Stable endocytic structures navigate the complex pellicle of apicomplexan parasites
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
T32 AI007528
NIAID NIH HHS - United States
214272
Wellcome Trust - United Kingdom
WT 207455/Z/17/Z
Wellcome Trust - United Kingdom
F31 AI152297
NIAID NIH HHS - United States
R25 GM086262
NIGMS NIH HHS - United States
100140
Wellcome Trust - United Kingdom
214298/Z/18/Z
Wellcome Trust - United Kingdom
086598
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
R01 AI120607
NIAID NIH HHS - United States
PubMed
37061511
PubMed Central
PMC10105704
DOI
10.1038/s41467-023-37431-x
PII: 10.1038/s41467-023-37431-x
Knihovny.cz E-zdroje
- MeSH
- endocytóza MeSH
- paraziti * metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- Toxoplasma * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 1QW UK
Department of Biochemistry University of Cambridge Cambridge CB2 1QW UK
Plant Development Ludwig Maximilians University Munich Planegg Martinsried 82152 Germany
Zobrazit více v PubMed
Autoridad Nacional del Servicio Civil. World malaria report 2021. Angew. Chem. Int. Ed.6, 951–952 (2021).
Striepen, B. Time to tackle cryptosporidiosis. Nature503, 189–191 (2013). PubMed
Khalil IA, et al. Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: a meta-analyses study. Lancet Glob. Health. 2018;6:e758–e768. doi: 10.1016/S2214-109X(18)30283-3. PubMed DOI PMC
Havelaar AH, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12:e1001923. doi: 10.1371/journal.pmed.1001923. PubMed DOI PMC
Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363:1965–1976. doi: 10.1016/S0140-6736(04)16412-X. PubMed DOI
Daher D, et al. Comprehensive overview of Toxoplasma gondii-induced and associated diseases. Pathogens. 2021;10:1351. doi: 10.3390/pathogens10111351. PubMed DOI PMC
MacGregor P, Nene V, Nisbet ERR. Tackling protozoan parasites of cattle in sub-Saharan Africa. PLoS Pathog. 2021;17:e1009955. doi: 10.1371/journal.ppat.1009955. PubMed DOI PMC
Harding CR, Meissner M. The inner membrane complex through development of Toxoplasma gondii and Plasmodium. Cell. Microbiol. 2014;16:632–641. doi: 10.1111/cmi.12285. PubMed DOI PMC
Frénal, K., Dubremetz, J. F., Lebrun, M. & Soldati-Favre, D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol.15, 645–660 (2017). PubMed
Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF. Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol. Biol. Evol. 2008;25:1219–1230. doi: 10.1093/molbev/msn070. PubMed DOI
Kono M, Prusty D, Parkinson J, Gilberger TW. The apicomplexan inner membrane complex. Front. Biosci. 2013;18:982–992. PubMed
Dubois DJ, Soldati-Favre D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell. Microbiol. 2019;21:e13018. doi: 10.1111/cmi.13018. PubMed DOI
Sparvoli, D. & Lebrun, M. Unraveling the elusive rhoptry exocytic mechanism of apicomplexa. Trends Parasitol.37, 622–637 (2021). PubMed
Joiner, K. A. & Roos, D. S. Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J. Cell Biol. 157, 557–563 (2002). PubMed PMC
dos Santos Pacheco, N., Tosetti, N., Koreny, L., Waller, R. F. & Soldati-Favre, D. Evolution, composition, assembly, and function of the conoid in apicomplexa. Trends Parasitol. 36, 688–704 (2020). PubMed
Sloves PJ, et al. Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe. 2012;11:515–527. doi: 10.1016/j.chom.2012.03.006. PubMed DOI
Kremer K, et al. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog. 2013;9:e1003213. doi: 10.1371/journal.ppat.1003213. PubMed DOI PMC
Mageswaran SK, et al. In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems. Nat. Commun. 2021;12:4983. doi: 10.1038/s41467-021-25309-9. PubMed DOI PMC
