Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways

. 2024 Oct 22 ; 121 (43) : e2403601121. [epub] 20241017

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39418309

Grantová podpora
207455/Z/17/Z Wellcome Trust (WT)
101030247 European Commission (EC)
RES0043758 Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC)
Wellcome Trust - United Kingdom
RES0046091 Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC)

The major organelles of the endomembrane system were in place by the time of the last eukaryotic common ancestor (LECA) (~1.5 billion years ago). Their acquisitions were defining milestones during eukaryogenesis. Comparative cell biology and evolutionary analyses show multiple instances of homology in the protein machinery controlling distinct interorganelle trafficking routes. Resolving these homologous relationships allows us to explore processes underlying the emergence of additional, distinct cellular compartments, infer ancestral states predating LECA, and explore the process of eukaryogenesis itself. Here, we undertake a molecular evolutionary analysis (including providing a transcriptome of the jakobid flagellate Reclinomonas americana), exploring the origins of the machinery responsible for the biogenesis of lysosome-related organelles (LROs), the Biogenesis of LRO Complexes (BLOCs 1,2, and 3). This pathway has been studied only in animals and is not considered a feature of the basic eukaryotic cell plan. We show that this machinery is present across the eukaryotic tree of life and was likely in place prior to LECA, making it an underappreciated facet of eukaryotic cellular organisation. Moreover, we resolve multiple points of ancient homology between all three BLOCs and other post-endosomal retrograde trafficking machinery (BORC, CCZ1 and MON1 proteins, and an unexpected relationship with the "homotypic fusion and vacuole protein sorting" (HOPS) and "Class C core vacuole/endosomal tethering" (CORVET) complexes), offering a mechanistic and evolutionary unification of these trafficking pathways. Overall, this study provides a comprehensive account of the rise of the LROs biogenesis machinery from before the LECA to current eukaryotic diversity, integrating it into the larger mechanistic framework describing endomembrane evolution.

Zobrazit více v PubMed

Koumandou V. L., et al. , Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013). PubMed PMC

Hirst J., et al. , The fifth adaptor protein complex. PLoS Biol. 9, e1001170 (2011). PubMed PMC

Hirst J., et al. , Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife 3, e02866 (2014). PubMed PMC

De Franceschi N., et al. , Longin and GAF domains: Structural evolution and adaptation to the subcellular trafficking machinery. Traffic 15, 104–121 (2014). PubMed

Schlacht A., Dacks J. B., Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol. Evol. 7, 1098 (2015). PubMed PMC

Kloepper T. H., Kienle C. N., Fasshauer D., An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007). PubMed PMC

van dam T. J. P., Bos J. L., Snel B., Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2, 4 (2011). PubMed PMC

Elias M., Brighouse A., Gabernet-Castello C., Field M. C., Dacks J. B., Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500–2508 (2012). PubMed PMC

Klöpper T. H., Kienle N., Fasshauer D., Munro S., Untangling the evolution of Rab G proteins: Implications of a comprehensive genomic analysis. BMC Biol. 10, 1–17 (2012). PubMed PMC

Koumandou V. L., Dacks J. B., Coulson R. M. R., Field M. C., Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007). PubMed PMC

Santana-Molina C., Gutierrez F., Devos D. P., Homology and modular evolution of CATCHR at the origin of the eukaryotic endomembrane system. Genome Biol. Evol. 13, evab125 (2021). PubMed PMC

Dacks J. B., Field M. C., Evolution of the eukaryotic membrane-trafficking system: Origin, tempo and mode. J. Cell Sci. 120, 2977–2985 (2007). PubMed

Ramadas R., Thattai M., New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys. J. 104, 2553–2563 (2013). PubMed PMC

Agop-Nersesian C., et al. , Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog. 6, e1001029 (2010). PubMed PMC

Kanazawa T., et al. , The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun. 11, 6152 (2020). PubMed PMC

Koreny L., et al. , Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 14, 2167 (2023). PubMed PMC

Klinger C. M., et al. , Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep. 43, 113740 (2024). PubMed

Vargová R., et al. , A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol. Evol. 13, evab157 (2021). PubMed PMC

Zaremba-Niedzwiedzka K., et al. , Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). PubMed

Hatano T., et al. , Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat. Commun. 13, 1–16 (2022). PubMed PMC

Bowman S. L., Bi-Karchin J., Le L., Marks M. S., The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 20, 404–435 (2019). PubMed PMC

Falcón-Pérez J. M., Starcevic M., Gautam R., Dell’Angelica E. C., BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J. Biol. Chem. 277, 28191–28199 (2002). PubMed

Ciciotte S. L., et al. , Cappuccino, a mouse model of Hermansky-Pudlak syndrome, encodes a novel protein that is part of the pallidin-muted complex (BLOC-1). Blood 101, 4402–4407 (2003). PubMed

Li W., et al. , Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat. Genet. 35, 84–89 (2003). PubMed PMC

Starcevic M., Dell’Angelica E. C., Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 279, 28393–28401 (2004). PubMed

Bowman S. L., et al. , A BLOC-1-AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. J. Cell Biol. 220, e202005173 (2021). PubMed PMC

Jani R. A., et al. , PI4P and BLOC-1 remodel endosomal membranes into tubules. J. Cell Biol. 221, e202110132 (2022). PubMed PMC

Gautam R., et al. , The Hermansky-Pudlak syndrome 3 (cocoa) protein is a component of the biogenesis of lysosome-related organelles complex-2 (BLOC-2). J. Biol. Chem. 279, 12935–12942 (2004). PubMed

Di Pietro S. M., Falcón-Pérez J. M., Dell’Angelica E. C., Characterization of BLOC-2, a complex containing the Hermansky-Pudlak syndrome proteins HPS3, HPS5 and HPS6. Traffic 5, 276–283 (2004). PubMed

Dennis M. K., et al. , BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 209, 563 (2015). PubMed PMC

Gerondopoulos A., Langemeyer L., Liang J. R., Linford A., Barr F. A., BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139 (2012). PubMed PMC

Wasmeier C., et al. , Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 175, 271–281 (2006). PubMed PMC

Cheli V. T., Dell’Angelica E. C., Early origin of genes encoding subunits of biogenesis of lysosome-related organelles complex-1, -2 and -3. Traffic 11, 579–586 (2010). PubMed

Pu J., et al. , BORC, a multisubunit complex that regulates lysosome positioning. Dev. Cell 33, 176 (2015). PubMed PMC

Derelle R., et al. , Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. U.S.A. 112, E693–E699 (2015). PubMed PMC

Gray M. W., et al. , The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 18, 22 (2020). PubMed PMC

Hoffman-Sommer M., Grynberg M., Kucharczyk R., Rytka J., The CHiPS Domain—Ancient traces for the Hermansky–Pudlak syndrome. Traffic 6, 534–538 (2005). PubMed

Kinch L. N., Grishin N. V., Longin-like folds identified in CHiPS and DUF254 proteins: Vesicle trafficking complexes conserved in eukaryotic evolution. Protein Sci. 15, 2669–2674 (2006). PubMed PMC

Ortiz-Sandoval C. G., Hughes S. C., Dacks J. B., Simmen T., Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cell Logist. 4, e986399 (2014). PubMed PMC

Nickerson D. P., Brett C. L., Merz A. J., Vps-C complexes: Gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21, 543–551 (2009). PubMed PMC

Dokudovskaya S., Rout M. P., A novel coatomer-related SEA complex dynamically associates with the vacuole in yeast and is implicated in the response to nitrogen starvation. Autophagy 7, 1392–1393 (2011). PubMed PMC

Kaur G., Subramanian S., A novel RING finger in the C-terminal domain of the coatomer protein α-COP. Biol. Direct 10, 70 (2015). PubMed PMC

Vaites L. P., Paulo J. A., Huttlin E. L., Harper J. W., Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macroautophagic and selective autophagic flux. Mol. Cell Biol. 38, e00392-17 (2017). PubMed PMC

Dehnen L., et al. , A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J. Cell Sci. 133, jcs247080 (2020). PubMed

van den Boomen D. J. H., et al. , A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat. Commun. 11, 5559 (2020). PubMed PMC

Herrmann E., et al. , Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc. Natl. Acad. Sci. U.S.A. 120, e2301908120 (2023). PubMed PMC

Klinger C. M., Nisbet R. E., Ouologuem D. T., Roos D. S., Dacks J. B., Cryptic organelle homology in apicomplexan parasites: Insights from evolutionary cell biology. Curr. Opin. Microbiol. 16, 424–431 (2013). PubMed PMC

DeGrasse J. A., et al. , Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteomics 8, 2119–2130 (2009). PubMed PMC

Marsilia C., et al. , Essential role of the conserved oligomeric Golgi complex in Toxoplasma gondii. mBio 14, e02513-23 (2023). PubMed PMC

Lee H. H., et al. , Assembly and architecture of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 287, 5882 (2012). PubMed PMC

Setty S. R. G., et al. , BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol. Biol. Cell 18, 768–780 (2007). PubMed PMC

Hunter M. R., Scourfield E. J., Emmott E., Graham S. C., VPS18 recruits VPS41 to the human HOPS complex via a RING–RING interaction. Biochem. J. 474, 3615 (2017). PubMed PMC

van der Beek J., Jonker C., van der Welle R., Liv N., Klumperman J., CORVET, CHEVI and HOPS–Multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134 (2019). PubMed

Lőrincz P., et al. , MiniCORVET is a Vps8-containing early endosomal tether in drosophila. Elife 5, e14226 (2016). PubMed PMC

Cullinane A. R., et al. , Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303–312 (2010). PubMed PMC

Van Der Kant R., et al. , Characterization of the mammalian CORVET and HOPS complexes and their modular restructuring for endosome specificity. J. Biol. Chem. 290, 30280–30290 (2015). PubMed PMC

Spang A., Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol. 4, 35 (2016). PubMed PMC

Jonker C. T. H., et al. , Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat. Commun. 9, 1–12 (2018). PubMed PMC

Fazeli G., Levin-Konigsberg R., Bassik M. C., Stigloher C., Wehman A. M., A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes. Curr. Biol. 33, 607–621.e7 (2023). PubMed PMC

Delevoye C., et al. , BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr. Biol. 26, 1–13 (2016). PubMed PMC

Shakya S., et al. , Rab22A recruits BLOC -1 and BLOC -2 to promote the biogenesis of recycling endosomes. EMBO Rep. 19, e45918 (2018). PubMed PMC

Solano-Collado V., Rofe A., Spanò S., Rab32 restriction of intracellular bacterial pathogens. Small GTPases 9, 216–223 (2018). PubMed PMC

Eme L., et al. , Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992 (2023). PubMed PMC

Johnson L. S., Eddy S. R., Portugaly E., Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010). PubMed PMC

Barlow L. D., et al. , Comparative genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol. Biol. 2557, 431–452 (2023). PubMed

Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haeseler A., Jermiin L. S., ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S., UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed PMC

Minh B. Q., et al. , IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). PubMed PMC

Wang H. C., Minh B. Q., Susko E., Roger A. J., Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018). PubMed

Gabler F., et al. , Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020). PubMed

Jones P., et al. , InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014). PubMed PMC

Remmert M., Biegert A., Hauser A., Söding J., HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011). PubMed

Wood D. E., Salzberg S. L., Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014). PubMed PMC

Song L., Florea L., Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015). PubMed PMC

Bushmanova E., Antipov D., Lapidus A., Prjibelski A. D., rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, giz100 (2019). PubMed PMC

Li W., Godzik A., Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). PubMed

Tang S., Lomsadze A., Borodovsky M., Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015). PubMed PMC

Manni M., Berkeley M. R., Seppey M., Simão F. A., Zdobnov E. M., BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021). PubMed PMC

Smith-Unna R., Boursnell C., Patro R., Hibberd J. M., Kelly S., TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016). PubMed PMC

Spillane J. L., LaPolice T. M., MacManes M. D., Plachetzki D. C., Signal, bias, and the role of transcriptome assembly quality in phylogenomic inference. BMC Ecol. Evol. 21, 1–17 (2021). PubMed PMC

Kurtzer G. M., Sochat V., Bauer M. W., Singularity: Scientific containers for mobility of compute. PLoS One 12, e0177459 (2017). PubMed PMC

More K. J., Dacks J. B., Manna P. T., Data from “Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways.” Figshare. 10.6084/m9.figshare.c.6981579. Deposited 15 September 2024. PubMed DOI PMC

Thomason P. A., et al. ., Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatomer complex. Curr. Biol. 34, 3564–3581.e6 (2024). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...