Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13

. 2020 Apr ; 16 (4) : e1008482. [epub] 20200420

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32310999

Grantová podpora
T32 AI106711 NIAID NIH HHS - United States
206194 Wellcome Trust - United Kingdom
R01 AI109023 NIAID NIH HHS - United States
R21 AI144472 NIAID NIH HHS - United States
R21 AI130584 NIAID NIH HHS - United States
Wellcome Trust - United Kingdom
R21 AI123808 NIAID NIH HHS - United States
R01 AI103280 NIAID NIH HHS - United States

Odkazy

PubMed 32310999
PubMed Central PMC7192513
DOI 10.1371/journal.ppat.1008482
PII: PPATHOGENS-D-19-01462
Knihovny.cz E-zdroje

The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic parasites has led to increasing treatment failure rates with first-line ART-based combination therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations, which are associated clinically with delayed parasite clearance in patients and in vitro with an enhanced ability of ring-stage parasites to survive brief exposure to the active ART metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal antibodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These latter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive vacuole wherein artemisinin-activating heme moieties are released. We also provide evidence of K13 partially localizing near the parasite mitochondria upon treatment with dihydroartemisinin. Immunoprecipitation data generated with K13-specific monoclonal antibodies identify multiple putative K13-associated proteins, including endoplasmic reticulum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon co-expression of wild-type or mutant K13. These data help define the biological properties of K13 and its role in mediating P. falciparum resistance to ART treatment.

Zobrazit více v PubMed

World Health Organization. World malaria report. 2019; https://www.who.int/publications-detail/world-malaria-report-2019.

White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, et al. Malaria. Lancet. 2014; 383: 723–35. 10.1016/S0140-6736(13)60024-0 PubMed DOI

Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017; 23: 917–28. 10.1038/nm.4381 PubMed DOI PMC

Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002; 32: 1655–60. 10.1016/s0020-7519(02)00194-7 PubMed DOI

Ismail HM, Barton V, Phanchana M, Charoensutthivarakul S, Wong MH, et al. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci USA. 2016; 113: 2080–5. 10.1073/pnas.1600459113 PubMed DOI PMC

Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015; 6: 10111 10.1038/ncomms10111 PubMed DOI PMC

Gopalakrishnan AM, Kumar N. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrob Agents Chemother. 2015; 59: 317–25. 10.1128/AAC.03663-14 PubMed DOI PMC

Gupta DK, Patra AT, Zhu L, Gupta AP, Bozdech Z. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites. Sci Rep. 2016; 6: 23603 10.1038/srep23603 PubMed DOI PMC

Klonis N, Xie SC, McCaw JM, Crespo-Ortiz MP, Zaloumis SG, et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci USA. 2013; 110: 5157–62. 10.1073/pnas.1217452110 PubMed DOI PMC

Xie SC, Dogovski C, Hanssen E, Chiu F, Yang T, et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci. 2016; 129: 406–16. 10.1242/jcs.178830 PubMed DOI PMC

Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361: 455–67. 10.1056/NEJMoa0808859 PubMed DOI PMC

Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N Engl J Med. 2009; 361: 540–1. 10.1056/NEJMc0900231 PubMed DOI

MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. Elife. 2016; 5: e08714 10.7554/eLife.08714 PubMed DOI PMC

Menard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016; 374: 2453–64. 10.1056/NEJMoa1513137 PubMed DOI PMC

van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019; 19: 952–61. 10.1016/S1473-3099(19)30391-3 PubMed DOI PMC

World Health Organization. WHO status report on artemisinin resistance and ACT efficacy. 2018; https://www.who.int/malaria/publications/atoz/artemisinin-resistance-august2018/en.

Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013; 13: 1043–9. 10.1016/S1473-3099(13)70252-4 PubMed DOI PMC

Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014; 505: 50–5. 10.1038/nature12876 PubMed DOI PMC

Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014; 371: 411–23. 10.1056/NEJMoa1314981 PubMed DOI PMC

Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015; 347: 428–31. 10.1126/science.1260867 PubMed DOI PMC

Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014; 32: 819–21. 10.1038/nbt.2925 PubMed DOI

Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, et al. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio. 2017; 8: e00172–17. 10.1128/mBio.00172-17 PubMed DOI PMC

Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol. 2000; 10: 17–24. 10.1016/s0962-8924(99)01673-6 PubMed DOI

Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004; 24: 10941–53. 10.1128/MCB.24.24.10941-10953.2004 PubMed DOI PMC

Birnbaum J, Flemming S, Reichard N, Soares AB, Mesen-Ramirez P, et al. A genetic system to study Plasmodium falciparum protein function. Nat Methods. 2017; 14: 450–6. 10.1038/nmeth.4223 PubMed DOI

Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018; 360: eaap7847 10.1126/science.aap7847 PubMed DOI PMC

Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science. 2020; 367: 51–9. 10.1126/science.aax4735 PubMed DOI

Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, et al. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 2019; 29: 2917–28 e5. 10.1016/j.celrep.2019.10.095 PubMed DOI

Heller LE, Goggins E, Roepe PD. Dihydroartemisinin-ferriprotoporphyrin IX adduct abundance in Plasmodium falciparum malarial parasites and relationship to emerging artemisinin resistance. Biochemistry. 2018; 57: 6935–45. 10.1021/acs.biochem.8b00960 PubMed DOI

Heller LE, Roepe PD. Quantification of free ferriprotoporphyrin IX heme and hemozoin for artemisinin sensitive vs delayed clearance phenotype Plasmodium falciparum malarial parasites. Biochemistry. 2018; 57: 6927–34. 10.1021/acs.biochem.8b00959 PubMed DOI

Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015; 347: 431–5. 10.1126/science.1260403 PubMed DOI PMC

Dogovski C, Xie SC, Burgio G, Bridgford J, Mok S, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 2015; 13: e1002132 10.1371/journal.pbio.1002132 PubMed DOI PMC

Zhang M, Gallego-Delgado J, Fernandez-Arias C, Waters NC, Rodriguez A, et al. Inhibiting the Plasmodium eIF2alpha kinase PK4 prevents artemisinin-induced latency. Cell Host Microbe. 2017; 22: 766–76 e4. 10.1016/j.chom.2017.11.005 PubMed DOI PMC

Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015; 520: 683–7. 10.1038/nature14412 PubMed DOI PMC

Bhattacharjee S, Coppens I, Mbengue A, Suresh N, Ghorbal M, et al. Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood. 2018; 131: 1234–47. 10.1182/blood-2017-11-814665 PubMed DOI PMC

Pretzel J, Gehr M, Eisenkolb M, Wang L, Fritz-Wolf K, et al. Characterization and redox regulation of Plasmodium falciparum methionine adenosyltransferase. J Biochem. 2016; 160: 355–67. 10.1093/jb/mvw045 PubMed DOI

Lo SC, Hannink M. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem. 2006; 281: 37893–903. 10.1074/jbc.M606539200 PubMed DOI

Lo SC, Hannink M. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp Cell Res. 2008; 314: 1789–803. 10.1016/j.yexcr.2008.02.014 PubMed DOI PMC

Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, et al. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 2008; 10: 462–70. 10.1016/j.micinf.2008.01.017 PubMed DOI PMC

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019; 47: D419–D26. 10.1093/nar/gky1038 PubMed DOI PMC

Mi H, Muruganujan A, Huang X, Ebert D, Mills C, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019; 14: 703–21. 10.1038/s41596-019-0128-8 PubMed DOI PMC

Lee MC, Moura PA, Miller EA, Fidock DA. Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif. Mol Microbiol. 2008; 68: 1535–46. 10.1111/j.1365-2958.2008.06250.x PubMed DOI PMC

Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T, et al. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat Microbiol. 2018; 3: 1010–22. 10.1038/s41564-018-0219-2 PubMed DOI

Coffey MJ, Jennison C, Tonkin CJ, Boddey JA. Role of the ER and Golgi in protein export by Apicomplexa. Curr Opin Cell Biol. 2016; 41: 18–24. 10.1016/j.ceb.2016.03.007 PubMed DOI

Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S, et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun. 2018; 9: 3801 10.1038/s41467-018-06221-1 PubMed DOI PMC

Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, et al. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol. 2007; 63: 314–34. 10.1111/j.1365-2958.2006.05443.x PubMed DOI

Matz JM, Goosmann C, Matuschewski K, Kooij TWA. An unusual prohibitin regulates malaria parasite mitochondrial membrane potential. Cell Rep. 2018; 23: 756–67. 10.1016/j.celrep.2018.03.088 PubMed DOI

Ginsburg H. Progress in in silico functional genomics: the Malaria Metabolic Pathways database. Trends Parasitol. 2006; 22: 238–40. 10.1016/j.pt.2006.04.008 PubMed DOI

Kehr S, Jortzik E, Delahunty C, Yates JR 3rd, Rahlfs S, et al. Protein S-glutathionylation in malaria parasites. Antioxid Redox Signal. 2011; 15: 2855–65. 10.1089/ars.2011.4029 PubMed DOI PMC

Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe. 2012; 12: 246–58. 10.1016/j.chom.2012.06.005 PubMed DOI PMC

Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, et al. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal. 2014; 20: 2923–35. 10.1089/ars.2013.5553 PubMed DOI PMC

Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007; 13: 305–14. 10.1016/j.devcel.2007.06.010 PubMed DOI

Siddiqui FA, Boonhok R, Cabrera M, Mbenda HGN, Wang M, et al. Role of Plasmodium falciparum Kelch 13 protein mutations in P. falciparum populations from northeastern Myanmar in mediating artemisinin resistance. mBio. 2020; 11: e01134–19. 10.1128/mBio.01134-19 PubMed DOI PMC

Crary JL, Haldar K. Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of Plasmodium falciparum. Mol Biochem Parasitol. 1992; 53: 185–92. 10.1016/0166-6851(92)90020-k PubMed DOI

Stacchiotti A, Favero G, Lavazza A, Garcia-Gomez R, Monsalve M, et al. Perspective: mitochondria-ER contacts in metabolic cellular stress assessed by microscopy. Cells. 2018; 8: E5 10.3390/cells8010005 PubMed DOI PMC

Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, et al. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med. 2017; 104: 104–17. 10.1016/j.freeradbiomed.2017.01.001 PubMed DOI

Saralamba S, Pan-Ngum W, Maude RJ, Lee SJ, Tarning J, et al. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011; 108: 397–402. 10.1073/pnas.1006113108 PubMed DOI PMC

Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011; 12: 391 10.1186/1471-2164-12-391 PubMed DOI PMC

Siddiqui G, Srivastava A, Russell AS, Creek DJ. Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum. J Infect Dis. 2017; 215: 1435–44. 10.1093/infdis/jix156 PubMed DOI

Henrici RC, Edwards RL, Zoltner M, van Schalkwyk DA, Hart MN, et al. The Plasmodium falciparum artemisinin susceptibility-associated AP-2 adaptin mu subunit is clathrin independent and essential for schizont maturation. mBio. 2020; 11: e02918–19. 10.1128/mBio.02918-19 PubMed DOI PMC

Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014; 6: a022616 10.1101/cshperspect.a022616 PubMed DOI PMC

Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009; 10: 513–25. 10.1038/nrm2728 PubMed DOI

Quevillon E, Spielmann T, Brahimi K, Chattopadhyay D, Yeramian E, et al. The Plasmodium falciparum family of Rab GTPases. Gene. 2003; 306: 13–25. 10.1016/s0378-1119(03)00381-0 PubMed DOI

Elliott DA, McIntosh MT, Hosgood HD 3rd, Chen S, Zhang G, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008; 105: 2463–8. 10.1073/pnas.0711067105 PubMed DOI PMC

Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci. 2010; 123: 441–50. 10.1242/jcs.061499 PubMed DOI

Howe R, Kelly M, Jimah J, Hodge D, Odom AR. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryot Cell. 2013; 12: 215–23. 10.1128/EC.00073-12 PubMed DOI PMC

Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012; 109: E3278–87. 10.1073/pnas.1209823109 PubMed DOI PMC

Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010; 54: 1872–7. 10.1128/AAC.01636-09 PubMed DOI PMC

Teuscher F, Chen N, Kyle DE, Gatton ML, Cheng Q. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob Agents Chemother. 2012; 56: 428–31. 10.1128/AAC.05456-11 PubMed DOI PMC

