The Plasmodium falciparum Artemisinin Susceptibility-Associated AP-2 Adaptin μ Subunit is Clathrin Independent and Essential for Schizont Maturation
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
203134/Z/16/Z
Wellcome Trust - United Kingdom
R21 AI144472
NIAID NIH HHS - United States
MR/T016124/1
Medical Research Council - United Kingdom
MR/M021157/1
Medical Research Council - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
R21 AI123808
NIAID NIH HHS - United States
R01 AI103280
NIAID NIH HHS - United States
R01 AI123433
NIAID NIH HHS - United States
PubMed
32098816
PubMed Central
PMC7042695
DOI
10.1128/mbio.02918-19
PII: mBio.02918-19
Knihovny.cz E-zdroje
- Klíčová slova
- Plasmodium falciparum, adaptin trafficking complex, adaptor proteins, artemisinin susceptibility, endocytosis, malaria,
- MeSH
- adaptorový proteinový komplex 2 genetika metabolismus MeSH
- antimalarika farmakologie MeSH
- artemisininy metabolismus MeSH
- endocytóza fyziologie MeSH
- geneticky modifikované organismy MeSH
- genový knockout MeSH
- klathrin metabolismus MeSH
- léková rezistence MeSH
- membránové proteiny metabolismus MeSH
- Plasmodium falciparum účinky léků genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- schizonti účinky léků genetika metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorový proteinový komplex 2 MeSH
- antimalarika MeSH
- artemisinin MeSH Prohlížeč
- artemisininy MeSH
- klathrin MeSH
- membránové proteiny MeSH
- protozoální proteiny MeSH
The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the μ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2μ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2μ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2μ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2μ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the μ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.
Biology Centre Institute of Parasitology Czech Academy of Sciences Budweis Czech Republic
Department of Crystallography Birkbeck University of London London United Kingdom
Department of Molecular Microbiology Washington University School of Medicine St Louis Missouri USA
Department of Pediatrics Washington University School of Medicine St Louis Missouri USA
School of Life Sciences University of Dundee Dundee United Kingdom
Zobrazit více v PubMed
World Health Organization. 2017. World malaria report. World Health Organization, Geneva, Switzerland.
Saunders DL, Royal Cambodian Armed Forces, Vanachayangkul P, Lon C. 2014. Dihydroartemisinin-piperaquine failure in Cambodia. N Engl J Med 371:484–485. doi:10.1056/NEJMc1403007. PubMed DOI
Thanh NV, Thuy-Nhien N, Tuyen NTK, Tong NT, Nha-Ca NT, Dong LT, Quang HH, Farrar J, Thwaites G, White NJ, Wolbers M, Hien TT. 2017. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 16:27. doi:10.1186/s12936-017-1680-8. PubMed DOI PMC
Imwong M, Hien TT, Thuy-Nhien NT, Dondorp AM, White NJ. 2017. Spread of a single multidrug-resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis 17:1022–1023. doi:10.1016/S1473-3099(17)30524-8. PubMed DOI
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale J-C, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. doi:10.1038/nature12876. PubMed DOI PMC
Ashley EA, Tracking Resistance to Artemisinin Collaboration (TRAC), Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, et al. . 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423. doi:10.1056/NEJMoa1314981. PubMed DOI PMC
Beshir KB, Sutherland CJ, Sawa P, Drakeley CJ, Okell L, Mweresa CK, Omar SA, Shekalaghe SA, Kaur H, Ndaro A, Chilongola J, Schallig H, Sauerwein RW, Hallett RL, Bousema T. 2013. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208:2017–2024. doi:10.1093/infdis/jit431. PubMed DOI PMC
Henriques G, Hallett RL, Beshir KB, Gadalla NB, Johnson RE, Burrow R, van Schalkwyk DA, Sawa P, Omar SA, Clark TG, Bousema T, Sutherland CJ. 2014. Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2μ loci of Plasmodium falciparum in Kenyan children treated with ACT. J Infect Dis 210:2001–2008. doi:10.1093/infdis/jiu358. PubMed DOI PMC
Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB. 2016. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 15:36. doi:10.1186/s12936-016-1095-y. PubMed DOI PMC
Yeka A, Kigozi R, Conrad MD, Lugemwa M, Okui P, Katureebe C, Belay K, Kapella BK, Chang MA, Kamya MR, Staedke SG, Dorsey G, Rosenthal PJ. 2016. Artesunate/amodiaquine versus artemether/lumefantrine for the treatment of uncomplicated malaria in Uganda: a randomized trial. J Infect Dis 213:1134–1142. doi:10.1093/infdis/jiv551. PubMed DOI PMC
Sutherland CJ, Lansdell P, Sanders M, Muwanguzi J, van Schalkwyk DA, Kaur H, Nolder D, Tucker J, Bennett HM, Otto TD, Berriman M, Patel TA, Lynn R, Gkrania-Klotsas E, Chiodini PL. 2017. pfk13-independent treatment failure in four imported cases of Plasmodium falciparum malaria treated with artemether-lumefantrine in the United Kingdom. Antimicrob Agents Chemother 61:e02382-16. PubMed PMC
Klonis N, Creek DJ, Tilley L. 2013. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol 16:722–727. doi:10.1016/j.mib.2013.07.005. PubMed DOI
Heller LE, Roepe PD. 2019. Artemisinin-based antimalarial drug therapy: molecular pharmacology and evolving resistance. Tropical Med 4:89. doi:10.3390/tropicalmed4020089. PubMed DOI PMC
Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L. 2011. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A 108:11405–11410. doi:10.1073/pnas.1104063108. PubMed DOI PMC
Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LMB, Bir Singh Sidhu A, Naudé B, Deitsch KW, Su X-Z, Wootton JC, Roepe PD, Wellems TE. 2000. Mutations in the Plasmodium falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871. doi:10.1016/S1097-2765(05)00077-8. PubMed DOI PMC
Eastman RT, Dharia NV, Winzeler EA, Fidock DA. 2011. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob Agents Chemother 55:3908–3916. doi:10.1128/AAC.01793-10. PubMed DOI PMC
Dhingra SK, Redhi D, Combrinck JM, Yeo T, Okombo J, Henrich PP, Cowell AN, Gupta P, Stegman ML, Hoke JM, Cooper RA, Winzeler E, Mok S, Egan TJ, Fidock DA. 2017. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. mBio 8:e00303-17. doi:10.1128/mBio.00303-17. PubMed DOI PMC
Dhingra SK, Gabryszewski SJ, Small-Saunders JL, Yeo T, Henrich PP, Mok S, Fidock DA. 2019. Global spread of mutant PfCRT and its pleiotropic impact on Plasmodium falciparum multidrug resistance and fitness. mBio 10:e02731-18. doi:10.1128/mBio.02731-18. PubMed DOI PMC
Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ, Kümpornsin K, Takala-Harrison S, Witkowski B, Fairhurst RM, Ariey F, Menard D, Fidock DA. 2018. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 9:3314. doi:10.1038/s41467-018-05652-0. PubMed DOI PMC
Silva AM, Lee AY, Gulnik SV, Maier P, Collins J, Bhat TN, Collins PJ, Cachau RE, Luker KE, Gluzman IY, Francis SE, Oksman A, Goldberg DE, Erickson JW. 1996. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci U S A 93:10034–10039. doi:10.1073/pnas.93.19.10034. PubMed DOI PMC
Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, Almagro-Garcia J, Neal AT, Sreng S, Suon S, Drury E, Jyothi D, Stalker J, Kwiatkowski DP, Fairhurst RM. 2017. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 17:164–173. doi:10.1016/S1473-3099(16)30409-1. PubMed DOI PMC
Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, Joiner KA, Joiner KA. 2008. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 105:2463–2468. doi:10.1073/pnas.0711067105. PubMed DOI PMC
Bakar NA, Klonis N, Hanssen E, Chan C, Tilley L, Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. 2010. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 123:441–450. doi:10.1242/jcs.061499. PubMed DOI
Jonscher E, Flemming S, Schmitt M, Sabitzki R, Reichard N, Birnbaum J, Bergmann B, Höhn K, Spielmann T. 2019. PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. Cell Host Microbe 25:166–173.e5. doi:10.1016/j.chom.2018.11.010. PubMed DOI
Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, Rizk SS, Njimoh DL, Ryan Y, Chotivanich K, Nguon C, Ghorbal M, Lopez-Rubio J-J, Pfrender M, Emrich S, Mohandas N, Dondorp AM, Wiest O, Haldar K. 2015. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683–690. doi:10.1038/nature14412. PubMed DOI PMC
Bhattacharjee S, Coppens I, Mbengue A, Suresh N, Ghorbal M, Slouka Z, Safeukui I, Tang H-Y, Speicher DW, Stahelin RV, Mohandas N, Haldar K. 2018. Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood 131:1234–1247. doi:10.1182/blood-2017-11-814665. PubMed DOI PMC
Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, Bergmann B, Spielmann T. 2017. A genetic system to study Plasmodium falciparum protein function. Nat Methods 14:450–456. doi:10.1038/nmeth.4223. PubMed DOI
Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL, Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. 2019. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep 29:2917–2928. doi:10.1016/j.celrep.2019.10.095. PubMed DOI
Yap CC, Winckler B. 2015. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 9:119. doi:10.3389/fncel.2015.00119. PubMed DOI PMC
Traub LM. 2003. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208. doi:10.1083/jcb.200309175. PubMed DOI PMC
Kaksonen M, Roux A. 2018. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19:313–326. doi:10.1038/nrm.2017.132. PubMed DOI
Brodsky FM, Chen C-Y, Knuehl C, Towler MC, Wakeham DE. 2001. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 15305:517–568. doi:10.1146/annurev.cellbio.17.1.517. PubMed DOI
Park SY, Guo X. 2014. Adaptor protein complexes and intracellular transport. Biosci Rep 34:e00123. doi:10.1042/BSR20140069. PubMed DOI PMC
Kaderi Kibria KM, Rawat K, Klinger CM, Datta G, Panchal M, Singh S, Iyer GR, Kaur I, Sharma V, Dacks JB, Mohmmed A, Malhotra P. 2015. A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. Biochim Biophys Acta 1853–710. doi:10.1016/j.bbamcr.2014.12.030. PubMed DOI
Venugopal K, Werkmeister E, Barois N, Saliou J-M, Poncet A, Huot L, Sindikubwabo F, Hakimi MA, Langsley G, Lafont F, Marion S. 2017. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog 13:e1006331. doi:10.1371/journal.ppat.1006331. PubMed DOI PMC
Pieperhoff MS, Schmitt M, Ferguson DJP, Meissner M, Carruthers V. 2013. The role of clathrin in post-Golgi trafficking in Toxoplasma gondii. PLoS One 8:e77620. doi:10.1371/journal.pone.0077620. PubMed DOI PMC
Ngô HM, Yang M, Paprotka K, Pypaert M, Hoppe H, Joiner KA. 2003. AP-1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post-Golgi compartment. J Biol Chem 278:5343–5352. doi:10.1074/jbc.M208291200. PubMed DOI
Henriques G, Martinelli A, Rodrigues L, Modrzynska K, Fawcett R, Houston DR, Borges ST, d’Alessandro U, Tinto H, Karema C, Hunt P, Cravo P. 2013. Artemisinin resistance in rodent malaria–mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malar J 12:118. doi:10.1186/1475-2875-12-118. PubMed DOI PMC
Henriques G, van Schalkwyk DA, Burrow R, Warhurst DC, Thompson E, Baker DA, Fidock DA, Hallett R, Flueck C, Sutherland CJ. 2015. The mu-subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrob Agents Chemother 59:2540–2547. doi:10.1128/AAC.04067-14. PubMed DOI PMC
Henrici RC, van Schalkwyk DA, Sutherland CJ. 2019. Modification of pfap2μ and pfubp1 markedly reduces ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob Agents Chemother 64:e01542-19. doi:10.1128/AAC.01542-19. PubMed DOI PMC
Ezougou CN, Ben-Rached F, Moss DK, Lin J, Black S, Knuepfer E, Green JL, Khan SM, Mukhopadhyay A, Janse CJ, Coppens I, Yera H, Holder AA, Langsley G. 2014. Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PLoS One 9:e87695. doi:10.1371/journal.pone.0087695. PubMed DOI PMC
Benting J, Mattei D, Lingelbach K. 1994. Brefeldin A inhibits transport of the glycophorin binding protein from Plasmodium falciparum into the host erythrocyte. Biochem J 300:821–826. doi:10.1042/bj3000821. PubMed DOI PMC
Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman J-P, Müller S, Meissner M, Blackman MJ. 2013. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 88:687–701. doi:10.1111/mmi.12206. PubMed DOI PMC
Jones ML, Das S, Belda H, Collins CR, Blackman MJ, Treeck M. 2016. A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum. Sci Rep 6:21800. doi:10.1038/srep21800. PubMed DOI PMC
Kalb LC, Frederico YC, Boehm C, Moreira CM, Soares MJ, Field MC. 2016. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi. Sci Rep 6:31212 10.1038/srep31212. PubMed DOI PMC
Nevin WD, Dacks JB. 2009. Repeated secondary loss of adaptin complex genes in the Apicomplexa. Parasitol Int 58:86–94. doi:10.1016/j.parint.2008.12.002. PubMed DOI
Sosa RT, Weber MM, Wen Y, O’Halloran TJ. 2012. A single β adaptin contributes to AP1 and AP2 complexes and clathrin function in Dictyostelium. Traffic 13:305–316. doi:10.1111/j.1600-0854.2011.01310.x. PubMed DOI PMC
Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, Ashley EA, Melnikov A, Rogov P, Birren BW, Nosten F, Anderson TJC, Neafsey DE. 2017. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18:78. doi:10.1186/s13059-017-1204-4. PubMed DOI PMC
Milani KJ, Schneider TG, Taraschi TF. 2015. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot Cell 14:415–426. doi:10.1128/EC.00267-14. PubMed DOI PMC
Picco A, Kaksonen M. 2018. Quantitative imaging of clathrin-mediated endocytosis. Curr Opin Cell Biol 53:105–110. doi:10.1016/j.ceb.2018.06.005. PubMed DOI
McIntosh MT, Vaid A, Hosgood HD, Vijay J, Bhattacharya A, Sahani MH, Baevova P, Joiner KA, Sharma P. 2007. Traffic to the malaria parasite food vacuole. J Biol Chem 282:11499–11508. doi:10.1074/jbc.M610974200. PubMed DOI
Henrici RC, Sutherland CJ. 2018. Alternative pathway to reduced artemisinin susceptibility in Plasmodium falciparum. Proc Natl Acad Sci U S A 115:12556–11255. doi:10.1073/pnas.1818287115. PubMed DOI PMC
Demas AR, Wong W, Early A, Redmond S, Bopp S, Neafsey DE, Volkman SK, Hartl DL, Wirth DF. 2017. A non-kelch13 molecular marker of artemisinin resistance identified by in vitro selection of recently-adapted West African Plasmodium falciparum isolates. Am J Trop Med Hyg 97
Demas AR, Sharma AI, Wong W, Early AM, Redmond S, Bopp S, Neafsey DE, Volkman SK, Hartl DL, Wirth DF. 2018. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci U S A 115:12799–12804. doi:10.1073/pnas.1812317115. PubMed DOI PMC
Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z. 2018. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 14:e1006930. doi:10.1371/journal.ppat.1006930. PubMed DOI PMC
Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flemming S, Toenhake CG, Schmitt M, Sabitzki R, Bergmann B, Fröhlke U, Mesén-Ramírez P, Blancke Soares A, Herrmann H, Bártfai R, Spielmann T. 2020. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367:51–59. doi:10.1126/science.aax4735. PubMed DOI
Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J. 2014. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821. doi:10.1038/nbt.2925. PubMed DOI
Deitsch K, Driskill C, Wellems T. 2001. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res 29:850–853. doi:10.1093/nar/29.3.850. PubMed DOI PMC
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi:10.1038/nbt.1511. PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. doi:10.1038/nmeth.3901. PubMed DOI
Stable endocytic structures navigate the complex pellicle of apicomplexan parasites