Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases

. 2012 May 15 ; 125 (Pt 10) : 2500-8. [epub] 20120224

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22366452

Grantová podpora
Wellcome Trust - United Kingdom
082813 Wellcome Trust - United Kingdom

The presence of a nucleus and other membrane-bounded intracellular compartments is the defining feature of eukaryotic cells. Endosymbiosis accounts for the origins of mitochondria and plastids, but the evolutionary ancestry of the remaining cellular compartments is incompletely documented. Resolving the evolutionary history of organelle-identity encoding proteins within the endomembrane system is a necessity for unravelling the origins and diversification of the endogenously derived organelles. Comparative genomics reveals events after the last eukaryotic common ancestor (LECA), but resolution of events prior to LECA, and a full account of the intracellular compartments present in LECA, has proved elusive. We have devised and exploited a new phylogenetic strategy to reconstruct the history of the Rab GTPases, a key family of endomembrane-specificity proteins. Strikingly, we infer a remarkably sophisticated organellar composition for LECA, which we predict possessed as many as 23 Rab GTPases. This repertoire is significantly greater than that present in many modern organisms and unexpectedly indicates a major role for secondary loss in the evolutionary diversification of the endomembrane system. We have identified two Rab paralogues of unknown function but wide distribution, and thus presumably ancient nature; RabTitan and RTW. Furthermore, we show that many Rab paralogues emerged relatively suddenly during early metazoan evolution, which is in stark contrast to the lack of significant Rab family expansions at the onset of most other major eukaryotic groups. Finally, we reconstruct higher-order ancestral clades of Rabs primarily linked with endocytic and exocytic process, suggesting the presence of primordial Rabs associated with the establishment of those pathways and giving the deepest glimpse to date into pre-LECA history of the endomembrane system.

Zobrazit více v PubMed

Abascal F., Zardoya R., Posada D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105 PubMed

Adl S. M., Simpson A. G., Farmer M. A., Andersen R. A., Anderson O. R., Barta J. R., Bowser S. S., Brugerolle G., Fensome R. A., Fredericq S., et al. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399-451 PubMed

Agop-Nersesian C., Naissant B., Ben Rached F., Rauch M., Kretzschmar A., Thiberge S., Menard R., Ferguson D. J., Meissner M., Langsley G. (2009). Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog. 5, e1000270 PubMed PMC

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 PubMed PMC

Ayong L., Pagnotti G., Tobon A. B., Chakrabarti D. (2007). Identification of Plasmodium falciparum family of SNAREs. Mol. Biochem. Parasitol. 152, 113-122 PubMed

Brighouse A., Dacks J. B., Field M. C. (2010). Rab protein evolution and the history of the eukaryotic endomembrane system. Cell. Mol. Life Sci. 67, 3449-3465 PubMed PMC

Bright L. J., Kambesis N., Nelson S. B., Jeong B., Turkewitz A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 6, e1001155 PubMed PMC

Burki F., Inagaki Y., Bråte J., Archibald J. M., Keeling P. J., Cavalier-Smith T., Sakaguchi M., Hashimoto T., Horak A., Kumar S., et al. (2009). Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol. Evol. 1, 231-238 PubMed PMC

Cai H., Reinisch K., Ferro-Novick S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671-682 PubMed

Carlton J. M., Hirt R. P., Silva J. C., Delcher A. L., Schatz M., Zhao Q., Wortman J. R., Bidwell S. L., Alsmark U. C., Besteiro S., et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207-212 PubMed PMC

Cavalier-Smith T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297-354 PubMed

Colicelli J. (2004). Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, re13 PubMed PMC

Dacks J. B., Doolittle W. F. (2002). Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J. Cell Sci. 115, 1635-1642 PubMed

Dacks J. B., Field M. C. (2007). Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977-2985 PubMed

Dacks J. B., Poon P. P., Field M. C. (2008). Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc. Natl. Acad. Sci. USA 105, 588-593 PubMed PMC

Dacks J. B., Peden A. A., Field M. C. (2009). Evolution of specificity in the eukaryotic endomembrane system. Int. J. Biochem. Cell Biol. 41, 330-340 PubMed

Diekmann Y., Seixas E., Gouw M., Tavares-Cadete F., Seabra M. C., Pereira-Leal J. B. (2011). Thousands of rab GTPases for the cell biologist. PLOS Comput. Biol. 7, e1002217 PubMed PMC

Elias M. (2010). Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol. Membr. Biol. 27, 469-489 PubMed

Elias E. V., Quiroga R., Gottig N., Nakanishi H., Nash T. E., Neiman A., Lujan H. D. (2008). Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J. Biol. Chem. 283, 35996-36010 PubMed PMC

Elias M., Patron N. J., Keeling P. J. (2009). The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and Rhizaria. J. Eukaryot. Microbiol. 56, 348-356 PubMed

Embley T. M., Martin W. (2006). Eukaryotic evolution, changes and challenges. Nature 440, 623-630 PubMed

Field M. C., Carrington M. (2004). Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5, 905-913 PubMed

Fritz-Laylin L. K., Prochnik S. E., Ginger M. L., Dacks J. B., Carpenter M. L., Field M. C., Kuo A., Paredez A., Chapman J., Pham J., et al. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631-642 PubMed

Fukuda R., McNew J. A., Weber T., Parlati F., Engel T., Nickel W., Rothman J. E., Söllner T. H. (2000). Functional architecture of an intracellular membrane t-SNARE. Nature 407, 198-202 PubMed

Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704 PubMed

Gurkan C., Koulov A. V., Balch W. E. (2007). An evolutionary perspective on eukaryotic membrane trafficking. Adv. Exp. Med. Biol. 607, 73-83 PubMed

Hirst J., Barlow L. D., Francisco G. C., Sahlender D. A., Seaman M. N., Dacks J. B., Robinson M. S. (2011). The fifth adaptor protein complex. PLoS Biol. 9, e1001170 PubMed PMC

Huizing M., Helip-Wooley A., Westbroek W., Gunay-Aygun M., Gahl W. A. (2008). Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet. 9, 359-386 PubMed PMC

Keeling P. J. (2010). The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 729-748 PubMed PMC

Kissmehl R., Schilde C., Wassmer T., Danzer C., Nuehse K., Lutter K., Plattner H. (2007). Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8, 523-542 PubMed

Kloepper T. H., Kienle C. N., Fasshauer D. (2007). An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463-3471 PubMed PMC

Koonin E. V. (2010). Preview. The incredible expanding ancestor of eukaryotes. Cell 140, 606-608 PubMed PMC

Lal K., Field M. C., Carlton J. M., Warwicker J., Hirt R. P. (2005). Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol. Biochem. Parasitol. 143, 226-235 PubMed

Letunic I., Doerks T., Bork P. (2009). SMART 6: recent updates and new developments. Nucleic Acids Res. 37, D229-D232 PubMed PMC

Lumb J. H., Leung K. F., Dubois K. N., Field M. C. (2011). Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J. Cell Sci. 124, 3771-3783 PubMed PMC

Mackiewicz P., Wyroba E. (2009). Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol. Biol. 9, 101 PubMed PMC

Nakada-Tsukui K., Saito-Nakano Y., Husain A., Nozaki T. (2010). Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology. Exp. Parasitol. 126, 337-347 PubMed

Olkkonen V. M., Ikonen E. (2006). When intracellular logistics fails - genetic defects in membrane trafficking. J. Cell Sci. 119, 5031-5045 PubMed

Pereira-Leal J. B. (2008). The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9, 27-38 PubMed

Pereira-Leal J. B., Seabra M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889-901 PubMed

Roger A. J., Simpson A. G. (2009). Evolution: revisiting the root of the eukaryote tree. Curr. Biol. 19, R165-R167 PubMed

Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 PubMed

Rutherford S., Moore I. (2002). The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol. 5, 518-528 PubMed

Saito-Nakano Y., Loftus B. J., Hall N., Nozaki T. (2005). The diversity of rab GTPases in Entamoeba histolytica. Exp. Parasitol. 110, 244-252 PubMed

Saito-Nakano Y., Nakahara T., Nakano K., Nozaki T., Numata O. (2010). Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia. J. Eukaryot. Microbiol. 57, 389-399 PubMed

Sanderfoot A. (2007). Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6-17 PubMed PMC

Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. (2002). TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502-504 PubMed

Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690 PubMed

Stanier R. (1970). Some aspects of the biology of cells and their possible evolutionary significance. In Organization and Control in Prokaryotic and Eukaryotic Cells (ed. Charles H., Knight B.), pp. 1-38 Cambridge, UK: Cambridge University Press;

Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525 PubMed

Südhof T. C., Rothman J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474-477 PubMed PMC

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 PubMed PMC

Walker G., Dorrell R. G., Schlacht A., Dacks J. B. (2011). Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology 138, 1638-1663 PubMed

Woollard A. A., Moore I. (2008). The functions of Rab GTPases in plant membrane traffic. Curr. Opin. Plant Biol. 11, 610-619 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics

. 2025 Feb ; 10 (2) : 495-508. [epub] 20250123

A unique symbiosome in an anaerobic single-celled eukaryote

. 2024 Nov 09 ; 15 (1) : 9726. [epub] 20241109

Reconstructing the last common ancestor of all eukaryotes

. 2024 Nov ; 22 (11) : e3002917. [epub] 20241125

Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways

. 2024 Oct 22 ; 121 (43) : e2403601121. [epub] 20241017

Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes

. 2023 Dec ; 98 (6) : 1910-1927. [epub] 20230619

Evolution of factors shaping the endoplasmic reticulum

. 2022 Sep ; 23 (9) : 462-473. [epub] 20220817

Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa

. 2022 Jan ; 13 (1) : 100-113. [epub] 20210329

Evolution and diversification of the nuclear envelope

. 2021 Dec ; 12 (1) : 21-41.

Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata

. 2021 Aug 27 ; 19 (1) : 167. [epub] 20210827

A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family

. 2021 Aug 03 ; 13 (8) : .

Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

. 2021 Jul 22 ; 19 (1) : 142. [epub] 20210722

Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila

. 2020 Feb 12 ; 133 (3) : . [epub] 20200212

Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex

. 2019 ; 4 () : 112. [epub] 20191129

The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion

. 2019 Oct 01 ; 36 (10) : 2292-2312.

Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase

. 2018 Mar 27 ; 8 (1) : 5239. [epub] 20180327

A sophisticated, differentiated Golgi in the ancestor of eukaryotes

. 2018 Mar 07 ; 16 (1) : 27. [epub] 20180307

Tethering Complexes in the Arabidopsis Endomembrane System

. 2016 ; 4 () : 46. [epub] 20160519

A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution

. 2016 Feb 02 ; 11 (1) : 5. [epub] 20160202

The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants

. 2014 Feb ; 10 (2) : e1004007. [epub] 20140206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...