Cheng Q, Kyle DE, Gatton ML. Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy? Int J Parasitol Drugs Drug Resist. 2012; 2: 249–55. 10.1016/j.ijpddr.2012.01.001 PubMed DOI PMC

Shaw PJ, Chaotheing S, Kaewprommal P, Piriyapongsa J, Wongsombat C, et al. Plasmodium parasites mount an arrest response to dihydroartemisinin, as revealed by whole transcriptome shotgun sequencing (RNA-seq) and microarray study. BMC Genomics. 2015; 16: 830 10.1186/s12864-015-2040-0 PubMed DOI PMC

Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol. 1999; 1: 249–52. 10.1038/12075 PubMed DOI

Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic. 2002; 3: 416–27. 10.1034/j.1600-0854.2002.30605.x PubMed DOI

Stein MP, Feng Y, Cooper KL, Welford AM, Wandinger-Ness A. Human VPS34 and p150 are Rab7 interacting partners. Traffic. 2003; 4: 754–71. 10.1034/j.1600-0854.2003.00133.x PubMed DOI

Stein MP, Cao C, Tessema M, Feng Y, Romero E, et al. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol. 2005; 403: 628–49. 10.1016/S0076-6879(05)03055-7 PubMed DOI

Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta. 2009; 1787: 1324–33. 10.1016/j.bbabio.2009.01.019 PubMed DOI

Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 43: 95–118. 10.1146/annurev-genet-102108-134850 PubMed DOI PMC

Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab. 2014; 25: 528–37. 10.1016/j.tem.2014.06.007 PubMed DOI

Rosenberg A, Luth MR, Winzeler EA, Behnke M, Sibley LD. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii. Proc Natl Acad Sci USA. 2019; Dec 5: 201914732 10.1073/pnas.1914732116 PubMed DOI PMC

Maeno Y, Toyoshima T, Fujioka H, Ito Y, Meshnick SR, et al. Morphologic effects of artemisinin in Plasmodium falciparum. Am J Trop Med Hyg. 1993; 49: 485–91. 10.4269/ajtmh.1993.49.485 PubMed DOI

Peatey CL, Chavchich M, Chen N, Gresty KJ, Gray KA, et al. Mitochondrial membrane potential in a small subset of artemisinin-induced dormant Plasmodium falciparum parasites in vitro. J Infect Dis. 2015; 212: 426–34. 10.1093/infdis/jiv048 PubMed DOI

Wang J, Huang L, Li J, Fan Q, Long Y, et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One. 2010; 5: e9582 10.1371/journal.pone.0009582 PubMed DOI PMC

Mohring F, Jortzik E, Becker K. Comparison of methods probing the intracellular redox milieu in Plasmodium falciparum. Mol Biochem Parasitol. 2016; 206: 75–83. 10.1016/j.molbiopara.2015.11.002 PubMed DOI

Rahbari M, Rahlfs S, Przyborski JM, Schuh AK, Hunt NH, et al. Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep. 2017; 7: 10449 10.1038/s41598-017-10093-8 PubMed DOI PMC

Mamoun CB, Gluzman IY, Goyard S, Beverley SM, Goldberg DE. A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999; 96: 8716–20. 10.1073/pnas.96.15.8716 PubMed DOI PMC

Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, et al. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods. 2006; 3: 615–21. 10.1038/nmeth904 PubMed DOI PMC

Fidock DA, Nomura T, Wellems TE. Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Mol Pharmacol. 1998; 54: 1140–7. 10.1124/mol.54.6.1140 PubMed DOI

Ekland EH, Schneider J, Fidock DA. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. FASEB J. 2011; 25: 3583–93. 10.1096/fj.11-187401 PubMed DOI PMC

Schuh AK, Rahbari M, Heimsch KC, Mohring F, Gabryszewski SJ, et al. Stable integration and comparison of hGrx1-roGFP2 and sfroGFP2 redox probes in the malaria parasite Plasmodium falciparum. ACS Infect Dis. 2018; 4: 1601–12. 10.1021/acsinfecdis.8b00140 PubMed DOI PMC

Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc Natl Acad Sci USA. 2011; 108: E1214–23. 10.1073/pnas.1112037108 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace