl. Pl. Sci. 4:1600025. 10.3732/apps.1600025 PubMed DOI PMC
Hu Y. N., Zhao L., Buggs R. J., Zhang X. M., Li J., Wang N. (2019). Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a cryptic lineage. Ann. Bot. 123 1179–1189. 10.1093/aob/mcz024 PubMed DOI PMC
Huang X. C., German D. A., Koch M. A. (2020). Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 125 29–47. 10.1093/aob/mcz123 PubMed DOI PMC
Hülber K., Sonnleitner M., Suda J., Krejčíková J., Schönswetter P., Schneeweiss G. M., et al. (2015). Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae). Ecol. Evol. 5 1224–1234. 10.1002/ece3.1430 PubMed DOI PMC
Husband B. C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. 82 537–546. 10.1111/j.1095-8312.2004.00339.x DOI
Jakobsson M., Rosenberg N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23 1801–1806. 10.1093/bioinformatics/btm233 PubMed DOI
Jankovská V., Pokorný P. (2008). Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80 307–324.
Janská V., Jiménez-Alfaro B., Chytrý M., Divíšek J., Anenkhonov O., Korolyuk A., et al. (2017). Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations. Quat. Sci. Rev. 159 103–115. 10.1016/j.quascirev.2017.01.011 DOI
Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., Shaw A. J., et al. (2016). HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Pl. Sci. 4:1600016. 10.3732/apps.1600016 PubMed DOI PMC
Junier T., Zdobnov E. M. (2010). The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26 1669–1670. 10.1093/bioinformatics/btq243 PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Kamvar Z. N., Brooks J. C., Grünwald N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6:208. 10.3389/fgene.2015.00208 PubMed DOI PMC
Kamvar Z. N., Tabima J. F., Grünwald N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2:e281. 10.7717/peerj.281 PubMed DOI PMC
Kates H. R., Johnson M. G., Gardner E. M., Zerega N. J., Wickett N. J. (2018). Allele phasing has minimal impact on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of Artocarpus. Amer. J. Bot. 105 404–416. 10.1002/ajb2.1068 PubMed DOI
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9 286–298. 10.1093/bib/bbn013 PubMed DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Knaus B. J., Grünwald N. J. (2016). VcfR: a package to manipulate and visualize VCF format data in R. bioRxiv 041277 10.1101/041277 PubMed DOI
Knaus B. J., Grünwald N. J. (2017). VCFR: a package to manipulate and visualize variant call format data in R. Molec. Ecol. Resour. 17 44–53. 10.1111/1755-0998.12549 PubMed DOI
Köhler C., Mittelsten Scheid O., Erilova A. (2010). The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 26 142–148. 10.1016/j.tig.2009.12.006 PubMed DOI
Kolář F., Čertner M., Suda J., Schönswetter P., Husband B. C. (2017). Mixed-ploidy species: progress and opportunities in polyploid research. Trends Pl. Sci. 22 1041–1055. 10.1016/j.tplants.2017.09.011 PubMed DOI
Kolář F., Fuxová G., Záveská E., Nagano A. J., Hyklová L., Lučanová M., et al. (2016). Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Molec. Ecol. 25 3929–3949. 10.1111/mec.13721 PubMed DOI
Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 4453–4455. 10.1093/bioinformatics/btz305 PubMed DOI PMC
Kučera J., Valko I., Marhold K. (2005). On-line database of the chromosome numbers of the genus Cardamine (Brassicaceae). Biologia 60 473–476.
Kuhn M. (2019). caret: Classification and Regression Training. R package version 6.0-84. URL: https://CRAN.R-project.org/package = caret.
Landolt E. (1984). Über die Artengruppe der Cardamine pratensis L. in der Schweiz [Some remarks on the species group of Cardamine pratensis L. s. l. in Switzerland]. Diss. Bot. 72 481–497.
Lawrence W. J. C. (1931). The chromosome constitution of Cardamine pratensis and Verbascum phoeniceum. Genetica 13 183–208. 10.1007/BF01725043 DOI
Levin D. A. (1975). Minority cytotype exclusion in local plant populations. Taxon 24 35–43. 10.2307/1218997 DOI
Li F.-W., Rushworth C. A., Beck J. B., Windham M. D. (2017). Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. Database 217:baw169. 10.1093/database/baw169 PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Lihová J., Marhold K. (2003). Taxonomy and distribution of the Cardamine pratensis group (Brassicaceae) in Slovenia. Phyton 43 241–261.
Lihová J., Marhold K. (2006). “Phylogenetic and diversity patterns in Cardamine (Brassicaceae) - a genus with conspicuous polyploid and reticulate evolution,” in Plant genome: biodiversity and evolution, vol. 1C: Phanerogams (Angiosperms - Dicotyledons), eds Sharma A. K., Sharma A. (Enfield: Science Publishers, Inc; ), 149–186.
Lihová J., Tribsch A., Marhold K. (2003). The Cardamine pratensis (Brassicaceae) group in the Iberian Peninsula: taxonomy, polyploidy and distribution. Taxon 52 783–802. 10.2307/3647352 DOI
Lihová J., Tribsch A., Stuessy T. F. (2004). Cardamine apennina: a new endemic diploid species of the C. pratensis group (Brassicaceae) from Italy. Pl. Syst. Evol. 245 69–92. 10.1007/s00606-003-0119-6 DOI
Lövkvist B. (1956). The Cardamine pratensis complex. Symb. Bot. UPS. 14 1–131.
Lynch M. (1990). The similarity index and DNA fingerprinting. Molec. Biol. Evol. 7 478–484. 10.1093/oxfordjournals.molbev.a040620 PubMed DOI
Ma J. X., Li Y. N., Vogl C., Ehrendorfer F., Guo Y. P. (2010). Allopolyploid speciation and ongoing backcrossing between diploid progenitor and tetraploid progeny lineages in the millefolium species complex: Analyses of single-copy nuclear genes and genomic AFLP. BMC Evol. Biol. 10:100. 10.1186/1471-2148-10-100 PubMed DOI PMC
Magri D., Vendramin G. G., Comps B., Dupanloup I., Geburek T., Gömöry D., et al. (2006). A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171 199–221. 10.1111/j.1469-8137.2006.01740.x PubMed DOI
Mandák B., Krak K., Vít P., Lomonosova M. N., Belyayev A., Habibi F., et al. (2018). Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Molec. Phylogen. Evol. 129 189–201. 10.1016/j.ympev.2018.08.016 PubMed DOI
Mandáková T., Lysak M. A. (2018). Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Pl. Biol. 42 55–65. 10.1016/j.pbi.2018.03.001 PubMed DOI
Mandáková T., Gloss A. D., Whiteman N. K., Lysak M. A. (2016). How diploidization turned a tetraploid into a pseudotriploid. Amer. J. Bot. 103 1187–1196. 10.3732/ajb.1500452 PubMed DOI
Mandáková T., Kovařík A., Zozomová-Lihová J., Shimizu-Inatsugi R., Shimizu K. K., Mummenhoff K., et al. (2013). The more the merrier: recent hybridization and polyploidy in Cardamine. Pl. Cell 25 3280–3295. 10.1105/tpc.113.114405 PubMed DOI PMC
Mandáková T., Zozomová-Lihová J., Kudoh H., Zhao Y., Lysak M. A., Marhold K. (2019). The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. 124 209–220. 10.1093/aob/mcz019 PubMed DOI PMC
Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27 209–220. PubMed
Marhold K. (1992). Rod Cardamine v Karpatoch a Panónii (The Genus Cardamine in the Carpathians and Pannonia). PhD thesis, Bratislava: Comenius University.
Marhold K. (1994a). Chromosome numbers of the genus Cardamine L. (Cruciferae) in the Carpathians and in Pannonia. Phyton 34 19–34.
Marhold K. (1994b). Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia. Folia Geobot. Phytotax. 29 335–374.
Marhold K. (1995). Cardamine rivularis auct. non Schur in the Eastern Alps. Carinthia II 53 101–102.
Marhold K. (1996). Multivariate morphometric study of the Cardamine pratensis group (Cruciferae) in the Carpathian and Pannonian area. Pl. Syst. Evol. 200 141–159. 10.1007/BF00984932 DOI
Marhold K. (2000). Chromosome numbers of the Cardamine pratensis group in Austria with taxonomic remarks. Fl. Austr. Novit. 6 1–6.
Marhold K., Záborský J. (1986). A new species of Cardamine pratensis agg. from Eastern Slovakia. Preslia 58 193–198.
Marhold K., Lihová J., Perný M., Grupe R., Neuffer B. (2002). Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Bot. J. Linn. Soc. 139 275–294. 10.1046/j.1095-8339.2002.00066.x DOI
Marhold K., Šlenker M., Zozomová-Lihová J. (2018). Polyploidy and hybridization in the Mediterranean and neighbouring areas towards the north: examples from the genus Cardamine (Brassicaceae). Biol. Serbica 40 47–59. 10.5281/zenodo.1406320 DOI
Martin M., Patterson M., Garg S., Fischer S., Pisanti N., Klau G. W., et al. (2016). WhatsHap: fast and accurate read-based phasing. bioRxiv 085050 10.1101/085050 DOI
Mason A. S., Pires J. C. (2015). Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 31 5–10. 10.1016/j.tig.2014.09.011 PubMed DOI
McCullagh P., Nelder J. A. (1989). Generalized linear models, 2nd Edn Boca Raton, FL: Chapman & Hall/CRC.
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20 1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC
Meirmans P. G., van Tienderen P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molec. Ecol. Notes 4 792–794. 10.1111/j.1471-8286.2004.00770.x DOI
Meirmans P. G., Liu S., van Tienderen P. H. (2018). The analysis of polyploid genetic data. J. Heredity 109 283–296. 10.1093/jhered/esy006 PubMed DOI
Melichárková A., Španiel S., Marhold K., Hurdu B. I., Drescher A., Zozomová-Lihová J. (2019). Diversification and independent polyploid origins in the disjunct species Alyssum repens from the Southeastern Alps and the Carpathians. Amer. J. Bot 106 1499–1518. 10.1002/ajb2.1370 PubMed DOI
Monnahan P., Kolář F., Baduel P., Sailer C., Koch J., Horvath R., et al. (2019). Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 3 457–468. 10.1038/s41559-019-0807-4 PubMed DOI
Nieto Feliner G. (2011). Southern European glacial refugia: a tale of tales. Taxon 60 365–372. 10.1002/tax.602007 DOI
Nieto Feliner G. (2014). Patterns and processes in plant phylogeography in the Mediterranean Basin. A Rev. Perspect. Pl. Ecol. Syst. 16 265–278. 10.1016/j.ppees.2014.07.002 DOI
Novikova P. Y., Hohmann N., Van de Peer Y. (2018). Polyploid Arabidopsis species originated around recent glaciation maxima. Curr. Opin. Plant Biol. 42 8–15. 10.1016/j.pbi.2018.01.005 PubMed DOI
Novikova P. Y., Tsuchimatsu T., Simon S., Nizhynska V., Voronin V., Burns R., et al. (2017). Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Molec. Biol. Evol. 34 957–968. 10.1093/molbev/msw299 PubMed DOI PMC
Obbard D. J., Harris S. A., Pannell J. R. (2006). Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 97 296–303. 10.1038/sj.hdy.6800862 PubMed DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’Hara R. B., et al. (2019). vegan: Community Ecology Package. R Package Version 2.5-5. URL: http://CRAN.R-project.org/package = vegan
Pachschwöll C., Garcia P. E., Winkler M., Schneeweiss G. M., Schönswetter P. (2015). Polyploidisation and geographic differentiation drive diversification in a European high mountain plant group (Doronicum clusii aggregate, Asteraceae). PLoS One 10:e0118197. 10.1371/journal.pone.0118197 PubMed DOI PMC
Padilla-García N., Rojas-Andrés B. M., López-González N., Castro M., Castro S., Loureiro J., et al. (2018). The challenge of species delimitation in the diploid-polyploid complex Veronica subsection Pentasepalae. Molec. Phylogen. Evol. 119 196–209. 10.1016/j.ympev.2017.11.007 PubMed DOI
Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 289–290. 10.1093/bioinformatics/btg412 PubMed DOI
Parisod C., Holderegger R., Brochmann C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186 5–17. 10.1111/j.1469-8137.2009.03142.x PubMed DOI
Paule J., Gregor T., Schmidt M., Gerstner E. M., Dersch G., Dressler S., et al. (2017). Chromosome numbers of the flora of Germany—A new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Pl. Syst. Evol. 303 1123–1129. 10.1007/s00606-016-1362-y DOI
Pritchard J. K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155 945–959. PubMed PMC
R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Evol. Syst. 29 467–501. 10.1146/annurev.ecolsys.29.1.467 DOI
Rao C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhya A 26 329–358.
