A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum

. 2022 Feb 22 ; 13 (1) : e0323921. [epub] 20220118

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35038916

Grantová podpora
R21 ES021028 NIEHS NIH HHS - United States
S10 OD027043 NIH HHS - United States
MOP 130359 CIHR - Canada

Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a Plasmodium-specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. IMPORTANCE Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.

Zobrazit více v PubMed

WHO. 2012. World malaria report. WHO, Geneva, Switzerland.

Noedl H, et al. . 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620. doi:10.1056/NEJMc0805011. PubMed DOI

Dondorp AM, et al. . 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361, 455–467. doi:10.1056/NEJMoa0808859. PubMed DOI PMC

Ashley EA, et al. . 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423. doi:10.1056/NEJMoa1314981. PubMed DOI PMC

Menard D, Fidock DA. 2019. Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia. Lancet Infect Dis 19, 916–917. doi:10.1016/S1473-3099(19)30394-9. PubMed DOI PMC

Nasuhoglu C, et al. . 2002. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem 301:243–254. doi:10.1006/abio.2001.5489. PubMed DOI

Corvera S, D'Arrigo A, Stenmark H. 1999. Phosphoinositides in membrane traffic. Curr Opin Cell Biol 11:460–465. doi:10.1016/S0955-0674(99)80066-0. PubMed DOI

Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657. doi:10.1038/nature05185. PubMed DOI

Lietha. 2011. Phosphoinositides—the seven species: conversion and cellular roles. Encyclopedia in Life Sciences 108:698–705.

Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93:1019–1137. doi:10.1152/physrev.00028.2012. PubMed DOI PMC

D’Angelo G, Vicinanza M, Wilson C, De Matteis MA. 2012. Phosphoinositides in Golgi complex function. Subcell Biochem 59:255–270. doi:10.1007/978-94-007-3015-1_8. PubMed DOI

Cullen PJ, Carlton JG. 2012. Phosphoinositides in the mammalian endo-lysosomal network. Subcell Biochem 59:65–110. doi:10.1007/978-94-007-3015-1_3. PubMed DOI PMC

Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J. 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proceedings of the National Academy of Sciences of the United States of America 92:10472–10476. doi:10.1073/pnas.92.23.10472. PubMed DOI PMC

Kanai F, et al. . 2001. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biology 3:675–678. doi:10.1038/35083070. PubMed DOI

Kutateladze TG. 2010. Translation of the phosphoinositide code by PI effectors. Nature Chemical Biology 6:507–513. doi:10.1038/nchembio.390. PubMed DOI PMC

Wengelnik K, Daher W, Lebrun M. 2018. Phosphoinositides and their functions in apicomplexan parasites. Int J Parasitol 48:493–504. doi:10.1016/j.ijpara.2018.01.009. PubMed DOI

Tawk L, et al. . 2010. Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. Eukaryotic Cell 9:1519–1530. doi:10.1128/EC.00124-10. PubMed DOI PMC

Elabbadi N, Ancelin ML, Vial HJ. 1994. Characterization of phosphatidylinositol synthase and evidence of a polyphosphoinositide cycle in Plasmodium-infected erythrocytes. Molecular and Biochemical Parasitology 63:179–192. doi:10.1016/0166-6851(94)90054-X. PubMed DOI

Vial HJ, Ancelin ML, Philippot JR, Thuet MJ. 1990. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 16:531–555. PubMed

Ebrahimzadeh Z, Mukherjee A, Richard D. 2018. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 48:13–25. doi:10.1016/j.ijpara.2017.08.015. PubMed DOI

Jonscher E, et al. . 2019. PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. Cell Host Microbe 25:166–173. doi:10.1016/j.chom.2018.11.010. PubMed DOI

Brown JR, Auger KR. 2011. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evolutionary Biology 11:4. doi:10.1186/1471-2148-11-4. PubMed DOI PMC

McNamara CW, et al. . 2013. Targeting plasmodium PI(4)K to eliminate malaria. Nature PubMed PMC

