Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
207455/Z/17/Z
Wellcome Trust (WT)
101030247
European Commission (EC)
RES0043758
Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC)
Wellcome Trust - United Kingdom
RES0046091
Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC)
PubMed
39418309
PubMed Central
PMC11513930
DOI
10.1073/pnas.2403601121
Knihovny.cz E-zdroje
- Klíčová slova
- BLOC, BORC, comparative genomics, lysosome-related organelle, molecular evolution,
- MeSH
- biologická evoluce MeSH
- endozomy metabolismus MeSH
- Eukaryota metabolismus genetika MeSH
- fylogeneze MeSH
- lyzozomy * metabolismus MeSH
- molekulární evoluce * MeSH
- organely metabolismus MeSH
- transport proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
The major organelles of the endomembrane system were in place by the time of the last eukaryotic common ancestor (LECA) (~1.5 billion years ago). Their acquisitions were defining milestones during eukaryogenesis. Comparative cell biology and evolutionary analyses show multiple instances of homology in the protein machinery controlling distinct interorganelle trafficking routes. Resolving these homologous relationships allows us to explore processes underlying the emergence of additional, distinct cellular compartments, infer ancestral states predating LECA, and explore the process of eukaryogenesis itself. Here, we undertake a molecular evolutionary analysis (including providing a transcriptome of the jakobid flagellate Reclinomonas americana), exploring the origins of the machinery responsible for the biogenesis of lysosome-related organelles (LROs), the Biogenesis of LRO Complexes (BLOCs 1,2, and 3). This pathway has been studied only in animals and is not considered a feature of the basic eukaryotic cell plan. We show that this machinery is present across the eukaryotic tree of life and was likely in place prior to LECA, making it an underappreciated facet of eukaryotic cellular organisation. Moreover, we resolve multiple points of ancient homology between all three BLOCs and other post-endosomal retrograde trafficking machinery (BORC, CCZ1 and MON1 proteins, and an unexpected relationship with the "homotypic fusion and vacuole protein sorting" (HOPS) and "Class C core vacuole/endosomal tethering" (CORVET) complexes), offering a mechanistic and evolutionary unification of these trafficking pathways. Overall, this study provides a comprehensive account of the rise of the LROs biogenesis machinery from before the LECA to current eukaryotic diversity, integrating it into the larger mechanistic framework describing endomembrane evolution.
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY United Kingdom
Department of Biological Sciences University of Alberta Edmonton AB T6G 2N8 Canada
Department of Physiology Gothenburg University Gothenburg 413 90 Sweden
Zobrazit více v PubMed
Koumandou V. L., et al. , Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013). PubMed PMC
Hirst J., et al. , The fifth adaptor protein complex. PLoS Biol. 9, e1001170 (2011). PubMed PMC
Hirst J., et al. , Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife 3, e02866 (2014). PubMed PMC
De Franceschi N., et al. , Longin and GAF domains: Structural evolution and adaptation to the subcellular trafficking machinery. Traffic 15, 104–121 (2014). PubMed
Schlacht A., Dacks J. B., Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol. Evol. 7, 1098 (2015). PubMed PMC
Kloepper T. H., Kienle C. N., Fasshauer D., An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007). PubMed PMC
van dam T. J. P., Bos J. L., Snel B., Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2, 4 (2011). PubMed PMC
Elias M., Brighouse A., Gabernet-Castello C., Field M. C., Dacks J. B., Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500–2508 (2012). PubMed PMC
Klöpper T. H., Kienle N., Fasshauer D., Munro S., Untangling the evolution of Rab G proteins: Implications of a comprehensive genomic analysis. BMC Biol. 10, 1–17 (2012). PubMed PMC
Koumandou V. L., Dacks J. B., Coulson R. M. R., Field M. C., Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007). PubMed PMC
Santana-Molina C., Gutierrez F., Devos D. P., Homology and modular evolution of CATCHR at the origin of the eukaryotic endomembrane system. Genome Biol. Evol. 13, evab125 (2021). PubMed PMC
Dacks J. B., Field M. C., Evolution of the eukaryotic membrane-trafficking system: Origin, tempo and mode. J. Cell Sci. 120, 2977–2985 (2007). PubMed
Ramadas R., Thattai M., New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys. J. 104, 2553–2563 (2013). PubMed PMC
Agop-Nersesian C., et al. , Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog. 6, e1001029 (2010). PubMed PMC
Kanazawa T., et al. , The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun. 11, 6152 (2020). PubMed PMC
Koreny L., et al. , Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 14, 2167 (2023). PubMed PMC
Klinger C. M., et al. , Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep. 43, 113740 (2024). PubMed
Vargová R., et al. , A eukaryote-wide perspective on the diversity and evolution of the ARF GTPase protein family. Genome Biol. Evol. 13, evab157 (2021). PubMed PMC
Zaremba-Niedzwiedzka K., et al. , Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). PubMed
Hatano T., et al. , Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat. Commun. 13, 1–16 (2022). PubMed PMC
Bowman S. L., Bi-Karchin J., Le L., Marks M. S., The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 20, 404–435 (2019). PubMed PMC
Falcón-Pérez J. M., Starcevic M., Gautam R., Dell’Angelica E. C., BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J. Biol. Chem. 277, 28191–28199 (2002). PubMed
Ciciotte S. L., et al. , Cappuccino, a mouse model of Hermansky-Pudlak syndrome, encodes a novel protein that is part of the pallidin-muted complex (BLOC-1). Blood 101, 4402–4407 (2003). PubMed
Li W., et al. , Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat. Genet. 35, 84–89 (2003). PubMed PMC
Starcevic M., Dell’Angelica E. C., Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 279, 28393–28401 (2004). PubMed
Bowman S. L., et al. , A BLOC-1-AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers. J. Cell Biol. 220, e202005173 (2021). PubMed PMC
Jani R. A., et al. , PI4P and BLOC-1 remodel endosomal membranes into tubules. J. Cell Biol. 221, e202110132 (2022). PubMed PMC
Gautam R., et al. , The Hermansky-Pudlak syndrome 3 (cocoa) protein is a component of the biogenesis of lysosome-related organelles complex-2 (BLOC-2). J. Biol. Chem. 279, 12935–12942 (2004). PubMed
Di Pietro S. M., Falcón-Pérez J. M., Dell’Angelica E. C., Characterization of BLOC-2, a complex containing the Hermansky-Pudlak syndrome proteins HPS3, HPS5 and HPS6. Traffic 5, 276–283 (2004). PubMed
Dennis M. K., et al. , BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 209, 563 (2015). PubMed PMC
Gerondopoulos A., Langemeyer L., Liang J. R., Linford A., Barr F. A., BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139 (2012). PubMed PMC
Wasmeier C., et al. , Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 175, 271–281 (2006). PubMed PMC
Cheli V. T., Dell’Angelica E. C., Early origin of genes encoding subunits of biogenesis of lysosome-related organelles complex-1, -2 and -3. Traffic 11, 579–586 (2010). PubMed
Pu J., et al. , BORC, a multisubunit complex that regulates lysosome positioning. Dev. Cell 33, 176 (2015). PubMed PMC
Derelle R., et al. , Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. U.S.A. 112, E693–E699 (2015). PubMed PMC
Gray M. W., et al. , The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 18, 22 (2020). PubMed PMC
Hoffman-Sommer M., Grynberg M., Kucharczyk R., Rytka J., The CHiPS Domain—Ancient traces for the Hermansky–Pudlak syndrome. Traffic 6, 534–538 (2005). PubMed
Kinch L. N., Grishin N. V., Longin-like folds identified in CHiPS and DUF254 proteins: Vesicle trafficking complexes conserved in eukaryotic evolution. Protein Sci. 15, 2669–2674 (2006). PubMed PMC
Ortiz-Sandoval C. G., Hughes S. C., Dacks J. B., Simmen T., Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cell Logist. 4, e986399 (2014). PubMed PMC
Nickerson D. P., Brett C. L., Merz A. J., Vps-C complexes: Gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21, 543–551 (2009). PubMed PMC
Dokudovskaya S., Rout M. P., A novel coatomer-related SEA complex dynamically associates with the vacuole in yeast and is implicated in the response to nitrogen starvation. Autophagy 7, 1392–1393 (2011). PubMed PMC
Kaur G., Subramanian S., A novel RING finger in the C-terminal domain of the coatomer protein α-COP. Biol. Direct 10, 70 (2015). PubMed PMC
Vaites L. P., Paulo J. A., Huttlin E. L., Harper J. W., Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macroautophagic and selective autophagic flux. Mol. Cell Biol. 38, e00392-17 (2017). PubMed PMC
Dehnen L., et al. , A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J. Cell Sci. 133, jcs247080 (2020). PubMed
van den Boomen D. J. H., et al. , A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat. Commun. 11, 5559 (2020). PubMed PMC
Herrmann E., et al. , Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc. Natl. Acad. Sci. U.S.A. 120, e2301908120 (2023). PubMed PMC
Klinger C. M., Nisbet R. E., Ouologuem D. T., Roos D. S., Dacks J. B., Cryptic organelle homology in apicomplexan parasites: Insights from evolutionary cell biology. Curr. Opin. Microbiol. 16, 424–431 (2013). PubMed PMC
DeGrasse J. A., et al. , Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteomics 8, 2119–2130 (2009). PubMed PMC
Marsilia C., et al. , Essential role of the conserved oligomeric Golgi complex in Toxoplasma gondii. mBio 14, e02513-23 (2023). PubMed PMC
Lee H. H., et al. , Assembly and architecture of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J. Biol. Chem. 287, 5882 (2012). PubMed PMC
Setty S. R. G., et al. , BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol. Biol. Cell 18, 768–780 (2007). PubMed PMC
Hunter M. R., Scourfield E. J., Emmott E., Graham S. C., VPS18 recruits VPS41 to the human HOPS complex via a RING–RING interaction. Biochem. J. 474, 3615 (2017). PubMed PMC
van der Beek J., Jonker C., van der Welle R., Liv N., Klumperman J., CORVET, CHEVI and HOPS–Multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134 (2019). PubMed
Lőrincz P., et al. , MiniCORVET is a Vps8-containing early endosomal tether in drosophila. Elife 5, e14226 (2016). PubMed PMC
Cullinane A. R., et al. , Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303–312 (2010). PubMed PMC
Van Der Kant R., et al. , Characterization of the mammalian CORVET and HOPS complexes and their modular restructuring for endosome specificity. J. Biol. Chem. 290, 30280–30290 (2015). PubMed PMC
Spang A., Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol. 4, 35 (2016). PubMed PMC
Jonker C. T. H., et al. , Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat. Commun. 9, 1–12 (2018). PubMed PMC
Fazeli G., Levin-Konigsberg R., Bassik M. C., Stigloher C., Wehman A. M., A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes. Curr. Biol. 33, 607–621.e7 (2023). PubMed PMC
Delevoye C., et al. , BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr. Biol. 26, 1–13 (2016). PubMed PMC
Shakya S., et al. , Rab22A recruits BLOC -1 and BLOC -2 to promote the biogenesis of recycling endosomes. EMBO Rep. 19, e45918 (2018). PubMed PMC
Solano-Collado V., Rofe A., Spanò S., Rab32 restriction of intracellular bacterial pathogens. Small GTPases 9, 216–223 (2018). PubMed PMC
Eme L., et al. , Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992 (2023). PubMed PMC
Johnson L. S., Eddy S. R., Portugaly E., Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010). PubMed PMC
Barlow L. D., et al. , Comparative genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol. Biol. 2557, 431–452 (2023). PubMed
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haeseler A., Jermiin L. S., ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC
Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S., UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed PMC
Minh B. Q., et al. , IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). PubMed PMC
Wang H. C., Minh B. Q., Susko E., Roger A. J., Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018). PubMed
Gabler F., et al. , Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020). PubMed
Jones P., et al. , InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014). PubMed PMC
Remmert M., Biegert A., Hauser A., Söding J., HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011). PubMed
Wood D. E., Salzberg S. L., Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014). PubMed PMC
Song L., Florea L., Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015). PubMed PMC
Bushmanova E., Antipov D., Lapidus A., Prjibelski A. D., rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, giz100 (2019). PubMed PMC
Li W., Godzik A., Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). PubMed
Tang S., Lomsadze A., Borodovsky M., Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015). PubMed PMC
Manni M., Berkeley M. R., Seppey M., Simão F. A., Zdobnov E. M., BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021). PubMed PMC
Smith-Unna R., Boursnell C., Patro R., Hibberd J. M., Kelly S., TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016). PubMed PMC
Spillane J. L., LaPolice T. M., MacManes M. D., Plachetzki D. C., Signal, bias, and the role of transcriptome assembly quality in phylogenomic inference. BMC Ecol. Evol. 21, 1–17 (2021). PubMed PMC
Kurtzer G. M., Sochat V., Bauer M. W., Singularity: Scientific containers for mobility of compute. PLoS One 12, e0177459 (2017). PubMed PMC
More K. J., Dacks J. B., Manna P. T., Data from “Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways.” Figshare. 10.6084/m9.figshare.c.6981579. Deposited 15 September 2024. PubMed DOI PMC
Thomason P. A., et al. ., Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatomer complex. Curr. Biol. 34, 3564–3581.e6 (2024). PubMed