Rešetnik I., Frajman B., Schönswetter P. (2016). Heteroploid Knautia drymeia includes K. gussonei and cannot be separated into diagnosable subspecies. Amer. J. Bot. 103 1300–1313. 10.3732/ajb.1500506 PubMed DOI
Rojas-Andrés B. M., Padilla-García N., de Pedro M., López-González N., Delgado L., Albach D. C., et al. (2020). Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Ann. Bot. 125 471–484. 10.1093/aob/mcz182 PubMed DOI PMC
Ronikier M. (2011). Biogeography of high mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60 373–389. 10.1002/tax.602008 DOI
Rosenberg N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molec. Ecol. Notes 4 137–138. 10.1046/j.1471-8286.2003.00566.x DOI
Saha S., Moorthi S., Pan H. L., Wu X., Wang J., Nadiga S., et al. (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Meteorol. Soc. 91 1015–1058. 10.1175/2010BAMS3001.1 DOI
Sampson J. F., Byrne M. (2012). Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biol. J. Linn. Soc. 105 218–230. 10.1111/j.1095-8312.2011.01787.x DOI
Schmickl R., Liston A., Zeisek V., Oberlander K., Weitemier K., Straub S. C., et al. (2016). Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). Molec. Ecol. Resour. 16 1124–1135. 10.1111/1755-0998.12487 PubMed DOI
Schmickl R., Paule J., Klein J., Marhold K., Koch M. A. (2012). The evolutionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the Western Carpathian center of species and genetic diversity. PLoS One 7:e42691. 10.1371/journal.pone.0042691 PubMed DOI PMC
Schneider U., Becker A., Finger P., Meyer-Christoffer A., Ziese M., et al. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115 15–40. 10.1007/s00704-013-0860-x DOI
Schönswetter P., Tribsch A. (2005). Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54 725–732. 10.2307/25065429 DOI
Schönswetter P., Suda J., Popp M., Weiss-Schneeweiss H., Brochmann C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molec. Phylogen. Evol. 42 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI
Servick S., Visger C. J., Gitzendanner M. A., Soltis P. S., Soltis D. E. (2015). Population genetic variation, geographic structure, and multiple origins of autopolyploidy in Galax urceolata. Amer. J. Bot. 102 973–982. 10.3732/ajb.1400554 PubMed DOI
Skokanová K., Šingliarová B., Kochjarová J., Paule J. (2019). Nuclear ITS and AFLPs provide surprising implications for the taxonomy of Tephroseris longifolia agg. and the endemic status of T. longifolia subsp. moravica. Pl. Syst. Evol. 305 865–884. 10.1007/s00606-019-01624-z DOI
Slater G. S., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6:31. 10.1186/1471-2105-6-31 PubMed DOI PMC
Slovák M., Kučera J., Turis P., Zozomová-Lihová J. (2012). Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol. J. Linn. Soc. 105 741–760. 10.1111/j.1095-8312.2011.01826.x DOI
Soltis D. E., Soltis P. S., Tate J. A. (2003). Advances in the study of polyploidy since plant speciation. New Phytol. 161 173–191. 10.1046/j.1469-8137.2003.00948.x DOI
Soltis D. E., Soltis P. S., Pires J. C., Kovařík A., Tate J. A., Mavrodiev E. (2004). Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc. 82 485–501. 10.1111/j.1095-8312.2004.00335.x DOI
Soltis D. E., Soltis P. S., Schemske D. W., Hancock J. F., Thompson J. N., Husband B. C., et al. (2007). Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56 13–30. 10.2307/25065732 DOI
Soltis P. S., Soltis D. E. (2009). The role of hybridization in plant speciation. Ann. Rev. Pl. Biol. 60 561–588. 10.1146/annurev.arplant.043008.092039 PubMed DOI
Soltis P. S., Liu X., Marchant D. B., Visger C. J., Soltis D. E. (2014). Polyploidy and novelty: Gottlieb’s legacy. Philos. Trans. Roy. Soc. London B Biol. Sci. 369:20130351. 10.1098/rstb.2013.0351 PubMed DOI PMC
Sonnleitner M., Weis B., Flatscher R., García P. E., Suda J., Krejčíková J., et al. (2013). Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae). PLoS One 8:e78959. 10.1371/journal.pone.0078959 PubMed DOI PMC
Španiel S., Marhold K., Zozomová-Lihová J. (2017). The polyploid Alyssum montanum-A. repens complex in the Balkans: a hotspot of species and genetic diversity. Pl. Syst. Evol. 303 1443–1465. 10.1007/s00606-017-1470-3 DOI
Španiel S., Marhold K., Zozomová-Lihová J. (2019). Polyphyletic Alyssum cuneifolium (Brassicaceae) revisited: Morphological and genome size differentiation of recently recognized allopatric taxa. J. Syst. Evol. 57 287–301. 10.1111/jse.12464 DOI
Španiel S., Marhold K., Filová B., Zozomová-Lihová J. (2011). Genetic and morphological variation in the diploid-polyploid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Pl. Syst. Evol. 294 1–25. 10.1007/s00606-011-0438-y DOI
Šrámková-Fuxová G., Záveská E., Kolář F., Lučanová M., Španiel S., Marhold K. (2017). Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Bot. J. Linn. Soc. 185 321–342. 10.1093/botlinnean/box064 DOI
Stachurska-Swakoń A., Cieślak E., Ronikier M., Nowak J., Kaczmarczyk A. (2020). Genetic structure of Doronicum austriacum (Asteraceae) in the Carpathians and adjacent areas: toward a comparative phylogeographical analysis of tall-herb species. Pl. Syst. Evol. 306:14 10.1007/s00606-020-01652-0 DOI
Stewart J. R., Lister A. M., Barnes I., Dalén L. (2010). Refugia revisited: individualistic responses of species in space and time. Proc. Roy. Soc. B 277 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC
Stift M., Kolář F., Meirmans P. G. (2019). STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123 429–441. 10.1038/s41437-019-0247-6 PubMed DOI PMC
Sutherland B. L., Galloway L. F. (2017). Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol. 213 404–412. 10.1111/nph.14116 PubMed DOI
Svenning J. C., Skov F. (2007). Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10 453–460. 10.1111/j.1461-0248.2007.01038.x PubMed DOI
Szpiech Z. A., Jakobsson M., Rosenberg N. A. (2008). ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24 2498–2504. 10.1093/bioinformatics/btn478 PubMed DOI PMC
Temsch E. M., Greilhuber J., Krisai R. (2010). Genome size in liverworts. Preslia 82 63–80.
Těšitel J., Malinová T., Štech M., Herbstová M. (2009). Variation in the Melampyrum sylvaticum group in the Carpathian and Hercynian region: two lineages with different evolutionary histories. Preslia 81 1–22.
Tibshirani R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Series B Stat. Methodol. 58 267–288. 10.1111/j.2517-6161.1996.tb02080.x DOI
Tomasello S., Karbstein K., Hodač L., Paetzold C., Hörandl E. (2020). Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate-montane plant species: a case study on the Ranunculus auricomus species complex. Molec. Ecol. 29 2031–2049. 10.1111/mec.15458 PubMed DOI
Udall J. A., Long E., Ramaraj T., Conover J. L., Yuan D., Grover C. E., et al. (2019). The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front. Plant Sci. 10:1541. 10.3389/fpls.2019.01541 PubMed DOI PMC
Urbanska K. M., Hurka H., Landolt E., Neuffer B., Mummenhoff K. (1997). Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, Central Switzerland: biosystematic and molecular evidence. Pl. Syst. Evol. 204 233–256. 10.1007/BF00989208 DOI
Urbanska-Worytkiewicz K., Landolt E. (1974). Biosystematics investigations in Cardamine pratensis L. s.l. 1. Diploid taxa from Central Europe and their fertility relationships. Ber. Geobot. Inst. ETH. Stiftung Rübel 42 43–139.
Villaverde T., Pokorny L., Olsson S., Rincón-Barrado M., Johnson M. G., Gardner E. M., et al. (2018). Bridging the micro-and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220 636–650. 10.1111/nph.15312 PubMed DOI
Weitemier K., Straub S. C., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Appl. Pl. Sci. 2:1400042. 10.3732/apps.1400042 PubMed DOI PMC
Wickham H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
Willner W., Di Pietro R., Bergmeier E. (2009). Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32 1011–1018. 10.1111/j.1600-0587.2009.05957.x DOI
Wos G., Mořkovská J., Bohutínská M., Šrámková G., Knotek A., Lučanová M., et al. (2019). Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Ann. Bot. 124 255–268. 10.1093/aob/mcz070 PubMed DOI PMC
Zozomová-Lihová J., Krak K., Mandáková T., Shimizu K. K., Španiel S., Vít P., et al. (2014a). Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy. Ann. Bot. 113 817–830. 10.1093/aob/mcu012 PubMed DOI PMC
Zozomová-Lihová J., Malánová-Krásná I., Vít P., Urfus T., Senko D., Svitok M., et al. (2015). Cytotype distribution patterns, ecological differentiation, and genetic structure in a diploid-tetraploid contact zone of Cardamine amara. Amer. J. Bot. 102 1380–1395. 10.3732/ajb.1500052 PubMed DOI
Zozomová-Lihová J., Mandáková T., Kovaříková A., Mühlhausen A., Mummenhoff K., Lysak M. A., et al. (2014b). When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid. New Phytol. 203 1096–1108. 10.1111/nph.12873 PubMed DOI