Koreny L, et al. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol. 2021;19:e3001081. doi: 10.1371/journal.pbio.3001081. PubMed DOI PMC
Miotto O, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 2015;47:226–234. doi: 10.1038/ng.3189. PubMed DOI PMC
Henriques G, et al. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrob. Agents Chemother. 2015;59:2540–2547. doi: 10.1128/AAC.04067-14. PubMed DOI PMC
Henriques G, et al. Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malar. J. 2013;12:118. doi: 10.1186/1475-2875-12-118. PubMed DOI PMC
Xie, S. C., Ralph, S. A. & Tilley, L. K13, the cytostome, and artemisinin resistance. Trends Parasitol.36, 533–544 (2020). PubMed
Yang T, et al. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 2019;29:2917–2928.e5. doi: 10.1016/j.celrep.2019.10.095. PubMed DOI
Birnbaum J, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science. 2020;367:51–59. doi: 10.1126/science.aax4735. PubMed DOI
Henrici RC, et al. The Plasmodium falciparum artemisinin susceptibility-associated ap-2 adaptin μ subunit is clathrin independent and essential for schizont maturation. mBio. 2020;11:e02918–19. doi: 10.1128/mBio.02918-19. PubMed DOI PMC
Nichols BA, Chiappino ML, Pavesio CEN. Endocytosis at the micropore of Toxoplasma gondii. Parasitol. Res. 1994;80:91–98. doi: 10.1007/BF00933773. PubMed DOI
Appleton PL, Vickerman K. Presence of apicomplexan-type microporos in a parasitic dinoflagellate, Hematodinium sp. Parasitol. Res. 1996;82:279–282. doi: 10.1007/s004360050113. PubMed DOI
Mylnikov AP. Ultrastructure and phylogeny of colpodellids (Colpodellida, Alveolata) Biol. Bull. 2009;36:582–590. doi: 10.1134/S1062359009060065. PubMed DOI
McGovern OL, Rivera-Cuevas Y, Kannan G, Narwold AJ, Carruthers VB. Intersection of endocytic and exocytic systems in Toxoplasma gondii. Traffic. 2018;19:336–353. doi: 10.1111/tra.12556. PubMed DOI PMC
Gras S, et al. An endocytic-secretory cycle participates in Toxoplasma gondii in motility. PLoS Biol. 2019;17:e3000060. doi: 10.1371/journal.pbio.3000060. PubMed DOI PMC
Venugopal K, et al. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog. 2017;13:e1006331. doi: 10.1371/journal.ppat.1006331. PubMed DOI PMC
Breinich MS, et al. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr. Biol. 2009;19:277–286. doi: 10.1016/j.cub.2009.01.039. PubMed DOI PMC
van Dooren GG, et al. A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr. Biol. 2009;19:267–276. doi: 10.1016/j.cub.2008.12.048. PubMed DOI PMC
Melatti C, et al. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog. 2019;15:e1007512. doi: 10.1371/journal.ppat.1007512. PubMed DOI PMC
Heredero-Bermejo I, et al. TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol. Microbiol. 2019;111:46–64. doi: 10.1111/mmi.14138. PubMed DOI PMC
Chern JH, et al. A novel Toxoplasma inner membrane complex suture-associated protein regulates suture protein targeting and colocalizes with membrane trafficking machinery. mBio. 2021;12:e0245521. doi: 10.1128/mBio.02455-21. PubMed DOI PMC
Pryor PR, et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell. 2008;134:817–827. doi: 10.1016/j.cell.2008.07.023. PubMed DOI PMC
Doria M, et al. The Eps15 homology (EH) domain-based interaction between Eps15 and Hrb connects the molecular machinery of endocytosis to that of nucleocytosolic transport. J. Cell Biol. 1999;147:1379–1384. doi: 10.1083/jcb.147.7.1379. PubMed DOI PMC
Anderson-White B, et al. Cytoskeleton assembly in Toxoplasma gondii cell division. Int. Rev. Cell Mol. Biol. 2012;298:1–31. doi: 10.1016/B978-0-12-394309-5.00001-8. PubMed DOI PMC
Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol. Mol. Biol. Rev. 2002;66:21–38. doi: 10.1128/MMBR.66.1.21-38.2002. PubMed DOI PMC
Chen AL, et al. Novel insights into the composition and function of the Toxoplasma IMC sutures. Cell Microbiol. 2017;19:e12678. doi: 10.1111/cmi.12678. PubMed DOI PMC
Harding CR, et al. Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii. Nat. Commun. 2019;10:401. doi: 10.1038/s41467-019-08318-7. PubMed DOI PMC
Mettlen, M., Chen, P. H., Srinivasan, S., Danuser, G. & Schmid, S. L. Regulation of clathrin-mediated endocytosis. Ann. Rev. Biochem. 87, 871–896 (2018). PubMed PMC
Beacham, G. M., Partlow, E. A. & Hollopeter, G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic20, 741–751 (2019). PubMed PMC
Taylor MJ, Perrais D, Merrifield CJ. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 2011;9:e1000604. doi: 10.1371/journal.pbio.1000604. PubMed DOI PMC
Francia, M. E. & Striepen, B. Cell division in apicomplexan parasites. Nat. Rev. Microbiol. 12, 125–136 (2014). PubMed
Rivera-Cuevas Y, et al. Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins. PLoS Pathog. 2021;17:e1010138. doi: 10.1371/journal.ppat.1010138. PubMed DOI PMC
Mineo JR, et al. Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection. J. Immunol. 1993;150:3951–64. doi: 10.4049/jimmunol.150.9.3951. PubMed DOI
Periz J, et al. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. Nat. Commun. 2019;10:4183. doi: 10.1038/s41467-019-12136-2. PubMed DOI PMC
Periz J, et al. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. Elife. 2017;6:e24119. doi: 10.7554/eLife.24119. PubMed DOI PMC
Sangaré LO, et al. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection. Nat. Commun. 2016;7:11191. doi: 10.1038/ncomms11191. PubMed DOI PMC
Haglund, K. & Dikic, I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265–275 (2012). PubMed
Gschweitl M, et al. A SPOPL/cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. Elife. 2016;5:e13841. doi: 10.7554/eLife.13841. PubMed DOI PMC
Savio MG, et al. USP9X controls EGFR Fate by deubiquitinating the endocytic adaptor Eps15. Curr. Biol. 2016;26:173–183. doi: 10.1016/j.cub.2015.11.050. PubMed DOI
Sheffield HG, Melton ML. The fine structure and reproduction of Toxoplasma gondii. J. Parasitol. 1968;54:209–226. doi: 10.2307/3276925. PubMed DOI
Scholtyseck E, Mehlhorn H. Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z. Parasitenkd. 1970;34:97–127. doi: 10.1007/BF00260383. PubMed DOI
Perkins FO. Zoospores of the oyster pathogen, Dermocystidium marinum. I. Fine structure of the conoid and other sporozoan like organelles. J. Parasitol. 1976;62:959–974. doi: 10.2307/3279192. DOI
Moore RB, et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Schrével J, et al. Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine apicomplexa. Protist. 2016;167:339–368. doi: 10.1016/j.protis.2016.06.001. PubMed DOI
Ferreira JL, et al. The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite. Front. Cell. Infection Microbiol. 2021;10:611801. doi: 10.3389/fcimb.2020.611801. PubMed DOI PMC
Wichers JS, et al. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol. 2021;23:e13341. doi: 10.1111/cmi.13341. PubMed DOI
Moore J, Sinden RE. Fine structure of Plasmodium mexicanum. J. Parasitol. 1974;60:825–833. doi: 10.2307/3278910. PubMed DOI
Sheiner L, et al. A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog. 2011;7:e1002392. doi: 10.1371/journal.ppat.1002392. PubMed DOI PMC
Long S, et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog. 2017;13:e1006379. doi: 10.1371/journal.ppat.1006379. PubMed DOI PMC
Roos DS, Donald RGK, Morrissette NS, Moulton ALC. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 1995;45:27–63. doi: 10.1016/S0091-679X(08)61845-2. PubMed DOI
Barylyuk K, et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 2020;28:752–766.e9. doi: 10.1016/j.chom.2020.09.011. PubMed DOI PMC
Brown K, Long S, Sibley L. Conditional knockdown of proteins using auxin-inducible degron (AID) fusions in Toxoplasma gondii. Bio Protoc. 2018;8:e2728. doi: 10.21769/BioProtoc.2728. PubMed DOI PMC
Chen AL, et al. Novel components of the Toxoplasma inner membrane complex revealed by BioID. mBio. 2015;6:e02357–14. doi: 10.1128/mBio.02357-14. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Amos B, et al. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022;50:D898–D911. doi: 10.1093/nar/gkab929. PubMed DOI PMC
The M, MacCoss MJ, Noble WS, Käll L. Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J. Am. Soc. Mass Spectrom. 2016;27:1719–1727. doi: 10.1007/s13361-016-1460-7. PubMed DOI PMC
Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Wickham H, et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Gentleman RC, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Gatto L, Lilley KS. Msnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics. 2012;28:288–289. doi: 10.1093/bioinformatics/btr645. PubMed DOI
Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Li W, et al. A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. Nat Microbiol. 2022;7:882–895. doi: 10.1038/s41564-022-01114-y. PubMed DOI
Owen DJ, et al. A structural explanation for the binding of multiple ligands by the α- adaptin appendage domain. Cell. 1999;97:805–815. doi: 10.1016/S0092-8674(00)80791-6. PubMed DOI
Waterhouse A, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
LLC., Schrödinger. The PyMOL Molecular Graphics System, Version 1.5.0.4. CCP4 Newsletter On Protein Crystallography. Vol 40, 82–92. Preprint at citeulike-article-id:240061%5Cn. http://www.pymol.org (2012).
Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 2010;11:431. doi: 10.1186/1471-2105-11-431. PubMed DOI PMC
Quevillon E, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20. doi: 10.1093/nar/gki442. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010.10.1109/GCE.2010.5676129 (2010).
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Yang C, et al. A plasma membrane localized protein phosphatase in Toxoplasma gondii, PPM5C, regulates attachment to host cells. Sci. Rep. 2019;9:5924. doi: 10.1038/s41598-019-42441-1. PubMed DOI PMC
Seidi A, et al. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. Elife. 2018;7:e38131. doi: 10.7554/eLife.38131. PubMed DOI PMC
Hu K, et al. Cytoskeletal components of an invasion machine - the apical complex of Toxoplasma gondii. PLoS Pathog. 2006;2:0121–0138. doi: 10.1371/journal.ppat.0020013. PubMed DOI PMC
Hu K, et al. Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol. Biol. Cell. 2002;13:593–606. doi: 10.1091/mbc.01-06-0309. PubMed DOI PMC
Anderson-White BR, et al. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol. 2011;13:18–31. doi: 10.1111/j.1462-5822.2010.01514.x. PubMed DOI PMC
Engelberg K, Bechtel T, Michaud C, Weerapana E, Gubbels MJ. Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function. Nat Commun. 2022;13:4644. doi: 10.1038/s41467-022-32151-0. PubMed DOI PMC
Gubbels MJ, Vaishnava S, Boot N, Dubremetz JF, Striepen B. A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J. Cell Sci. 2006;119:2236–2245. doi: 10.1242/jcs.02949. PubMed DOI
Suvorova ES, Francia M, Striepen B, White MW. A novel bipartite centrosome coordinates the apicomplexan cell cycle. PLoS Biol. 2015;13:e1002093. doi: 10.1371/journal.pbio.1002093. PubMed DOI PMC