Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments
Language English Country United States Media print-electronic
Document type Journal Article, Review, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
Simons Foundation
19-19297S
Czech Science Foundation
MCB-0604084
NSF
CEP Register
9342
Gordon and Betty Moore Foundation
PubMed
35325496
DOI
10.1111/jeu.12912
Knihovny.cz E-resources
- Keywords
- anaerobic metabolism, anaerobic protists, anaerobiosis evolution, ectosymbionts, endosymbionts, intracellular archaea, methanogens,
- MeSH
- Anaerobiosis MeSH
- Ciliophora * genetics MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Oxygen * MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Oxygen * MeSH
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end products to increase the host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host specificity and coevolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Graduate School of Oceanography University of Rhode Island Narragansett Rhode Island USA
See more in PubMed
Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A. et al. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology, 66, 4-119.
Akhmanova, A.S., Voncken, F.G.J., van Alen, T., van Hoek, A.H.A.M., Boxma, B., Vogels, G.D. et al. (1998) A hydrogenosome with a genome. Nature, 396, 527-528.
Arregui, L., Perez-Uz, B., Zornoza, A. & Serrano, S. (2010) A new species of the genus Metacystis (Ciliophora, Prostomatida, Metacystidae) from a wastewater treatment plant. Journal of Eukaryotic Microbiology, 57, 362-368.
Batisse, A. (1994) Sous-Classe des Suctoria Claparède et Lachmann, 1958. Traité de Zoologie, 2, 433-473.
Beinart, R.A., Beaudoin, D.J., Bernhard, J.M. & Edgcomb, V.P. (2018) Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. Molecular Ecology, 27, 1794-1807.
Beinart, R.A., Rotterová, J., Čepička, I., Gast, R.J. & Edgcomb, V.P. (2018) The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives. Environmental Microbiology, 20, 2538-2551.
Berger, J. & Lynn, D.H. (1992) Hydrogenosome-methanogen assemblages in the echinoid endocommensal plagiopylid ciliates, Lechriopyla mystax Lynch, 1930 and Plagiopyla minuta Powers, 1933. The Journal of Protozoology, 39, 4-8.
Bernard, C. & Fenchel, T. (1994) Chemosensory behaviour of Strombidium purpureum, an anaerobic oligotrich with endosymbiotic purple non-sulphur bacteria. Journal of Eukaryotic Microbiology, 41, 391-396.
Bernhard, J.M., Buck, K.R., Farmer, M.A. & Bowser, S.S. (2000) The Santa Barbara basin is a symbiosis oasis. Nature, 403, 77-80.
Bernhard, J.M., Visscher, P.T. & Bowser, S.S. (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnology and Oceanography, 48, 813-828.
Berninger, U.G. & Epstein, S.S. (1995) Vertical distribution of benthic ciliates in response to the oxygen concentration in an intertidal North Sea sediment. Aquatic Microbial Ecology, 9, 229-236.
Blazewicz, S.J., Petersen, D.G., Waldrop, M.P. & Firestone, M.K. (2012) Anaerobic oxidation of methane in tropical and boreal soils: ecological significance in terrestrial methane cycling. Journal of Geophysical Research: Biogeosciences, 117, 1-9.
Boscaro, V., Syberg-Olsen, M.J., Irwin, N.A.T., del Campo, J. & Keeling, P.J. (2019) What can environmental sequences tell us about the distribution of low-rank taxa? The case of Euplotes (Ciliophora, Spirotrichea), including a description of Euplotes enigma sp. nov. Journal of Eukaryotic Microbiology, 66, 281-293.
Bourland, W.A., Rotterová, J. & Čepička, I. (2017) Redescription and molecular phylogeny of the type species for two main metopid genera, Metopus es (Müller, 1776) Lauterborn, 1916 and Brachonella contorta (Levander, 1894) Jankowski, 1964 (Metopida, Ciliophora), based on broad geographic sampling. European Journal of Protistology, 59, 133-154.
Bourland, W.A., Rotterová, J., Luo, X. & Čepička, I. (2018) The little-known freshwater metopid ciliate, Idiometopus turbo (Dragesco and Dragesco-Kernéis, 1986) nov. gen., nov. comb., originally discovered in Africa, found on the micronesian island of Guam. Protist, 169, 494-506.
Bourland, W.A., Rotterová, J. & Čepička, I. (2020) Description of three new genera of Metopidae (Metopida, Ciliophora): Pileometopus gen. nov., Castula gen. nov., and Longitaenia gen. nov., with notes on the phylogeny and cryptic diversity of metopid ciliates. Protist, 171(3), 125740. Available from: https://doi.org/10.1016/j.protis.2020.125740
Boxma, B., de Graaf, R.M., van der Staay, G.W.M., van Alen, T.A., Ricard, G., Gabaldón, T. et al. (2005) An anaerobic mitochondrion that produces hydrogen. Nature, 434, 74-79.
Boxma, B., Ricard, G., van Hoek, A.H.A.M., Severing, E., Moon-van der Staay, S.Y., van der Staay, G.W.M. et al. (2007) The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin. BMC Evolutionary Biology, 7, 1-12.
Broers, C.A.M., Meijers, H.H.M., Symens, J.C., Stumm, C.K., Vogels, G.D. & Brugerolle, G. (1993) Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. European Journal of Protistology, 29, 98-105.
van Bruggen, J.J.A., van Rens, G.L.M., Geertman, E.J.M., Zwart, K.B., Stumm, C.K. & Vogels, G.D. (1988) Isolation of a methanogenic endosymbiont of the sapropelic amoeba Pelomyxa palustris Greeff. The Journal of Protozoology, 35, 20-23.
van Bruggen, J.J.A., Stumm, C.K. & Vogels, G.D. (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Archives of Microbiology, 136, 89-95.
van Bruggen, J.J.A., Zwart, K.B., van Assema, R.M., Stumm, C.K. & Vogels, G.G. (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Archives of Microbiology, 139, 1-7.
van Bruggen, J.J.A., Zwart, K.B., Hermans, J.G.F., van Hove, E.M., Stumm, C.K. & Vogels, G.D. (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Archives of Microbiology, 144, 367-374.
Cameron, S.L. & O'Donoghue, P.J. (2002) The ultrastructure of Macropodinium moiri and revised diagnosis of the Macropodiniidae (Litostomatea: Trichostomatia). European Journal of Protistology, 38, 179-194.
Campello-Nunes, P.H., Fernandes, N.M., Szokoli, F., Fokin, S.I., Serra, V., Modeo, L. et al. (2020) Parablepharisma (Ciliophora) is not a heterotrich: a phylogenetic and morphological study with the proposal of new taxa. Protist, 171(2), 125716. https://doi.org/10.1016/j.protis.2020.125716
Campello-Nunes, P.H., Silva-Neto, I.D., Sales, M.H.O., Soares, C.A.G., Paiva, T.S. & Fernandes, N.M. (2022) Morphological and phylogenetic investigations shed light on evolutionary relationships of the enigmatic genus Copemetopus (Ciliophora, Alveolata), with the proposal of Copemetopus verae sp. nov. European Journal of Protistology, 83, 125878.
Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M. et al. (2019) Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17, 569-586.
Chagan, I., Tokura, M., Jouany, J.P. & Ushida, K. (1999) Detection of methanogenic archaea associated with rumen ciliate protozoa. Journal of General and Applied Microbiology, 45, 305-308.
Clarke, K.J., Finlay, B.J., Esteban, G., Guhl, B.E. & Embley, T.M. (1993) Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. The European Journal of Protistology, 29, 262-270.
Conrad, R. (2007) Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 96, 1-63.
Delong, E.F. (1998) Everything in moderation: Archaea as “non-extremophiles”. Current Opinion in Genetics & Development, 8, 649-654.
Diaz, R.J. & Rosenberg, R. (2008) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929.
Doddema, H.J. & Vogels, G.D. (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Applied and Environment Microbiology, 36, 752-754.
Dziallas, C., Allgaier, M., Monaghan, M.T. & Grossart, H.P. (2012) Act together-implications of symbioses in aquatic ciliates. Frontiers in Microbiology, 3, 1-17.
Edgcomb, V.P., Kysela, D.T., Teske, A., de Vera Gomez, A. & Sogin, M.L. (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proceedings of the National Academy of Sciences of the United States of America, 99, 7658-7662.
Edgcomb, V.P., Leadbetter, E.R., Bourland, W.A., Beaudoin, D.J. & Bernhard, J.M. (2011) Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments? Frontiers in Microbiology, 2, 1-16.
Edgcomb, V.P., Orsi, W., Bunge, J., Jeon, S., Christen, R., Leslin, C. et al. (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME Journal, 5, 1344-1356.
Edgcomb, V.P. & Pachiadaki, M. (2014) Ciliates along oxyclines of permanently stratified marine water columns. Journal of Eukaryotic Microbiology, 61, 434-445.
Embley, T.M., Finlay, B.J., Thomas, R. & Dyal, P.L. (1992a) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. Journal of General Microbiology, 138, 1479-1487.
Embley, T.M., Finlay, B.J. & Brown, S. (1992b) RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiology Letters, 97, 57-61.
Embley, T.M. & Finlay, B.J. (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie van Leeuwenhoek, 64, 261-271.
Embley, T.M. & Finlay, B.J. (1994a) Phylogenetic diversity of methanogen endosymbionts of anaerobic ciliates. In: Priest, F.G., Ramos-Cormenzana, A. & Tindall, B.J. (Eds.) Bacterial diversity and systematics, 1st edition. Boston, MA: Springer, pp. 153-160.
Embley, T.M. & Finlay, B.J. (1994b) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology, 140, 225-235.
Epstein, S.S., Bazylinski, D.A. & Fowle, W.H. (1998) Epibiotic bacteria on several ciliates from marine sediments. Journal of Eukaryotic Microbiology, 45, 64-70.
Esteban, G.F., Finlay, B.J. & Embley, T.M. (1993) New species double the diversity of anaerobic ciliates in a Spanish lake. FEMS Microbiology Letters, 109, 93-99.
Esteban, G.F., Finlay, B.J. & Clarke, K.J. (2009) Sequestered organelles sustain aerobic microbial life in anoxic environments. Environmental Microbiology, 11, 544-550.
Evans, P.N., Boyd, J.A., Leu, A.O., Woodcroft, B.J., Parks, D.H., Hugenholtz, P. et al. (2019) An evolving view of methane metabolism in the Archaea. Nature Reviews Microbiology, 17, 219-232.
Fenchel, T. (1967) The ecology of marine microbenthos I. The quantitative importance of ciliates as compared with metazoans. Ophelia, 137, 121-137.
Fenchel, T. (2012) Anaerobic eukaryotes. In: Altenbach, A., Bernhard, J. & Seckbach, J. (Eds.) Anoxia. Cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer. 21, pp. 3-16.
Fenchel, T. & Bernard, C. (1993) Endosymbiotic purple non-sulphur bacteria in an anaerobic ciliated protozoon. FEMS Microbiology Letters, 110, 21-25.
Fenchel, T., Finlay, B.J. & Giannì, A. (1989) Microaerophily in ciliates: responses of an Euplotes species (Hypotrichida) to oxygen tension. Archiv für Protistenkunde, 137, 317-330.
Fenchel, T. & Finlay, B.J. (1990a) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. Journal of General Microbiology, 136, 1953-1959.
Fenchel, T. & Finlay, B.J. (1990b) Anaerobic free-living protozoa: growth efficiencies and the structure of anaeorobic communities. FEMS Microbiology Letters, 74, 269-275.
Fenchel, T. & Finlay, B.J. (1991a) The biology of free-living anaerobic ciliates. The European Journal of Protistology, 26, 201-215.
Fenchel, T. & Finlay, B.J. (1991b) Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. The Journal of Protozoology, 38, 18-22.
Fenchel, T. & Finlay, B.J. (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Archives of Microbiology, 157, 475-480.
Fenchel, T. & Finlay, B.J. (1995) Ecology and evolution in anoxic worlds. Oxford series in ecology and evolution, 1st edition. 9, New York, NY: Oxford University Press, pp. 253-260.
Fenchel, T. & Finlay, B.J. (2018) Free-living protozoa with endosymbiotic methanogens. In: Hackstein, J.H.P. (Ed.) (Endo)Symbiotic methanogenic Archaea, 2nd edition. Berlin Heidelberg: Springer, pp. 1-11.
Fenchel, T., Perry, T. & Thane, A. (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. The Journal of Protozoology, 24, 154-163.
Fenchel, T. & Ramsing, N.B. (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Archives of Microbiology, 158, 394-397.
Feng, J.-M.-M., Jiang, C.-Q.-Q., Sun, Z.-Y.-Y., Hua, C.-J.-J., Wen, J.-F.-F., Miao, W. et al. (2020) Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Molecular Phylogenetics and Evolution, 143, 106687. https://doi.org/10.1016/j.ympev.2019.106687
Fernandes, N.M., Vizzoni, V.F., Borges, B.N., Soares, C.A.G., Silva-Neto, I.D. & Paiva, T.S. (2018) Molecular phylogeny and comparative morphology indicate that odontostomatids (Alveolata, Ciliophora) form a distinct class-level taxon related to Armophorea. Molecular Phylogenetics and Evolution, 126, 382-389.
Finlay, B.J., Embley, T.M. & Fenchel, T. (1993) A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. Journal of General Microbiology, 139, 371-378.
Finlay, B.J., Fenchel, T. & Gardener, S. (1986) Oxygen perception and O2 toxicity in the freshwater ciliated protozoon Loxodes. The Journal of Protozoology, 33, 157-165.
Finlay, B.J. & Fenchel, T. (1991) Polymorphic bacterial symbionts in the anaerobic ciliated protozoon Metopus. FEMS Microbiology Letters, 79, 187-190.
Finlay, B.J., Maberly, S.C. & Esteban, G.F. (1996) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiology Ecology, 20, 229-235.
Finlay, B.J., Span, A.S.W. & Harman, J.M.P. (1983) Nitrate respiration in primitive eukaryotes. Nature, 303, 333-336.
Finlay, B.J., Tellez, C. & Esteban, G.F. (1993) Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter. Journal of General Microbiology, 139, 2855-2863.
Foissner, W. & Foissner, I. (1995) Fine structure and systematic position of Enchelyomorpha vermicularis (Smith, 1899) Kahl, 1930, an anaerobic ciliate (Protozoa, Ciliophora) from from domestic sewage. Acta Protozoologica, 34, 21-34.
Gabaldón, T. (2021) Origin and early evolution of the eukaryotic cell. Annual Review of Microbiology, 75, 631-647.
Gao, F., Huang, J., Zhao, Y., Li, L., Liu, W., Miao, M. et al. (2017) Systematic studies on ciliates (Alveolata, Ciliophora) in China: progress and achievements based on molecular information. European Journal of Protistology, 61, 409-423.
Gao, F., Warren, A., Zhang, Q., Gong, J., Miao, M., Sun, P. et al. (2016) The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Scientific Reports, 6, 1-14.
Gawryluk, R.M.R., Kamikawa, R., Stairs, C.W., Silberman, J.D., Brown, M.W. & Roger, A.J. (2016) The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Current Biology, 26, 2729-2738.
Gawryluk, R.M.R. & Stairs, C.W. (2021) Diversity of electron transport chains in anaerobic protists. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1862(1), 148334. https://doi.org/10.1016/j.bbabio.2020.148334
Gentekaki, E., Kolisko, M., Boscaro, V., Bright, K.J., Dini, F., Di Giuseppe, G. et al. (2014) Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Molecular Phylogenetics and Evolution, 78, 36-42.
Gentekaki, E., Kolisko, M., Gong, Y. & Lynn, D.H. (2017) Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: the subclass Peritrichia is monophyletic. Molecular Phylogenetics and Evolution, 106, 1-5.
van der Giezen, M. (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. Journal of Eukaryotic Microbiology, 56, 221-231.
Gijzen, H.J. & Barugahare, M. (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, Periplaneta americana. Applied and Environment Microbiology, 58, 2565-2570.
Gijzen, H.J., Broers, C.A., Barughare, M. & Stumm, C.K. (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Applied and Environment Microbiology, 57, 1630-1634.
Glock, N., Roy, A.S., Romero, D., Wein, T., Weissenbach, J., Revsbech, N.P. et al. (2019) Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 116, 2860-2865.
Gomaa, F., Utter, D.R., Powers, C., Beaudoin, D.J., Edgcomb, V.P., Filipsson, H.L. et al. (2021) Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. Science Advances, 7, eabf1586. https://doi.org/10.1126/sciadv.abf1586
Goosen, N.K., Horemans, A.M., Hillebrand, S.J., Stumm, C.K. & Vogels, G.D. (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Archives of Microbiology, 150, 165-170.
Görtz, H.-D., Rosati, G., Schweikert, M., Schrallhammer, M., Omura, G. & Suzaki, T. (2009) Microbial symbionts for defense and competition among ciliate hosts. In: White Jr., J.F. & Torres, M.S. (Eds.) Defensive mutualism in microbial symbiosis, 1st edition. Boca Raton, FL: CRC Press, pp. 63-82.
de Graaf, R.M., Ricard, G., van Alen, T.A., Duarte, I., Dutilh, B.E., Burgtorf, C. et al. (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Molecular Biology and Evolution, 28, 2379-2391.
Graf, J.S., Schorn, S., Kitzinger, K., Ahmerkamp, S., Woehle, C., Huettel, B. et al. (2021) Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature, 591, 445-450.
Guhl, B.E., Finlay, B.J. & Schink, B. (1996) Comparison of ciliate communities in the anoxic hypolimnia of three lakes: general features and the influence of lake characteristics. Journal of Plankton Research, 18, 335-353.
Gutiérrez, G., Chistyakova, L.V., Villalobo, E., Kostygov, A.Y. & Frolov, A.O. (2017) Identification of Pelomyxa palustris endosymbionts. Protist, 168, 408-424.
Hackstein, J.H.P., Akhmanova, A.S., Boxma, B., Harhangi, H.R. & Voncken, F.G.J. (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends in Microbiology, 7, 441-447.
Hackstein, J.H.P. & Stumm, C.K. (1994) Methane production in terrestrial arthropods. Proceedings of the National Academy of Sciences of the United States of America, 91, 5441-5445.
Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H.E., Riedel, D., Littmann, S. et al. (2016) Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature, 534, 254-258.
Hemme, C.L., Tu, Q., Shi, Z., Qin, Y., Gao, W., Deng, Y. et al. (2015) Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 6, 1-12.
Hines, H.N., Onsbring, H., Ettema, T.J.G. & Esteban, G.F. (2018) Molecular investigation of the ciliate Spirostomum semivirescens, with first transcriptome and new geographical records. Protist, 169, 875-886.
Hirakata, Y., Hatamoto, M., Oshiki, M., Watari, T., Araki, N. & Yamaguchi, T. (2020) Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME Journal, 14, 1873-1885.
Hirakata, Y., Oshiki, M., Kuroda, K., Hatamoto, M., Kubota, K., Yamaguchi, T. et al. (2015) Identification and detection of prokaryotic symbionts in the ciliate Metopus from anaerobic granular sludge. Microbes and Environment, 30, 335-338.
van Hoek, A.H.A.M., Hackstein, J.H.P., van Alen, T.A., Sprakel, V.S.I.I., Leunissen, J.A.M.M., Brigge, T. et al. (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Molecular Biology and Evolution, 17, 251-258.
Holmes, D.E., Giloteaux, L., Orellana, R., Williams, K.H., Robbins, M.J. & Lovley, D.R. (2014) Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Frontiers in Microbiology, 5, 366.
Huettel, B., Volland, J.-M., Gruber-Vodicka, H.R., Seah, B.K.B., Schwaha, T. & Dubilier, N. (2017) Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 284, 20170764. https://doi.org/10.1098/rspb.2017.0764
Husnik, F. & Keeling, P.J. (2019) The fate of obligate endosymbionts: reduction, integration, or extinction. Current Opinion in Genetics & Development, 58, 1-8.
Husnik, F., Tashyreva, D., Boscaro, V., George, E.E., Lukeš, J. & Keeling, P.J. (2021) Bacterial and archaeal symbioses with protists. Current Biology, 31, 862-877.
Huynen, M.A., Mühlmeister, M., Gotthardt, K., Guerrero-Castillo, S. & Brandt, U. (2016) Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863, 91-101.
Irwin, N.A., Pittis, A.A., Mathur, V., Howe, L.J., Keeling, P.J., Lynn, D.H. et al. (2021) The function and evolution of motile DNA replication systems in ciliates. Current Biology, 31, 66-76.
Jones, W.J., Stugard, C.E. & Jannasch, H.W. (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Archives of Microbiology, 151, 314-318.
Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S.C., Petrželková, R., Eme, L. et al. (2016) A eukaryote without a mitochondrial organelle. Current Biology, 26, 1274-1284.
Katsu-Kimura, Y., Nakaya, F., Baba, S.A. & Mogami, Y. (2009) Substantial energy expenditure for locomotion in ciliates verified by means of simultaneous measurement of oxygen consumption rate and swimming speed. Journal of Experimental Biology, 212, 1819-1824.
Kolisko, M., Boscaro, V., Burki, F., Lynn, D.H. & Keeling, P.J. (2014) Single-cell transcriptomics for microbial eukaryotes. Current Biology, 24, 1081-1082.
Lanzoni, O., Plotnikov, A., Khlopko, Y., Munz, G., Petroni, G. & Potekhin, A. (2019) The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Scientific Reports, 9, 1-12.
Lasek-Nesselquist, E. & Johnson, M.D. (2019) A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Genome Biology and Evolution, 11, 3218-3232.
Leger, M.M., Kolisko, M., Kamikawa, R., Stairs, C.W., Kume, K., Čepička, I. et al. (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nature Ecology & Evolution, 1, 1-7.
Leger, M.M., Kolísko, M., Stairs, C.W. & Simpson, A.G. (2019) Mitochondrion-related organelles in free-living protists. In: Tachezy, J. (Ed.), Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes, 2nd edition. Münster: Springer. Microbiology Monographs. 9, pp. 287-308.
Lewis, W.H., Lind, A.E., Sendra, K.M., Onsbring, H., Williams, T.A., Esteban, G.F. et al. (2020) Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Molecular Biology and Evolution, 37, 524-539.
Lewis, W.H., Sendra, K.M., Embley, T.M. & Esteban, G.F. (2018) Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp., with endosymbiotic methanogens. Frontiers in Microbiology, 9, 1-11.
Li, S., Bourland, W.A., Al-Farraj, S.A., Li, L. & Hu, X. (2017) Description of two species of caenomorphid ciliates (Ciliophora, Armophorea): morphology and molecular phylogeny. European Journal of Protistology, 61, 29-40.
Lind, A.E., Lewis, W.H., Spang, A., Guy, L., Embley, T.M. & Ettema, T.J.G. (2018) Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME Journal, 12, 2655-2667.
Losey, N.A., Poudel, S., Boyd, E.S. & McInerney, M.J. (2020) The beta subunit of non-bifurcating NADH-dependent [FeFe]-hydrogenases differs from those of multimeric electron-bifurcating [FeFe]-hydrogenases. Frontiers in Microbiology, 11, 1109.
Lynn, D.H. (2008) The ciliated protozoa: characterization, classification, and guide to the literature, 3rd edition, Dordrecht, Netherlands: Springer.
Lynn, D.H., Kolisko, M. & Bourland, W.A. (2018) Phylogenomic analysis of Nassula variabilis n. sp., Furgasonia blochmanni, and Pseudomicrothorax dubius confirms a nassophorean clade. Protist, 169, 180-189.
Malyan, S.K., Bhatia, A., Kumar, A., Gupta, D.K., Singh, R., Kumar, S.S. et al. (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Science of the Total Environment, 572, 874-896.
Miao, M., Song, W., Clamp, J.C., Al-Rasheid, K.A.S., Al-Khedhairy, A.A. & Al-Arifi, S. (2009) Further consideration of the phylogeny of some “traditional” heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene. Journal of Eukaryotic Microbiology, 56, 244-250.
Miettinen, H., Kietäväinen, R., Sohlberg, E., Numminen, M., Ahonen, L. & Itävaara, M. (2015) Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. Frontiers in Microbiology, 6, 1-16.
Modeo, L., Fokin, S.I., Boscaro, V., Andreoli, I., Ferrantini, F., Rosati, G. et al. (2013) Morphology, ultrastructure, and molecular phylogeny of the ciliate Sonderia vorax with insights into the systematics of order Plagiopylida. BMC Microbiology, 13, 1-23.
Muñoz-Gómez, S.A., Slamovits, C.H., Dacks, J.B., Baier, K.A., Spencer, K.D. & Wideman, J.G. (2015a) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Current Biology, 25, 1489-1495.
Muñoz-Gómez, S.A., Slamovits, C.H., Dacks, J.B. & Wideman, J.G. (2015b) The evolution of MICOS: ancestral and derived functions and interactions. Communicative & Integrative Biology, 8, e1094593. https://doi.org/10.1080/19420889.2015.1094593
Muñoz-Gómez, S.A., Kreutz, M. & Hess, S. (2021) A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. Science Advances, 7, (24). http://doi.org/10.1126/sciadv.abg4102
Narayanan, N., Krishnakumar, B., Anupama, V.N. & Manilal, V.B. (2009) Methanosaeta sp., the major archaeal endosymbiont of Metopus es. Research in Microbiology, 160, 600-607.
Nitla, V., Serra, V., Fokin, S.I., Modeo, L., Verni, F., Sandeep, B.V. et al. (2019) Critical revision of the family Plagiopylidae (Ciliophora: Plagiopylea), including the description of two novel species, Plagiopyla ramani and Plagiopyla narasimhamurtii, and redescription of Plagiopyla nasuta Stein, 1860 from India. Zoological Journal of the Linnean Society, 186, 1-45.
O’Malley, M.A., Leger, M.M., Wideman, J.G. & Ruiz-Trillo, I. (2019) Concepts of the last eukaryotic common ancestor. Nature Ecology and Evolution, 3, 338-344.
Omar, A., Zhang, Q., Zou, S. & Gong, J. (2017) Morphology and phylogeny of the soil ciliate Metopus yantaiensis n. sp. (Ciliophora, Metopida), with identification of the intracellular bacteria. Journal of Eukaryotic Microbiology, 64, 792-805.
Orsi, W., Charvet, S., Vdačný, P., Bernhard, J.M. & Edgcomb, V.P. (2012) Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Frontiers in Microbiology, 3, 1-8.
Orsi, W., Edgcomb, V.P., Faria, J., Foissner, W., Fowle, W.H., Hohmann, T. et al. (2012) Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela. International Journal of Systematic and Evolutionary Microbiology, 62, 1425-1433.
Orsi, W.D., Morard, R., Vuillemin, A., Eitel, M., Wörheide, G., Milucka, J. et al. (2020) Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME Journal, 14, 2580-2594.
Orsi, W., Song, Y.C., Hallam, S. & Edgcomb, V.P. (2012) Effect of oxygen minimum zone formation on communities of marine protists. ISME Journal, 6, 1586-1601.
Ott, J.A., Bright, M. & Schiemer, F. (1998) The ecology of a novel symbiosis between a marine peritrich ciliate and chemoautotrophic bacteria. Marine Ecology, 19, 229-243.
Paiva, T.S., Borges, B.N. & Silva-Neto, I.D. (2013) Phylogenetic study of class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data. Genetics and Molecular Biology, 36, 571-585.
Park, K.M., Min, G.S. & Kim, S. (2019) The mitochondrial genome of the ciliate Pseudourostyla cristata (Ciliophora, Urostylida). Mitochondrial DNA Part B: Resources, 4, 66-67.
Park, T., Wijeratne, S., Meulia, T., Firkins, J.L. & Yu, Z. (2021) The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics, 113, 1416-1427.
Pasulka, A.L., Goffredi, S.K., Tavormina, P.L., Dawson, K.S., Levin, L.A., Rouse, G.W. et al. (2017) Colonial tube-dwelling ciliates influence methane cycling and microbial diversity within methane seep ecosystems. Frontiers in Marine Science, 3, 1-17.
Pasulka, A.L., Levin, L.A., Steele, J.A., Case, D.H., Landry, M.R. & Orphan, V.J. (2016) Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environmental Microbiology, 18, 3022-3043.
Paul, R.G., Williams, A.G. & Butler, R.D. (1990) Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. Journal of General Microbiology, 136, 1981-1989.
Paulin, J.A. & Corliss, J.O. (1969) Ultrastructural and other observations which suggest suctorian affinities for the taxonomically enigmatic ciliate Cyathodinium. The Journal of Protozoology, 16, 216-223.
