A unique symbiosome in an anaerobic single-celled eukaryote

. 2024 Nov 09 ; 15 (1) : 9726. [epub] 20241109

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39521804

Grantová podpora
12188 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
5782 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12188 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
12188 Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
RES0043758 Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
RES0046091 Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
FRN-142349 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)

Odkazy

PubMed 39521804
PubMed Central PMC11550330
DOI 10.1038/s41467-024-54102-7
PII: 10.1038/s41467-024-54102-7
Knihovny.cz E-zdroje

Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.

Zobrazit více v PubMed

Fronk, D. C. & Sachs, J. L. Symbiotic organs: the nexus of host–microbe evolution. Trends Ecol. Evol.37, 599–610 (2022). PubMed

Roth, L. E., Jeon, K. & Stacey, G. Homology in endosymbiotic systems: the term “symbiosome’. In Molecular Genetics of Plant-Microbe Interactions 220–225 (APS Press, St Paul, Minnesota).

Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol.31, R862–R877 (2021). PubMed

Rotterová, J., Edgcomb, V. P., Čepička, I. & Beinart, R. Anaerobic ciliates as a model group for studying symbioses in oxygen‐depleted environments. J. Eukaryot. Microbiol. 69, e12912 (2022). PubMed

Beinart, R. A., Beaudoin, D. J., Bernhard, J. M. & Edgcomb, V. P. Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen‐depleted sediments. Mol. Ecol.27, 1794–1807 (2018). PubMed

Stairs, C. W. et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol.31, 5605–5612.e5 (2021). PubMed

Táborský, P., Pánek, T. & Čepička, I. Anaeramoebidae fam. nov., a novel lineage of anaerobic amoebae and amoeboflagellates of uncertain phylogenetic position. Protist168, 495–526 (2017). PubMed

Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev.14, 627–633 (2004). PubMed

Kupper, M., Gupta, S. K., Feldhaar, H. & Gross, R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol. Lett.353, 1–10 (2014). PubMed

Grime, J. M. A., Edwards, M. A., Rudd, N. C. & Unwin, P. R. Quantitative visualization of passive transport across bilayer lipid membranes. Proc. Natl. Acad. Sci. USA105, 14277–14282 (2008). PubMed PMC

Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Curr. Biol.28, 2536–2543.e5 (2018). PubMed PMC

Woehle, C. et al. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc. Natl. Acad. Sci. USA119, e2200198119 (2022). PubMed PMC

Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature419, 498–511 (2002). PubMed PMC

Li, X.-D., Lupo, D., Zheng, L. & Winkler, F. Structural and functional insights into the AmtB/Mep/Rh protein family. Transfus. Clin. Biol.13, 65–69 (2006). PubMed

Sibbald, S. J., Eme, L., Archibald, J. M. & Roger, A. J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol.36, 927–941 (2020). PubMed

Cote-L’Heureux, A., Maurer-Alcalá, X. X. & Katz, L. A. Old genes in new places: a taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet.18, e1010239 (2022). PubMed PMC

Van Etten, J. & Bhattacharya, D. Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet.36, 915–925 (2020). PubMed

Hinzke, T. et al. Host-microbe interactions in the chemosynthetic Riftia pachyptila symbiosis. mBio10, e02243–19 (2019). PubMed PMC

Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics36, 2251–2252 (2020). PubMed PMC

Raux, E., Schubert, H. L. & Warren, M. J. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell. Mol. Life Sci.57, 1880–1893 (2000). PubMed PMC

Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature438, 90–93 (2005). PubMed

Grant, M. A. A., Kazamia, E., Cicuta, P. & Smith, A. G. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J.8, 1418–1427 (2014). PubMed PMC

Vancaester, E., Depuydt, T., Osuna-Cruz, C. M. & Vandepoele, K. Comprehensive and functional analysis of horizontal gene transfer events in diatoms. Mol. Biol. Evol.37, 3243–3257 (2020). PubMed

Homma, Y., Hiragi, S. & Fukuda, M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J.288, 36–55 (2021). PubMed PMC

Hutagalung, A. H. & Novick, P. J. Role of rab GTPases in membrane traffic and cell physiology. Physiol. Rev.91, 119–149 (2011). PubMed PMC

Jeschke, A. & Haas, A. Sequential actions of phosphatidylinositol phosphates regulate phagosome-lysosome fusion. Mol. Biol. Cell29, 452–465 (2018). PubMed PMC

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.20, 238 (2019). PubMed PMC

Diekmann, Y. et al. Thousands of rab GTPases for the cell biologist. PLoS Comput. Biol.7, e1002217 (2011). PubMed PMC

Haley, R. & Zhou, Z. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases12, 188–201 (2021). PubMed PMC

Verma, K. & Datta, S. The monomeric GTPase Rab35 regulates phagocytic cup formation and phagosomal maturation in Entamoeba histolytica. J. Biol. Chem.292, 4960–4975 (2017). PubMed PMC

Falace, A. et al. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am. J. Hum. Genet.87, 365–370 (2010). PubMed PMC

Chesneau, L. et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol.22, 147–153 (2012). PubMed

Kobayashi, H. & Fukuda, M. Rab35 regulates Arf6 activity through centaurin β2/ACAP2 during neurite outgrowth. J. Cell Sci. jcs.098657 10.1242/jcs.098657 (2012). PubMed

