A unique symbiosome in an anaerobic single-celled eukaryote
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
12188
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
5782
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12188
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12188
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
RES0043758
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
RES0046091
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
FRN-142349
Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
PubMed
39521804
PubMed Central
PMC11550330
DOI
10.1038/s41467-024-54102-7
PII: 10.1038/s41467-024-54102-7
Knihovny.cz E-zdroje
- MeSH
- anaerobióza MeSH
- Eukaryota genetika metabolismus MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- mikroskopie elektronová rastrovací MeSH
- přenos genů horizontální MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.
Department of Biochemistry University of Cambridge Cambridge UK
Department of Biology Lund University Lund Sweden
Department of Cell and Molecular Biology Uppsala Universitet Uppsala Sweden
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Fronk, D. C. & Sachs, J. L. Symbiotic organs: the nexus of host–microbe evolution. Trends Ecol. Evol.37, 599–610 (2022). PubMed
Roth, L. E., Jeon, K. & Stacey, G. Homology in endosymbiotic systems: the term “symbiosome’. In Molecular Genetics of Plant-Microbe Interactions 220–225 (APS Press, St Paul, Minnesota).
Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol.31, R862–R877 (2021). PubMed
Rotterová, J., Edgcomb, V. P., Čepička, I. & Beinart, R. Anaerobic ciliates as a model group for studying symbioses in oxygen‐depleted environments. J. Eukaryot. Microbiol. 69, e12912 (2022). PubMed
Beinart, R. A., Beaudoin, D. J., Bernhard, J. M. & Edgcomb, V. P. Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen‐depleted sediments. Mol. Ecol.27, 1794–1807 (2018). PubMed
Stairs, C. W. et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol.31, 5605–5612.e5 (2021). PubMed
Táborský, P., Pánek, T. & Čepička, I. Anaeramoebidae fam. nov., a novel lineage of anaerobic amoebae and amoeboflagellates of uncertain phylogenetic position. Protist168, 495–526 (2017). PubMed
Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev.14, 627–633 (2004). PubMed
Kupper, M., Gupta, S. K., Feldhaar, H. & Gross, R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol. Lett.353, 1–10 (2014). PubMed
Grime, J. M. A., Edwards, M. A., Rudd, N. C. & Unwin, P. R. Quantitative visualization of passive transport across bilayer lipid membranes. Proc. Natl. Acad. Sci. USA105, 14277–14282 (2008). PubMed PMC
Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Curr. Biol.28, 2536–2543.e5 (2018). PubMed PMC
Woehle, C. et al. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc. Natl. Acad. Sci. USA119, e2200198119 (2022). PubMed PMC
Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature419, 498–511 (2002). PubMed PMC
Li, X.-D., Lupo, D., Zheng, L. & Winkler, F. Structural and functional insights into the AmtB/Mep/Rh protein family. Transfus. Clin. Biol.13, 65–69 (2006). PubMed
Sibbald, S. J., Eme, L., Archibald, J. M. & Roger, A. J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol.36, 927–941 (2020). PubMed
Cote-L’Heureux, A., Maurer-Alcalá, X. X. & Katz, L. A. Old genes in new places: a taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet.18, e1010239 (2022). PubMed PMC
Van Etten, J. & Bhattacharya, D. Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet.36, 915–925 (2020). PubMed
Hinzke, T. et al. Host-microbe interactions in the chemosynthetic Riftia pachyptila symbiosis. mBio10, e02243–19 (2019). PubMed PMC
Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics36, 2251–2252 (2020). PubMed PMC
Raux, E., Schubert, H. L. & Warren, M. J. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell. Mol. Life Sci.57, 1880–1893 (2000). PubMed PMC
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature438, 90–93 (2005). PubMed
Grant, M. A. A., Kazamia, E., Cicuta, P. & Smith, A. G. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J.8, 1418–1427 (2014). PubMed PMC
Vancaester, E., Depuydt, T., Osuna-Cruz, C. M. & Vandepoele, K. Comprehensive and functional analysis of horizontal gene transfer events in diatoms. Mol. Biol. Evol.37, 3243–3257 (2020). PubMed
Homma, Y., Hiragi, S. & Fukuda, M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J.288, 36–55 (2021). PubMed PMC
Hutagalung, A. H. & Novick, P. J. Role of rab GTPases in membrane traffic and cell physiology. Physiol. Rev.91, 119–149 (2011). PubMed PMC
Jeschke, A. & Haas, A. Sequential actions of phosphatidylinositol phosphates regulate phagosome-lysosome fusion. Mol. Biol. Cell29, 452–465 (2018). PubMed PMC
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.20, 238 (2019). PubMed PMC
Diekmann, Y. et al. Thousands of rab GTPases for the cell biologist. PLoS Comput. Biol.7, e1002217 (2011). PubMed PMC
Haley, R. & Zhou, Z. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases12, 188–201 (2021). PubMed PMC
Verma, K. & Datta, S. The monomeric GTPase Rab35 regulates phagocytic cup formation and phagosomal maturation in Entamoeba histolytica. J. Biol. Chem.292, 4960–4975 (2017). PubMed PMC
Falace, A. et al. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am. J. Hum. Genet.87, 365–370 (2010). PubMed PMC
Chesneau, L. et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol.22, 147–153 (2012). PubMed
Kobayashi, H. & Fukuda, M. Rab35 regulates Arf6 activity through centaurin β2/ACAP2 during neurite outgrowth. J. Cell Sci. jcs.098657 10.1242/jcs.098657 (2012). PubMed
Maciejowski, W. J., Gile, G. H., Jerlström-Hultqvist, J. & Dacks, J. B. Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int. J. Parasitol.53, 233–245 (2023). PubMed
Broers, C. A. M., Stumm, C. K., Vogels, G. D. & Brugerolle, G. Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. Eur. J. Protistol.25, 369–380 (1990). PubMed
Sato, T. et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ. Microbiol.11, 1007–1015 (2009). PubMed
Kuwahara, H., Yuki, M., Izawa, K., Ohkuma, M. & Hongoh, Y. Genome of “Ca. Desulfovibrio trichonymphae”, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J.11, 766–776 (2017). PubMed PMC
Takeuchi, M. et al. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. ISME J.14, 2288–2301 (2020). PubMed PMC
Clay, K. Defensive symbiosis: a microbial perspective. Funct. Ecol.28, 293–298 (2014).
Bertrand, E. M. et al. Influence of cobalamin scarcity on diatom molecular physiology and identification of a cobalamin acquisition protein. Proc. Natl. Acad. Sci. USA109, E1762-71 (2012). PubMed PMC
Nef, C. et al. Sharing vitamin B12 between bacteria and microalgae does not systematically occur: case study of the haptophyte Tisochrysis lutea. Microorganisms10, 1337 (2022). PubMed PMC
Hamann, E. et al. Environmental breviatea harbour mutualistic Arcobacter epibionts. Nature534, 254–258 (2016). PubMed PMC
Singer, A. et al. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr. Biol.27, 2763–2773.e5 (2017). PubMed
Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell153, 1567–1578 (2013). PubMed
Howe, C. J., Barbrook, A. C., Nisbet, R. E. R., Lockhart, P. J. & Larkum, A. W. D. The origin of plastids. Philos. Trans. R. Soc. B363, 2675–2685 (2008). PubMed PMC
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC
Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA113, E8396–E8405 (2016). PubMed PMC
Kolmogorov, M. et al. MetaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods17, 1103–1110 (2020). PubMed PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res.27, 737–746 (2017). PubMed PMC
Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods12, 733–735 (2015). PubMed
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014). PubMed PMC
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.37, 907–915 (2019). PubMed PMC
Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol.66, 1100–1103 (2016). PubMed
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom.9, 75 (2008). PubMed PMC
Syberg-Olsen, M. J., Garber, A. I., Keeling, P. J., McCutcheon, J. P. & Husnik, F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol. Biol. Evol.39, msac153 (2022). PubMed PMC
Minkin, I., Pham, H., Starostina, E., Vyahhi, N. & Pham, S. C-Sibelia: an easy-to-use and highly accurate tool for bacterial genome comparison. F1000Research2, 258 (2013). PubMed PMC
Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems2, e00127–16 (2017). PubMed PMC
Guy, L. phyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics. btw824. 10.1093/bioinformatics/btw824 (2017). PubMed PMC
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). PubMed PMC
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol.10, 210 (2010). PubMed PMC
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.37, 1530–1534 (2020). PubMed PMC
Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol.29, 2921–2936 (2012). PubMed
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). PubMed PMC
Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics24, 2317–2323 (2008). PubMed
Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol.67, 216–235 (2018). PubMed
Mi, H. et al. PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.45, D183–D189 (2017). PubMed PMC
Mi, H. et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc.14, 703–721 (2019). PubMed PMC
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol.7, e1002195 (2011). PubMed PMC
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res.19, 1639–1645 (2009). PubMed PMC
Salas-Leiva, D. E. et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat. Commun.12, 6003 (2021). PubMed PMC
Elias, M., Brighouse, A., Castello, C. G., Field, M. C. & Dacks, J. B. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. jcs.101378 10.1242/jcs.101378 (2012). PubMed PMC
Gabernet-Castello, C., O’Reilly, A. J., Dacks, J. B. & Field, M. C. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol. Biol. Cell24, 1574–1583 (2013). PubMed PMC
Klinger, C. M., Klute, M. J. & Dacks, J. B. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in apicomplexa. PLoS ONE8, e76278 (2013). PubMed PMC
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). PubMed PMC
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). PubMed PMC
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol.26, 1641–1650 (2009). PubMed PMC
Wright, E. S., Yilmaz, L. S., Corcoran, A. M., Ökten, H. E. & Noguera, D. R. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification. Appl. Environ. Microbiol.80, 5124–5133 (2014). PubMed PMC
Kankaanpää, P. et al. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods9, 683–689 (2012). PubMed
Deerinck, T.J., Bushong, E.A., Thor, A. & Ellisman, M.H. NCMIR methods for 3D EM: A new protocol for preparation of biological specimens for serial block face scanning electron microscopy e SBEM Protocol v7_01_10. Retrieved from https://www.ncmir.ucsd.edu/sbem-protocol (2010).
Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol.14, e1002340 (2016). PubMed PMC
Belevich, I. & Jokitalo, E. DeepMIB: user-friendly and open-source software for training of deep learning network for biological image segmentation. PLoS Comput. Biol.17, e1008374 (2021). PubMed PMC
Takishita, K. et al. Microbial eukaryotes that lack sterols. J. Eukaryot. Microbiol.64, 897–900 (2017). PubMed
Bouwknegt, J. et al. A squalene–hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments. Proc. Natl. Acad. Sci. USA118, e2105225118 (2021). PubMed PMC