Paquet T, et al. . 2017. Antimalarial efficacy of MMV390048, an inhibitor of plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 9. doi:10.1126/scitranslmed.aad9735. PubMed DOI PMC

Raabe AC, Wengelnik K, Billker O, Vial HJ. 2011. Multiple roles for Plasmodium berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation and differentiation. Cellular Microbiology 13:955–966. doi:10.1111/j.1462-5822.2011.01591.x. PubMed DOI PMC

Martin SK, Jett M, Schneider I. 1994. Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. The Journal of Parasitology 80:371–378. doi:10.2307/3283406. PubMed DOI

Ogwan'g R, et al. . 1993. Use of pharmacological agents to implicate a role for phosphoinositide hydrolysis products in malaria gamete formation. Biochem Pharmacol 46:1601–1606. doi:10.1016/0006-2952(93)90329-U. PubMed DOI

Brochet M, et al. . 2014. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLoS Biology 12:e1001806. doi:10.1371/journal.pbio.1001806. PubMed DOI PMC

Balestra AC, et al. . 2021. Ca(2+) signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. Sci Adv 7. doi:10.1126/sciadv.abe5396. PubMed DOI PMC

Ebrahimzadeh Z, et al. . 2019. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. EMBO Rep 20. doi:10.15252/embr.201847102. PubMed DOI PMC

Liffner B, et al. . 2020. PfCERLI1 is a conserved rhoptry associated protein essential for Plasmodium falciparum merozoite invasion of erythrocytes. Nat Commun 11:411. doi:10.1038/s41467-020-15127-w. PubMed DOI PMC

Suarez C, et al. . 2019. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat Commun 10:4041. doi:10.1038/s41467-019-11979-z. PubMed DOI PMC

Kumar P, et al. . 2014. Regulation of Plasmodium falciparum development by calcium-dependent protein kinase 7 (PfCDPK7). Journal of Biological Chemistry 289:20386–20395. doi:10.1074/jbc.M114.561670. PubMed DOI PMC

Goldberg DE. 1993. Hemoglobin degradation in Plasmodium-infected red blood cells. Semin Cell Biol 4:355–361. doi:10.1006/scel.1993.1042. PubMed DOI

Sherman IW. 1977. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ 55:265–276. PubMed PMC

Kapishnikov S, et al. . 2019. Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proc Natl Acad Sci USA 116: 22946–22952. doi:10.1073/pnas.1910123116. PubMed DOI PMC

Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE. 1996. On the molecular mechanism of chloroquine's antimalarial action. Proc Natl Acad Sci USA 93:11865–11870. doi:10.1073/pnas.93.21.11865. PubMed DOI PMC

Slomianny C. 1990. Three-dimensional reconstruction of the feeding process of the malaria parasite. Blood Cells 16:369–378. PubMed

Milani KJ, Schneider TG, Taraschi TF. 2015. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot Cell 14:415–426. doi:10.1128/EC.00267-14. PubMed DOI PMC

Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. 2010. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 123:441–450. doi:10.1242/jcs.061499. PubMed DOI

Aikawa M, Hepler PK, Huff CG, Sprinz H. 1966. The feeding mechanism of avian malarial parasites. J Cell Biol 28:355–373. doi:10.1083/jcb.28.2.355. PubMed DOI PMC

Spielmann T, Gras S, Sabitzki R, Meissner M. 2020. Endocytosis in plasmodium and toxoplasma parasites. Trends Parasitol PubMed

Koumandou VL, Dacks JB, Coulson RM, Field MC. 2007. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29. doi:10.1186/1471-2148-7-29. PubMed DOI PMC

Ariey F, et al. . 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. doi:10.1038/nature12876. PubMed DOI PMC

Straimer J, et al. . 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:428–431. doi:10.1126/science.1260867. PubMed DOI PMC

Birnbaum J, et al. . 2020. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367:51–59. doi:10.1126/science.aax4735. PubMed DOI

Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P. 2010. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115:2500–2507. doi:10.1182/blood-2009-08-238972. PubMed DOI PMC