Maciejowski, W. J., Gile, G. H., Jerlström-Hultqvist, J. & Dacks, J. B. Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int. J. Parasitol.53, 233–245 (2023). PubMed

Broers, C. A. M., Stumm, C. K., Vogels, G. D. & Brugerolle, G. Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. Eur. J. Protistol.25, 369–380 (1990). PubMed

Sato, T. et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ. Microbiol.11, 1007–1015 (2009). PubMed

Kuwahara, H., Yuki, M., Izawa, K., Ohkuma, M. & Hongoh, Y. Genome of “Ca. Desulfovibrio trichonymphae”, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J.11, 766–776 (2017). PubMed PMC

Takeuchi, M. et al. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. ISME J.14, 2288–2301 (2020). PubMed PMC

Clay, K. Defensive symbiosis: a microbial perspective. Funct. Ecol.28, 293–298 (2014).

Bertrand, E. M. et al. Influence of cobalamin scarcity on diatom molecular physiology and identification of a cobalamin acquisition protein. Proc. Natl. Acad. Sci. USA109, E1762-71 (2012). PubMed PMC

Nef, C. et al. Sharing vitamin B12 between bacteria and microalgae does not systematically occur: case study of the haptophyte Tisochrysis lutea. Microorganisms10, 1337 (2022). PubMed PMC

Hamann, E. et al. Environmental breviatea harbour mutualistic Arcobacter epibionts. Nature534, 254–258 (2016). PubMed PMC

Singer, A. et al. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr. Biol.27, 2763–2773.e5 (2017). PubMed

Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell153, 1567–1578 (2013). PubMed

Howe, C. J., Barbrook, A. C., Nisbet, R. E. R., Lockhart, P. J. & Larkum, A. W. D. The origin of plastids. Philos. Trans. R. Soc. B363, 2675–2685 (2008). PubMed PMC

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC

Lin, Y. et al. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA113, E8396–E8405 (2016). PubMed PMC

Kolmogorov, M. et al. MetaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods17, 1103–1110 (2020). PubMed PMC

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC

Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res.27, 737–746 (2017). PubMed PMC

Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods12, 733–735 (2015). PubMed

Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014). PubMed PMC

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.37, 907–915 (2019). PubMed PMC

Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol.66, 1100–1103 (2016). PubMed

Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom.9, 75 (2008). PubMed PMC

Syberg-Olsen, M. J., Garber, A. I., Keeling, P. J., McCutcheon, J. P. & Husnik, F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol. Biol. Evol.39, msac153 (2022). PubMed PMC

Minkin, I., Pham, H., Starostina, E., Vyahhi, N. & Pham, S. C-Sibelia: an easy-to-use and highly accurate tool for bacterial genome comparison. F1000Research2, 258 (2013). PubMed PMC

Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems2, e00127–16 (2017). PubMed PMC

Guy, L. phyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics. btw824. 10.1093/bioinformatics/btw824 (2017). PubMed PMC

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). PubMed PMC

Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol.10, 210 (2010). PubMed PMC

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.37, 1530–1534 (2020). PubMed PMC

Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol.29, 2921–2936 (2012). PubMed

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). PubMed PMC

Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics24, 2317–2323 (2008). PubMed

Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol.67, 216–235 (2018). PubMed

Mi, H. et al. PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.45, D183–D189 (2017). PubMed PMC

Mi, H. et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc.14, 703–721 (2019). PubMed PMC

Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol.7, e1002195 (2011). PubMed PMC

Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res.19, 1639–1645 (2009). PubMed PMC

Salas-Leiva, D. E. et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat. Commun.12, 6003 (2021). PubMed PMC

Elias, M., Brighouse, A., Castello, C. G., Field, M. C. & Dacks, J. B. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. jcs.101378 10.1242/jcs.101378 (2012). PubMed PMC

Gabernet-Castello, C., O’Reilly, A. J., Dacks, J. B. & Field, M. C. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol. Biol. Cell24, 1574–1583 (2013). PubMed PMC

Klinger, C. M., Klute, M. J. & Dacks, J. B. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in apicomplexa. PLoS ONE8, e76278 (2013). PubMed PMC

Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). PubMed PMC

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). PubMed PMC

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol.26, 1641–1650 (2009). PubMed PMC

Wright, E. S., Yilmaz, L. S., Corcoran, A. M., Ökten, H. E. & Noguera, D. R. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification. Appl. Environ. Microbiol.80, 5124–5133 (2014). PubMed PMC

Kankaanpää, P. et al. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods9, 683–689 (2012). PubMed

Deerinck, T.J., Bushong, E.A., Thor, A. & Ellisman, M.H. NCMIR methods for 3D EM: A new protocol for preparation of biological specimens for serial block face scanning electron microscopy e SBEM Protocol v7_01_10. Retrieved from https://www.ncmir.ucsd.edu/sbem-protocol (2010).

Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol.14, e1002340 (2016). PubMed PMC

Belevich, I. & Jokitalo, E. DeepMIB: user-friendly and open-source software for training of deep learning network for biological image segmentation. PLoS Comput. Biol.17, e1008374 (2021). PubMed PMC

Takishita, K. et al. Microbial eukaryotes that lack sterols. J. Eukaryot. Microbiol.64, 897–900 (2017). PubMed

Bouwknegt, J. et al. A squalene–hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments. Proc. Natl. Acad. Sci. USA118, e2105225118 (2021). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace