Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
082813
Wellcome Trust - United Kingdom
PubMed
22366452
PubMed Central
PMC3383260
DOI
10.1242/jcs.101378
PII: jcs.101378
Knihovny.cz E-zdroje
- MeSH
- eukaryotické buňky klasifikace enzymologie MeSH
- fylogeneze MeSH
- intracelulární membrány enzymologie MeSH
- klasifikace metody MeSH
- lidé MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- Rab proteiny vázající GTP genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Rab proteiny vázající GTP MeSH
The presence of a nucleus and other membrane-bounded intracellular compartments is the defining feature of eukaryotic cells. Endosymbiosis accounts for the origins of mitochondria and plastids, but the evolutionary ancestry of the remaining cellular compartments is incompletely documented. Resolving the evolutionary history of organelle-identity encoding proteins within the endomembrane system is a necessity for unravelling the origins and diversification of the endogenously derived organelles. Comparative genomics reveals events after the last eukaryotic common ancestor (LECA), but resolution of events prior to LECA, and a full account of the intracellular compartments present in LECA, has proved elusive. We have devised and exploited a new phylogenetic strategy to reconstruct the history of the Rab GTPases, a key family of endomembrane-specificity proteins. Strikingly, we infer a remarkably sophisticated organellar composition for LECA, which we predict possessed as many as 23 Rab GTPases. This repertoire is significantly greater than that present in many modern organisms and unexpectedly indicates a major role for secondary loss in the evolutionary diversification of the endomembrane system. We have identified two Rab paralogues of unknown function but wide distribution, and thus presumably ancient nature; RabTitan and RTW. Furthermore, we show that many Rab paralogues emerged relatively suddenly during early metazoan evolution, which is in stark contrast to the lack of significant Rab family expansions at the onset of most other major eukaryotic groups. Finally, we reconstruct higher-order ancestral clades of Rabs primarily linked with endocytic and exocytic process, suggesting the presence of primordial Rabs associated with the establishment of those pathways and giving the deepest glimpse to date into pre-LECA history of the endomembrane system.
Zobrazit více v PubMed
Abascal F., Zardoya R., Posada D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105 PubMed
Adl S. M., Simpson A. G., Farmer M. A., Andersen R. A., Anderson O. R., Barta J. R., Bowser S. S., Brugerolle G., Fensome R. A., Fredericq S., et al. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399-451 PubMed
Agop-Nersesian C., Naissant B., Ben Rached F., Rauch M., Kretzschmar A., Thiberge S., Menard R., Ferguson D. J., Meissner M., Langsley G. (2009). Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog. 5, e1000270 PubMed PMC
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 PubMed PMC
Ayong L., Pagnotti G., Tobon A. B., Chakrabarti D. (2007). Identification of Plasmodium falciparum family of SNAREs. Mol. Biochem. Parasitol. 152, 113-122 PubMed
Brighouse A., Dacks J. B., Field M. C. (2010). Rab protein evolution and the history of the eukaryotic endomembrane system. Cell. Mol. Life Sci. 67, 3449-3465 PubMed PMC
Bright L. J., Kambesis N., Nelson S. B., Jeong B., Turkewitz A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 6, e1001155 PubMed PMC
Burki F., Inagaki Y., Bråte J., Archibald J. M., Keeling P. J., Cavalier-Smith T., Sakaguchi M., Hashimoto T., Horak A., Kumar S., et al. (2009). Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol. Evol. 1, 231-238 PubMed PMC
Cai H., Reinisch K., Ferro-Novick S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671-682 PubMed
Carlton J. M., Hirt R. P., Silva J. C., Delcher A. L., Schatz M., Zhao Q., Wortman J. R., Bidwell S. L., Alsmark U. C., Besteiro S., et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207-212 PubMed PMC
Cavalier-Smith T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297-354 PubMed
Colicelli J. (2004). Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, re13 PubMed PMC
Dacks J. B., Doolittle W. F. (2002). Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J. Cell Sci. 115, 1635-1642 PubMed
Dacks J. B., Field M. C. (2007). Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977-2985 PubMed
Dacks J. B., Poon P. P., Field M. C. (2008). Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc. Natl. Acad. Sci. USA 105, 588-593 PubMed PMC
Dacks J. B., Peden A. A., Field M. C. (2009). Evolution of specificity in the eukaryotic endomembrane system. Int. J. Biochem. Cell Biol. 41, 330-340 PubMed
Diekmann Y., Seixas E., Gouw M., Tavares-Cadete F., Seabra M. C., Pereira-Leal J. B. (2011). Thousands of rab GTPases for the cell biologist. PLOS Comput. Biol. 7, e1002217 PubMed PMC
Elias M. (2010). Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol. Membr. Biol. 27, 469-489 PubMed
Elias E. V., Quiroga R., Gottig N., Nakanishi H., Nash T. E., Neiman A., Lujan H. D. (2008). Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J. Biol. Chem. 283, 35996-36010 PubMed PMC
Elias M., Patron N. J., Keeling P. J. (2009). The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and Rhizaria. J. Eukaryot. Microbiol. 56, 348-356 PubMed
Embley T. M., Martin W. (2006). Eukaryotic evolution, changes and challenges. Nature 440, 623-630 PubMed
Field M. C., Carrington M. (2004). Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5, 905-913 PubMed
Fritz-Laylin L. K., Prochnik S. E., Ginger M. L., Dacks J. B., Carpenter M. L., Field M. C., Kuo A., Paredez A., Chapman J., Pham J., et al. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631-642 PubMed
Fukuda R., McNew J. A., Weber T., Parlati F., Engel T., Nickel W., Rothman J. E., Söllner T. H. (2000). Functional architecture of an intracellular membrane t-SNARE. Nature 407, 198-202 PubMed
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704 PubMed
Gurkan C., Koulov A. V., Balch W. E. (2007). An evolutionary perspective on eukaryotic membrane trafficking. Adv. Exp. Med. Biol. 607, 73-83 PubMed
Hirst J., Barlow L. D., Francisco G. C., Sahlender D. A., Seaman M. N., Dacks J. B., Robinson M. S. (2011). The fifth adaptor protein complex. PLoS Biol. 9, e1001170 PubMed PMC
Huizing M., Helip-Wooley A., Westbroek W., Gunay-Aygun M., Gahl W. A. (2008). Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet. 9, 359-386 PubMed PMC
Keeling P. J. (2010). The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 729-748 PubMed PMC
Kissmehl R., Schilde C., Wassmer T., Danzer C., Nuehse K., Lutter K., Plattner H. (2007). Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8, 523-542 PubMed
Kloepper T. H., Kienle C. N., Fasshauer D. (2007). An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463-3471 PubMed PMC
Koonin E. V. (2010). Preview. The incredible expanding ancestor of eukaryotes. Cell 140, 606-608 PubMed PMC
Lal K., Field M. C., Carlton J. M., Warwicker J., Hirt R. P. (2005). Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol. Biochem. Parasitol. 143, 226-235 PubMed
Letunic I., Doerks T., Bork P. (2009). SMART 6: recent updates and new developments. Nucleic Acids Res. 37, D229-D232 PubMed PMC
Lumb J. H., Leung K. F., Dubois K. N., Field M. C. (2011). Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J. Cell Sci. 124, 3771-3783 PubMed PMC
Mackiewicz P., Wyroba E. (2009). Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol. Biol. 9, 101 PubMed PMC
Nakada-Tsukui K., Saito-Nakano Y., Husain A., Nozaki T. (2010). Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology. Exp. Parasitol. 126, 337-347 PubMed
Olkkonen V. M., Ikonen E. (2006). When intracellular logistics fails - genetic defects in membrane trafficking. J. Cell Sci. 119, 5031-5045 PubMed
Pereira-Leal J. B. (2008). The Ypt/Rab family and the evolution of trafficking in fungi. Traffic 9, 27-38 PubMed
Pereira-Leal J. B., Seabra M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889-901 PubMed
Roger A. J., Simpson A. G. (2009). Evolution: revisiting the root of the eukaryote tree. Curr. Biol. 19, R165-R167 PubMed
Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 PubMed
Rutherford S., Moore I. (2002). The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol. 5, 518-528 PubMed
Saito-Nakano Y., Loftus B. J., Hall N., Nozaki T. (2005). The diversity of rab GTPases in Entamoeba histolytica. Exp. Parasitol. 110, 244-252 PubMed
Saito-Nakano Y., Nakahara T., Nakano K., Nozaki T., Numata O. (2010). Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia. J. Eukaryot. Microbiol. 57, 389-399 PubMed
Sanderfoot A. (2007). Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6-17 PubMed PMC
Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. (2002). TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502-504 PubMed
Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690 PubMed
Stanier R. (1970). Some aspects of the biology of cells and their possible evolutionary significance. In Organization and Control in Prokaryotic and Eukaryotic Cells (ed. Charles H., Knight B.), pp. 1-38 Cambridge, UK: Cambridge University Press;
Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525 PubMed
Südhof T. C., Rothman J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474-477 PubMed PMC
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 PubMed PMC
Walker G., Dorrell R. G., Schlacht A., Dacks J. B. (2011). Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology 138, 1638-1663 PubMed
Woollard A. A., Moore I. (2008). The functions of Rab GTPases in plant membrane traffic. Curr. Opin. Plant Biol. 11, 610-619 PubMed
The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics
A unique symbiosome in an anaerobic single-celled eukaryote
Reconstructing the last common ancestor of all eukaryotes
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Evolution of factors shaping the endoplasmic reticulum
Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa
Evolution and diversification of the nuclear envelope
A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family
Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila
Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex
The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion
Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
A sophisticated, differentiated Golgi in the ancestor of eukaryotes
Tethering Complexes in the Arabidopsis Endomembrane System