McIntosh MT, et al. . 2007. Traffic to the malaria parasite food vacuole: a novel pathway involving a phosphatidylinositol 3-phosphate-binding protein. The Journal of Biological Chemistry 282:11499–11508. doi:10.1074/jbc.M610974200. PubMed DOI

Agrawal P, Manjithaya R, Surolia N. 2019. Autophagy-related protein PfATG18 participates in food vacuole dynamics and autophagy-like pathway in Plasmodium falciparum. Mol Microbiol PubMed

Sudhakar R, Das D, Thanumalayan S, Gorde S, Sijwali PS. 2021. Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J PubMed

Bansal P, Tripathi A, Thakur V, Mohmmed A, Sharma P. 2017. Autophagy-related protein ATG18 regulates apicoplast biogenesis in apicomplexan parasites. MBio 8. doi:10.1128/mBio.01468-17. PubMed DOI PMC

Lu KY, et al. . 2020. Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. Elife 9. doi:10.7554/eLife.56773. PubMed DOI PMC

Bullen HE, et al. . 2016. Phosphatidic acid-mediated signaling regulates microneme secretion in toxoplasma. Cell Host Microbe 19:349–360. doi:10.1016/j.chom.2016.02.006. PubMed DOI

Hassett MR, Roepe PD. 2018. PIK-ing new malaria chemotherapy. Trends Parasitol 34:925–927. doi:10.1016/j.pt.2018.06.003. PubMed DOI

Wengelnik K, Vial HJ. 2007. Characterization of the phosphatidylinositol synthase gene of Plasmodium species. Research in Microbiology 158:51–59. doi:10.1016/j.resmic.2006.11.005. PubMed DOI

Birnbaum J, et al. . 2017. A genetic system to study Plasmodium falciparum protein function. Nat Methods 14:450–456. doi:10.1038/nmeth.4223. PubMed DOI

Zhang M, et al. . 2018. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360. doi:10.1126/science.aap7847. PubMed DOI PMC

Chandra M, Collins BM. 2019. The Phox Homology (PX) Domain. Adv Exp Med Biol 1111:1–17. doi:10.1007/5584_2018_185. PubMed DOI

Teasdale RD, Loci D, Houghton F, Karlsson L, Gleeson PA. 2001. A large family of endosome-localized proteins related to sorting nexin 1. Biochem J 358:7–16. doi:10.1042/bj3580007. PubMed DOI PMC

Chandra M, et al. . 2019. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun 10:1528. doi:10.1038/s41467-019-09355-y. PubMed DOI PMC

Chintaluri K, et al. . 2018. The PH domain from the Toxoplasma gondii PH-containing protein-1 (TgPH1) serves as an ectopic reporter of phosphatidylinositol 3-phosphate in mammalian cells. PLoS One 13, e0198454, doi:10.1371/journal.pone.0198454. PubMed DOI PMC

Wills RC, Pacheco J, Hammond GRV. 2021. Quantification of genetically encoded lipid biosensors. Methods Mol Biol 2251:55–72. doi:10.1007/978-1-0716-1142-5_4. PubMed DOI

Wills RC, Goulden BD, Hammond GRV. 2018. Genetically encoded lipid biosensors. Mol Biol Cell 29:1526–1532. doi:10.1091/mbc.E17-12-0738. PubMed DOI PMC

Schink KO, Tan KW, Stenmark H. 2016. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol 32:143–171. doi:10.1146/annurev-cellbio-111315-125349. PubMed DOI

Hasegawa J, Strunk BS, Weisman LS. 2017. PI5P and PI(3,5)P2: Minor, but essential phosphoinositides. Cell Struct Funct 42:49–60. doi:10.1247/csf.17003. PubMed DOI PMC

Gruenberg J, Stenmark H. 2004. The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323. doi:10.1038/nrm1360. PubMed DOI

Cai X, et al. . 2013. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol 20:912–921. doi:10.1016/j.chembiol.2013.05.010. PubMed DOI PMC

Jefferies HB, et al. . 2008. A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9:164–170. doi:10.1038/sj.embor.7401155. PubMed DOI PMC

Boddey JA, et al. . 2016. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nat Commun 7:10470. doi:10.1038/ncomms10470. PubMed DOI PMC

Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. 2011. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045. doi:10.1038/nbt.2017. PubMed DOI PMC

Yang T, et al. . 2019. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep 29:2917–2928. doi:10.1016/j.celrep.2019.10.095. PubMed DOI

Gnadig NF, et al. . 2020. Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathog 16:e1008482. doi:10.1371/journal.ppat.1008482. PubMed DOI PMC

Henrici RC, et al. . 2020. The plasmodium falciparum artemisinin susceptibility-associated AP-2 adaptin mu subunit is clathrin independent and essential for schizont maturation. mBio 11. doi:10.1128/mBio.02918-19. PubMed DOI PMC

Howe R, Kelly M, Jimah J, Hodge D, Odom AR. 2013. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryotic Cell 12:215–223. doi:10.1128/EC.00073-12. PubMed DOI PMC

Siddiqui AA, et al. . 2020. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochim Biophys Acta Gen Subj 1864:129656. doi:10.1016/j.bbagen.2020.129656. PubMed DOI

Krai P, Dalal S, Klemba M. 2014. Evidence for a golgi-to-endosome protein sorting pathway in plasmodium falciparum. PloS One 9:e89771. doi:10.1371/journal.pone.0089771. PubMed DOI PMC

Klemba M, Beatt W, Gluzman I, Goldberg DE. 2004. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. The Journal of Cell Biology 164:47–56. doi:10.1083/jcb200307147. PubMed DOI PMC

Klonis N, et al. . 2007. Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of hemoglobin in Plasmodium falciparum. Biochem J 407:343–354. doi:10.1042/BJ20070934. PubMed DOI PMC

Sijwali PS, Rosenthal PJ. 2004. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389. doi:10.1073/pnas.0307720101. PubMed DOI PMC

Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. 2006. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA 103:8840–8845. doi:10.1073/pnas.0601876103. PubMed DOI PMC

Francis SE, Sullivan DJ Jr, Goldberg DE. 1997. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123. doi:10.1146/annurev.micro.51.1.97. PubMed DOI

Liu J, Gluzman IY, Drew ME, Goldberg DE. 2005. The role of Plasmodium falciparum food vacuole plasmepsins. The Journal of Biological Chemistry 280:1432–1437. doi:10.1074/jbc.M409740200. PubMed DOI

Francis SE, et al. . 1994. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 13:306–317. doi:10.1002/j.1460-2075.1994.tb06263.x. PubMed DOI PMC

Klonis N, et al. . 2011. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA 108:11405–11410. doi:10.1073/pnas.1104063108. PubMed DOI PMC

Xie SC, et al. . 2016. Hemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci 129:406–416. doi:10.1242/jcs.178830. PubMed DOI PMC

Klonis N, Creek DJ, Tilley L. 2013. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol 16, 722–727. doi:10.1016/j.mib.2013.07.005. PubMed DOI

Klonis N, et al. . 2013. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci USA 110:5157–5162. doi:10.1073/pnas.1217452110. PubMed DOI PMC

Mbengue A, et al. . 2015. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683–687. doi:10.1038/nature14412. PubMed DOI PMC

Hassett MR, Sternberg AR, Riegel BE, Thomas CJ, Roepe PD. 2017. Heterologous expression, purification, and functional analysis of Plasmodium falciparum phosphatidylinositol 3'-kinase. Biochemistry 56:4335–4345. doi:10.1021/acs.biochem.7b00416. PubMed DOI

Talman AM, Clain J, Duval R, Menard R, Ariey F. 2019. Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol 35:953–963. doi:10.1016/j.pt.2019.09.005. PubMed DOI

Ghorbal M, et al. . 2014. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnology 32:819–821. doi:10.1038/nbt.2925. PubMed DOI

McCarthy JS, et al. . 2020. A phase 1, placebo controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics and antimalarial activity of the Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048. Clin Infect Dis PubMed PMC

Theriault C, Richard D. 2017. Characterization of a putative Plasmodium falciparum SAC1 phosphoinositide-phosphatase homologue potentially required for survival during the asexual erythrocytic stages. Sci Rep 7:12710. doi:10.1038/s41598-017-12762-0. PubMed DOI PMC

Sidik SM, et al. . 2016. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell 166:1423–1435. doi:10.1016/j.cell.2016.08.019. PubMed DOI PMC

Bushell E, et al. . 2017. Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 170:260–272. doi:10.1016/j.cell.2017.06.030. PubMed DOI PMC

Stanway RR, et al. . 2019. Genome-scale identification of essential metabolic processes for targeting the plasmodium liver stage. Cell 179:1112–1128. doi:10.1016/j.cell.2019.10.030. PubMed DOI PMC

Wong W, Scott JD. 2004. AKAP signaling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970. doi:10.1038/nrm1527. PubMed DOI

Lisman J, Yasuda R, Raghavachari S. 2012. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182. doi:10.1038/nrn3192. PubMed DOI PMC

Kjaergaard M, Kragelund BB. 2017. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 74:3205–3224. doi:10.1007/s00018-017-2562-5. PubMed DOI PMC

Kralt A, et al. . 2015. Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16:135–147. doi:10.1111/tra.12243. PubMed DOI

Khattree N, Ritter LM, Goldberg AF. 2013). Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. J Cell Sci 126:4659–4670. doi:10.1242/jcs.126888. PubMed DOI PMC

Klinger CM, et al. . 2016. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 209, 88–103. doi:10.1016/j.molbiopara.2016.07.003. PubMed DOI PMC

Starr ML, Fratti RA. 2019. The participation of regulatory lipids in vacuole homotypic fusion. Trends Biochem Sci 44:546–554. doi:10.1016/j.tibs.2018.12.003. PubMed DOI PMC

Jahn R, Sudhof TC. 1999. Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911. doi:10.1146/annurev.biochem.68.1.863. PubMed DOI

Wickner W. 2010. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136. doi:10.1146/annurev-cellbio-100109-104131. PubMed DOI

Bonifacino JS, Glick BS. 2004. The mechanisms of vesicle budding and fusion. Cell 116:153–166. doi:10.1016/S0092-8674(03)01079-1. PubMed DOI

Zick M, Wickner WT. 2014. A distinct tethering step is vital for vacuole membrane fusion. Elife 3:e03251. doi:10.7554/eLife.03251. PubMed DOI PMC

Balderhaar HJ, Ungermann C. 2013. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316. doi:10.1242/jcs.107805. PubMed DOI

Woo YH, et al. . 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 4:e06974. doi:10.7554/eLife.06974. PubMed DOI PMC

Morlon-Guyot J, Pastore S, Berry L, Lebrun M, Daher W. 2015. Toxoplasma gondii Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles. Cell Microbiol 17:1157–1178. doi:10.1111/cmi.12426. PubMed DOI

Boeddinghaus C, Merz AJ, Laage R, Ungermann C. 2002. A cycle of Vam7p release from and PtdIns 3-P-dependent rebinding to the yeast vacuole is required for homotypic vacuole fusion. J Cell Biol 157:79–89. doi:10.1083/jcb.200112098. PubMed DOI PMC

Mima J, Wickner W. 2009. Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci USA 106:16191–16196. doi:10.1073/pnas.0908694106. PubMed DOI PMC

Kienle N, Kloepper TH, Fasshauer D. 2009. Differences in the SNARE evolution of fungi and metazoa. Biochem Soc Trans 37:787–791. doi:10.1042/BST0370787. PubMed DOI

Kienle N, Kloepper TH, Fasshauer D. 2009. Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evol Biol 9:19. doi:10.1186/1471-2148-9-19. PubMed DOI PMC

Trager W, Jensen JB. 1976. Human malaria parasites in continuous culture. Science 193:673–675. doi:10.1126/science.781840. PubMed DOI

Robbins JA, Absalon S, Streva VA, Dvorin JD. 2017. The malaria parasite cyclin H homolog PfCyc1 is required for efficient cytokinesis in blood-stage plasmodium falciparum. mBio 8. doi:10.1128/mBio.00605-17. PubMed DOI PMC

Nkrumah LJ, et al. . 2006. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3:615–621. doi:10.1038/nmeth904. PubMed DOI PMC

Lee JG, Takahama S, Zhang G, Tomarev SI, Ye Y. 2016. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol 18:765–776. doi:10.1038/ncb3372. PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089. PubMed DOI PMC

Altschul SF, et al. . 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389. PubMed DOI PMC

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. doi:10.1093/bioinformatics/14.9.755. PubMed DOI

Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi:10.1186/1471-2105-5-113. PubMed DOI PMC

Ansorge I, Benting J, Bhakdi S, Lingelbach K. 1996. Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J:307–314. doi:10.1042/bj3150307. PubMed DOI PMC

Jones ML, Kitson EL, Rayner JC. 2006. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Mol Biochem Parasitol 147:74–84. doi:10.1016/j.molbiopara.2006.01.009. PubMed DOI

Absalon S, Robbins JA, Dvorin JD. 2016. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites. Nat Commun 7:11449. doi:10.1038/ncomms11449. PubMed DOI PMC

Banerjee R, et al. . 2002. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of the National Academy of Sciences of the United States of America 99: 990–995. doi:10.1073/pnas.022630099. PubMed DOI PMC

Hayashi M, et al. . 2001. A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldin A-sensitive pathway. J Biol Chem 276:15249–15255. doi:10.1074/jbc.M011709200. PubMed DOI

Elmendorf HG, Haldar K. 1993. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. The EMBO Journal 12:4763–4773. doi:10.1002/j.1460-2075.1993.tb06165.x. PubMed DOI PMC

Frankland S, et al. . 2006. Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. Eukaryot Cell 5:849–860. doi:10.1128/EC.5.5.849-860.2006. PubMed DOI PMC

Cabrera A, et al. . 2012. Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic (Copenhagen, Denmark) 13:1335–1350. doi:10.1111/j.1600-0854.2012.01394.x. PubMed DOI

Etzion Z, Murray MC, Perkins ME. 1991. Isolation and characterization of rhoptries of Plasmodium falciparum. Molecular and Biochemical Parasitology 47:51–61. doi:10.1016/0166-6851(91)90147-X. PubMed DOI

Birrell GW, et al. . 2020. Multi-omic characterization of the mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum. Molecular & Cellular Proteomics: MCP 19:308–325. doi:10.1074/mcp.RA119.001797. PubMed DOI PMC

Combrinck JM, et al. . 2015. Optimization of a multi-well colorimetric assay to determine heme species in Plasmodium falciparum in the presence of anti-malarials. Malar J 14:253. doi:10.1186/s12936-015-0729-9. PubMed DOI PMC

Combrinck JM, et al. . 2013. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol 8:133–137. doi:10.1021/cb300454t. PubMed DOI PMC

Hallee S, Counihan NA, Matthews K, de Koning-Ward TF, Richard D. 2018. The malaria parasite Plasmodium falciparum Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol e12844. PMC] PubMed

Mukherjee A, Gagnon D, Wirth DF, Richard D. 2018. Inactivation of Plasmepsin 2 and 3 sensitizes Plasmodium falciparum to the antimalarial drug piperaquine. Antimicrob Agents Chemother PubMed PMC

Mukherjee A, et al. . 2017. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J 16:195. doi:10.1186/s12936-017-1845-5. PubMed DOI PMC

Witkowski B, et al. . 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13:1043–1049. doi:10.1016/S1473-3099(13)70252-4. PubMed DOI PMC

Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K. 2008. Big bang in the evolution of extant malaria parasites. Mol Biol Evol 25:2233–2239. doi:10.1093/molbev/msn171. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...