Pester, M., Knorr, K.H., Friedrich, M.W., Wagner, M. & Loy, A. (2012) Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 72.
Peters, J.W., Schut, G.J., Boyd, E.S., Mulder, D.W., Shepard, E.M., Broderick, J.B. et al. (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853, 1350-1369.
Pollock, M.S., Clarke, L.M.J. & Dubé, M.G. (2007) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews, 15, 1-14.
Radek, R. (2010) Adhesion of bacteria to protists. In: König, H., Claus, H. & Varma, A. (Eds.) Prokaryotic cell wall compounds. Berlin, Heidelberg: Springer, pp. 429-456.
Reboul, G., Moreira, D., Bertolino, P., Hillebrand-Voiculescu, A.M. & López-García, P. (2019) Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania. Environmental Microbiology Reports, 11, 464-473.
Reed, D.C., Breier, J.A., Jiang, H., Anantharaman, K., Klausmeier, C.A., Toner, B.M. et al. (2015) Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME Journal, 9, 1857-1869.
Regensbogenova, M., McEwan, N.R., Javorsky, P., Kisidayova, S., Michalowski, T., Newbold, C.J. et al. (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiology Letters, 238, 307-313.
Rinke, C., Schmitz-Esser, S., Stoecker, K., Nussbaumer, A.D., Molnár, D.A., Vanura, K. et al. (2006) “Candidatus Thiobios zoothamnicoli”, an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Applied and Environment Microbiology, 72, 2014-2021.
Rosati, G. (2005) Extrusive bacterial ectosymbionts of ciliates. In: Overmann, J. (Ed.) Molecular basis of symbiosis. Progress in molecular and subcellular biology, 1st edition. 41, Berlin, Heidelberg: Springer, pp. 97-115.
Rossi, A., Bellone, A., Fokin, S.I., Boscaro, V. & Vannini, C. (2019) Detecting associations between ciliated protists and prokaryotes with culture-independent single-cell microbiomics: a proof-of-concept study. Microbial Ecology, 78, 232-242.
Rotterová, J., Bourland, W.A. & Čepička, I. (2018) Tropidoatractidae fam. nov., a deep branching lineage of Metopida (Armophorea, Ciliophora) found in diverse habitats and possessing prokaryotic symbionts. Protist, 169, 362-405.
Rotterová, J., Salomaki, E., Pánek, T., Bourland, W.A., Žihala, D., Táborský, P. et al. (2020) Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Current Biology, 30, 1-14.
Schmidtko, S., Stramma, L. & Visbeck, M. (2017) Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335-339.
Schut, G.J. & Adams, M.W.W. (2009) The Iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. Journal of Bacteriology, 191, 4451-4457.
Schwarz, M.V.J. & Frenzel, P. (2005) Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil. FEMS Microbiology Ecology, 52, 93-99.
Seah, B.K., Schwaha, T., Volland, J.M., Huettel, B., Dubilier, N. & Gruber-Vodicka, H.R. (2017) Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 284, 20170764. https://doi.org/10.1098/rspb.2017.0764
Shindell, D.T., Faluvegi, G., Koch, D.M., Schmidt, G.A., Unger, N. & Bauer, S.E. (2009) Improved attribution of climate forcing to emissions. Science, 326, 716-718.
Shinzato, N., Watanabe, I., Meng, X.Y., Sekiguchi, Y., Tamaki, H., Matsui, T. et al. (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microbial Ecology, 54, 627-636.
Smith, T.P., Thomas, T.J.H., García-Carreras, B., Sal, S., Yvon-Durocher, G., Bell, T. et al. (2019) Community-level respiration of prokaryotic microbes may rise with global warming. Nature Communications, 10, 1-11.
Stairs, C.W., Leger, M.M. & Roger, A.J. (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20140326. https://doi.org/10.1098/rstb.2014.0326
Stairs, C.W., Táborský, P., Salomaki, E.D., Kolisko, M., Pánek, T., Eme, L. et al. (2021) Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Current Biology, 2021, 5605-5612.
Stechmann, A., Hamblin, K., Pérez-Brocal, V., Gaston, D., Richmond, G.S.S., van der Giezen, M. et al. (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Current Biology, 18, 580-585.
Stoeck, T., Taylor, G.T. & Epstein, S.S. (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Applied and Environment Microbiology, 69, 5656-5663.
Strüder-Kypke, M.C., Wright, A.D.G., Foissner, W., Chatzinotas, A. & Lynn, D.H. (2006) Molecular phylogeny of litostome ciliates (Ciliophora, Litostomatea) with emphasis on free-living haptorian genera. Protist, 157, 261-278.
Stumm, C.K., Gijzen, H.J. & Vogels, G.D. (1982) Association of methanogenic bacteria with ovine rumen ciliates. British Journal of Nutrition, 47, 95-99.
Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G. et al. (2015) Structure and function of the global ocean microbiome. Science, 348, 1-10.
Takeshita, K., Yamada, T., Kawahara, Y., Narihiro, T., Ito, M., Kamagata, Y. et al. (2019) Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related alphaproteobacterium and a methanogenic archaeon. Applied and Environment Microbiology, 85, 1-14.
Takishita, K., Kakizoe, N., Yoshida, T. & Maruyama, T. (2010) Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. Journal of Eukaryotic Microbiology, 57, 76-86.
Takishita, K., Kolisko, M., Komatsuzaki, H., Yabuki, A., Inagaki, Y., Čepička, I. et al. (2012) Multigene phylogenies of diverse carpediemonas-like organisms identify the closest relatives of “amitochondriate” diplomonads and retortamonads. Protist, 163, 344-355.
Tielens, A.G.M., Rotte, C., van Hellemond, J.J. & Martin, W. (2002) Mitochondria as we don’t know them. Trends in Biochemical Sciences, 27, 564-572.
Tokura, M., Chagan, I., Ushida, K. & Kojima, Y. (1999) Phylogenetic study of methanogens associated with rumen ciliates. Current Microbiology, 39, 123-128.
Vieira, A.M.S.S., Bergamasco, R., Gimenes, M.L., Nakamura, C.V. & Dias Filho, B.P. (2001) Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry. Environmental Technology, 22, 1477-1485.
Vogels, G.D., van der Drift, C., Stumm, C.K., Keltjens, J.T.M. & Zwart, K.B. (1984) Methanogenesis: surprising molecules, microorganisms and ecosystems. Antonie van Leeuwenhoek, 50, 557-567.
Vogels, G.D., Hoppe, W.F. & Stumm, C.K. (1980) Association of methanogenic bacteria with rumen ciliates. Applied and Environmental Microbiology, 40, 608-612.
Wagener, S., Bardele, C.F. & Pfennig, N. (1990) Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Archives of Microbiology, 153, 496-501.
Wagener, S., Schulz, S. & Hanselmann, K. (1990) Abundance and distribution of anaerobic protozoa and their contribution to methane production in Lake Cadagno (Switzerland). FEMS Microbiology Ecology, 74, 39-48.
Wang, L., Abu-Doleh, A., Plank, J., Catalyurek, U.V., Firkins, J.L. & Yu, Z. (2019) The transcriptome of the rumen ciliate Entodinium caudatum reveals some of its metabolic features. BMC Genomics, 20, 1-18.
Warren, A., Patterson, D.J., Dunthorn, M., Clamp, J.C., Achilles-Day, U.E.M., Aescht, E. et al. (2017) Beyond the “Code”: a guide to the description and documentation of biodiversity in ciliated protists (Alveolata, Ciliophora). Journal of Eukaryotic Microbiology, 64, 539-554.
Weber, F., Zaliznyak, T., Edgcomb, V.P. & Taylor, G.T. (2021) Microspectroscopy to measure growth rates of heterotrophic bacteria. Applied and Environmental Microbiology, 87, e01460-21. https://doi.org/10.1128/AEM.01460-21
Woese, C.R., Magrum, L.J. & Fox, G.E. (1978) Archaebacteria. Journal of Molecular Evolution, 11, 245-252.
Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E. & Keeling, P.J. (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347, 1257594. https://doi.org/10.1126/science.1257594
Yahalomi, D., Atkinson, S.D., Neuhof, M., Sally Chang, E., Philippe, H., Cartwright, P. et al. (2020) A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America, 117, 5358-5363.
Yamada, K., Kamagata, Y. & Nakamura, K. (1997) The effect of endosymbiotic methanogens on the growth and metabolic profile of the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiology Letters, 149, 129-132.
Yan, Y., Maurer-Alcalá, X.X., Knight, R., Pond, S.L.K. & Katz, L.A. (2019) Single-cell transcriptomics reveal a correlation between genome architecture and gene family evolution in ciliates. MBio, 10, 1-13.
Yarlett, N., Coleman, G.S., Williams, A.G. & Llyod, D. (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiology Letters, 21, 15-19.
Yubuki, N., Pánek, T., Yabuki, A., Čepička, I., Takishita, K., Inagaki, Y. et al. (2015) Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. Journal of Eukaryotic Microbiology, 62, 532-542.
Žárský, V., Klimeš, V., Pačes, J., Vlček, Č., Hradilová, M., Beneš, V. et al. (2021) The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Molecular Biology and Evolution, 38, 2240-2259.
Zhang, Q., Yi, Z., Fan, X., Warren, A., Gong, J. & Song, W. (2014) Further insights into the phylogeny of two ciliate classes Nassophorea and Prostomatea (Protista, Ciliophora). Molecular Phylogenetics and Evolution, 70, 162-170.
A unique symbiosome in an anaerobic single-celled eukaryote
Methanogenic symbionts of anaerobic ciliates are host and habitat specific
Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts