Methanogenic symbionts of anaerobic ciliates are host and habitat specific

. 2024 Jan 08 ; 18 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39163261

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016935). K CU
355021 Agency of Charles University
19-19297S Agency of the Czech Republic
620417 Simons Foundation
1330406 United States National Science Foundation EPSCoR Track II Cooperative Agreement Award

The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e. endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, although our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.

Zobrazit více v PubMed

Husnik F, Tashyreva D, Boscaro Vet al. . Bacterial and archaeal symbioses with protists. Curr Biol 2021;31:R862–77. 10.1016/j.cub.2021.05.049 PubMed DOI

Kostygov AY, Alves JMP, Yurchenko V. Editorial: Symbioses between protists and bacteria/archaea. Front Microbiol 2021;12:709184. 10.3389/fmicb.2021.709184 PubMed DOI PMC

Fokin SI, Serra V. Bacterial symbiosis in ciliates (Alveolata, Ciliophora): roads traveled and those still to be taken. J Eukaryot Microbiol 2022;69:e12886. 10.1111/jeu.12886 PubMed DOI PMC

Mayén-Estrada R, Júnio Pedroso Dias R, Ramírez-Ballesteros Met al. . Ciliates as symbionts. In: Pereira L., Marta Gonçalves A. (eds.), Plankton Communities. IntechOpen, 2022. 10.5772/intechopen.99341 DOI

Schweikert M, Fujishima M, Görtz H-D. Symbiotic associations between ciliates and prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes. Berlin Heidelberg, Berlin, Heidelberg: Springer, 2013. pp. 427–63. 10.1007/978-3-642-30194-0_18 DOI

Rotterová J, Edgcomb VP, Čepička Iet al. . Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments. J Eukaryot Microbiol 2022;69:e12912. 10.1111/jeu.12912 PubMed DOI

Fenchel T, Finlay BJ. The biology of free-living anaerobic ciliates. Eur J Protistol 1991;26:201–15. 10.1016/S0932-4739(11)80143-4 PubMed DOI

Gijzen HJ, Broers CA, Barughare Met al. . Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 1991;57:1630–4. 10.1128/aem.57.6.1630-1634.1991 PubMed DOI PMC

Rotterová J, Salomaki E, Pánek Tet al. . Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol 2020;30:2037–2050.e6. 10.1016/j.cub.2020.03.064 PubMed DOI

Wrede C, Dreier A, Kokoschka Set al. . Archaea in symbioses. Archaea 2012;2012:1–11. 10.1155/2012/596846 PubMed DOI PMC

Hackstein JHP. Anaerobic ciliates and their methanogenic endosymbionts. In: Hackstein JHP (ed). (Endo)Symbiotic Methanogenic Archaea. Berlin Heidelberg, Berlin, Heidelberg: Springer, 2010. pp. 13–23, 10.1007/978-3-642-13615-3_2. DOI

Van Hoek AHAM, Van Alen TA, Sprakel VSIet al. . Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 2000;17:251–8. 10.1093/oxfordjournals.molbev.a026304 PubMed DOI

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017;27:R1177–92. 10.1016/j.cub.2017.09.015 PubMed DOI

Fenchel T, Finlay BJ. Free-living protozoa with endosymbiotic methanogens. In: Hackstein JHP, (ed), (Endo)Symbiotic Methanogenic Archaea. Berlin Heidelberg: Springer, 2010. pp. 1–11, 10.1007/978-3-642-13615-3_1. DOI

Espada-Hinojosa S, Drexel J, Kesting Jet al. . Host-symbiont stress response to lack-of-sulfide in the giant ciliate mutualism. PLoS One 2022;17:e0254910. 10.1371/journal.pone.0254910 PubMed DOI PMC

Edgcomb VP, Leadbetter ER, Bourland Wet al. . Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments? Front Microbiol 2011;2:2. 10.3389/fmicb.2011.00055 PubMed DOI PMC

Beinart RA, Beaudoin DJ, Bernhard JMet al. . Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. Mol Ecol 2018;27:1794–807. 10.1111/mec.14465 PubMed DOI

Treitli SC, Hanousková P, Beneš Vet al. . Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti. ISME J. 2023;17:1884–94. 10.1038/s41396-023-01499-6 PubMed DOI PMC

Lewis WH, Lind AE, Sendra KMet al. . Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. MBE 2020;37:524–39. 10.1093/molbev/msz239 PubMed DOI PMC

Muñoz-Gómez SA. Energetics and evolution of anaerobic microbial eukaryotes. Nat Microbiol 2023;8:197–203. 10.1038/s41564-022-01299-2 PubMed DOI

Sanches LF, Guenet B, Marinho CCet al. . Global regulation of methane emission from natural lakes. Sci Rep 2019;9:255. 10.1038/s41598-018-36519-5 PubMed DOI PMC

Rosenberg E, DeLong EF, Lory S. et al. (eds). The Prokaryotes: Other Major Lineages of Bacteria and the Archaea. Berlin, Heidelberg: Springer, 2014, 10.1007/978-3-642-38954-2. DOI

Fenchel T. Methanogenesis in marine shallow water sediments: the quantitative role of anaerobic protozoa with endosymbiotic methanogenic bacteria. Ophelia 1993;37:67–82. 10.1080/00785326.1993.10430378 DOI

Holmes DE, Giloteaux L, Orellana Ret al. . Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Front Microbiol 2014;5:5. 10.3389/fmicb.2014.00366 PubMed DOI PMC

Schwarz MVJ, Frenzel P. Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil. FEMS Microbiol Ecol 2005;52:93–9. 10.1016/j.femsec.2004.10.009 PubMed DOI

Van Hoek AHAM, Van Alen TA, Vogels GDet al. . Contribution by the methanogenic endosymbionts of anaerobic ciliates to methane production in Dutch freshwater sediments. Acta Protozool 2006;45:215–24.

Beinart RA, Rotterová J, Čepička Iet al. . The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives. Environ Microbiol 2018;20:2538–51. 10.1111/1462-2920.14279 PubMed DOI

Embley TM, Finlay BJ, Brown S. RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett 1992;97:57–62. 10.1111/j.1574-6968.1992.tb05439.x PubMed DOI

Embley TM, Finlay BJ, Thomas RHet al. . The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 1992;138:1479–87. 10.1099/00221287-138-7-1479 PubMed DOI

Embley TM, Finlay BJ. The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 1994;140:225–35. 10.1099/13500872-140-2-225 PubMed DOI

Finlay BJ, Embley M, Fenchel T. A new polymorphic methanogen, closely related to Methanocorpuscuhm parvum living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol 1993;139:371–8. 10.1099/00221287-139-2-371 PubMed DOI

Hirakata Y, Oshiki M, Kuroda Ket al. . Identification and detection of prokaryotic symbionts in the ciliate Metopus from anaerobic granular sludge. Microbes Environ 2015;30:335–8. 10.1264/jsme2.ME15154 PubMed DOI PMC

Hirakata Y, Oshiki M, Kuroda Ket al. . Effects of predation by protists on prokaryotic community function, structure, and diversity in anaerobic granular sludge. Microbes Environ 2016;31:279–87. 10.1264/jsme2.ME16067 PubMed DOI PMC

Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 2004;50:203–12. 10.2323/jgam.50.203 PubMed DOI

Lewis WH, Sendra KM, Embley TMet al. . Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp., with endosymbiotic methanogens. Front Microbiol 2018;9:140. 10.3389/fmicb.2018.00140 PubMed DOI PMC

Lind AE, Lewis WH, Spang Aet al. . Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME J 2018;12:2655–67. 10.1038/s41396-018-0207-9 PubMed DOI PMC

Pomahač O, Méndez-Sánchez D, Poláková Ket al. . Rediscovery of remarkably rare anaerobic tentaculiferous ciliate genera Legendrea and Dactylochlamys (Ciliophora: Litostomatea). Biology 2023;12:707. 10.3390/biology12050707 PubMed DOI PMC

Takeshita K, Yamada T, Kawahara Yet al. . Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related Alphaproteobacterium and a methanogenic archaeon. Appl Environ Microbiol 2019;85:e00854–19. 10.1128/AEM.00854-19 PubMed DOI PMC

Xia Y, Kong YH, Seviour Ret al. . Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J Appl Microbiol 2014;116:14–22. 10.1111/jam.12356 PubMed DOI

Finlay BJ, Esteban G, Clarke KJet al. . Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157–61. 10.1111/j.1574-6968.1994.tb06758.x PubMed DOI

Esteban G, Guhl BE, Clarke KJet al. . Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 1993;29:262–70. 10.1016/S0932-4739(11)80281-6 PubMed DOI

Poláková K, Bourland WA, Čepička I. Anaerocyclidiidae fam. nov. (Oligohymenophorea, Scuticociliatia): a newly recognized major lineage of anaerobic ciliates hosting prokaryotic symbionts. Eur J Protistol 2023;90:126009. 10.1016/j.ejop.2023.126009 PubMed DOI

Shinzato N, Watanabe I, Meng X-Yet al. . Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 2007;54:627–36. 10.1007/s00248-007-9218-1 PubMed DOI

Schrecengost A, Rotterová J, Poláková Ket al. . Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts. ISME J 2024;18:wrae125. 10.1093/ismejo/wrae125 PubMed DOI PMC

Van Bruggen JJA, Stumm CK, Vogels GD. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 1983;136:89–95. 10.1007/BF00404779 DOI

Van Bruggen JJA, Zwart KB, Van Assema RMet al. . Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 1984;139:1–7. 10.1007/BF00692703 DOI

Van Bruggen JJA, Zwart KB, Hermans JGFet al. . Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 1986;144:367–74. 10.1007/BF00409886 DOI

Wagener S, Stumm CK, Vogels GD. Electromigration, a tool for studies on anaerobic ciliates. FEMS Microbiol Ecol 1986;38:197–203. 10.1111/j.1574-6968.1986.tb01729.x DOI

Bourland W, Rotterova J, Čepička I. Redescription and molecular phylogeny of the type species for two main metopid genera, Metopus es (Müller, 1776) Lauterborn, 1916 and Brachonella contorta (Levander, 1894) Jankowski, 1964 (Metopida, Ciliophora), based on broad geographic sampling. Eur J Protistol 2017;59:133–54. 10.1016/j.ejop.2016.11.002 PubMed DOI

Bourland W, Rotterová J, Čepička I. Description of three new genera of Metopidae (Metopida, Ciliophora): Pileometopus gen. nov., Castula gen. nov., and Longitaenia gen. nov., with notes on the phylogeny and cryptic diversity of metopid ciliates. Protist 2020;171:125740. 10.1016/j.protis.2020.125740 PubMed DOI

Méndez-Sánchez D, Pomahač O, Rotterová Jet al. . Diversity and phylogenetic position of Bothrostoma Stokes, 1887 (Ciliophora: Metopida), with description of four new species. Protist 2022;173:125887. 10.1016/j.protis.2022.125887 PubMed DOI

Rotterová J, Bourland W, Čepička I. Tropidoatractidae fam. nov., a deep branching lineage of Metopida (Armophorea, Ciliophora) found in diverse habitats and possessing prokaryotic symbionts. Protist 2018;169:362–405. 10.1016/j.protis.2018.04.003 PubMed DOI

Doddema HJ, Vogels GD. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 1978;36:752–4. 10.1128/aem.36.5.752-754.1978 PubMed DOI PMC

Finlay BJ, Fenchel T. An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur J Protistol 1992;28:127–37. 10.1016/S0932-4739(11)80041-6 PubMed DOI

Fenchel T, Finlay BJ. Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. J Protozool 1991;38:22–8. 10.1111/j.1550-7408.1991.tb04790.x DOI

Seah BKB, Schwaha T, Volland J-Met al. . Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proc R Soc B 2017;284:20170764. 10.1098/rspb.2017.0764 PubMed DOI PMC

Wagener S, Bardele CF, Pfennig N. Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch Microbiol 1990;153:496–501. 10.1007/BF00248433 DOI

Wagener S, Pfennig N. Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Arch Microbiol 1987;149:4–11. 10.1007/BF00423128 DOI

Rotterová J, Čepička I. Cultivation protocol for anaerobic ciliates. In: Protocols.io. 2019. 10.17504/protocols.io.85why7e. DOI

Raskin L, Stromley JM, Rittmann BEet al. . Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 1994;60:1232–40. 10.1128/aem.60.4.1232-1240.1994 PubMed DOI PMC

Crocetti G, Murto M, Björnsson L. An update and optimisation of oligonucleotide probes targeting methanogenic archaea for use in fluorescence in situ hybridisation (FISH). J Microbiol Methods 2006;65:194–201. 10.1016/j.mimet.2005.07.007 PubMed DOI

Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993;14:136–43. 10.1002/cyto.990140205 PubMed DOI

Omar A, Zhang Q, Zou Set al. . Morphology and phylogeny of the soil ciliate Metopus yantaiensis n. sp. (Ciliophora, Metopida), with identification of the intracellular bacteria. J Eukaryot Microbiol 2017;64:792–805. 10.1111/jeu.12411 PubMed DOI

Beinart R, Rotterová J. Starvation & washing protocol for anaerobic ciliates. In: Protocols.io. 2019. 10.17504/protocols.io.868hzhw. DOI

Medlin L, Elwood HJ, Stickel Set al. . The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988;71:491–9. 10.1016/0378-1119(88)90066-2 PubMed DOI

Buschnell B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Berkeley, CA (United States): Lawrence Berkeley National Lab. (LBNL), 2014.

Bolyen E, Rideout JR, Dillon MRet al. . Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852–7. 10.1038/s41587-019-0209-9 PubMed DOI PMC

Callahan BJ, McMurdie PJ, Rosen MJet al. . DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC

Robeson MS, O’Rourke DR, Kaehler BDet al. . RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol 2021;17:e1009581. 10.1371/journal.pcbi.1009581 PubMed DOI PMC

Bokulich NA, Kaehler BD, Rideout JRet al. . Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90. 10.1186/s40168-018-0470-z PubMed DOI PMC

Bittinger K, Charlson ES, Loy Eet al. . Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol 2014;15:487. 10.1186/s13059-014-0487-y PubMed DOI PMC

Willner D, Daly J, Whiley Det al. . Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS One 2012;7:e34605. 10.1371/journal.pone.0034605 PubMed DOI PMC

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013;8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC

Sievers F, Wilm A, Dineen Det al. . Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011;7:539. 10.1038/msb.2011.75 PubMed DOI PMC

Katoh K, Misawa K, Kuma Ket al. . MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–66. 10.1093/nar/gkf436 PubMed DOI PMC

Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014;30:3276–8. 10.1093/bioinformatics/btu531 PubMed DOI PMC

Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9. 10.1093/bioinformatics/bts252 PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Oksanen J, Blanchet FG, Kindt Ret al. . Vegan: community ecology package. R Package Version 2019;2.2-0. In: The Comprehensive R Archive Network. 2024. 10.32614/CRAN.package.vegan DOI

Bjornstad O. Ncf: Spatial Covariance Functions. R Package Version 1.3–2. In: The Comprehensive R Archive Network. 2022. 10.32614/CRAN.package.ncf DOI

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–20. 10.1007/BF01731581 PubMed DOI

Hijmans RJ. Geosphere: Spherical Trigonometry. R Package Version 1.5-10. In: The Comprenhensive R Archive Network. 2019. 10.32614/CRAN.package.geosphere DOI

Pierangeli GMF, Domingues MR, Jesus TADet al. . Higher abundance of sediment methanogens and methanotrophs do not predict the atmospheric methane and carbon dioxide flows in eutrophic tropical freshwater reservoirs. Front Microbiol 2021;12:647921. 10.3389/fmicb.2021.647921 PubMed DOI PMC

Wang B, Liu F, Zheng Set al. . Trophic strategy of diverse methanogens across a river-to-sea gradient. J Microbiol 2019;57:470–8. 10.1007/s12275-019-8482-3 PubMed DOI

Wen X, Yang S, Horn Fet al. . Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front Microbiol 2017;8:1339. 10.3389/fmicb.2017.01339 PubMed DOI PMC

Vďačný P, Érseková E, Šoltys Ket al. . Co-existence of multiple bacterivorous clevelandellid ciliate species in hindgut of wood-feeding cockroaches in light of their prokaryotic consortium. Sci Rep 2018;8:17749. 10.1038/s41598-018-36245-y PubMed DOI PMC

Vítězová M, Kohoutová A, Vítěz Tet al. . Methanogenic microorganisms in industrial wastewater anaerobic treatment. PRO 2020;8:1546. 10.3390/pr8121546 DOI

Volmer JG, Soo RM, Evans PNet al. . Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated. BMC Biol 2023;21:59. 10.1186/s12915-023-01524-2 PubMed DOI PMC

Buan NR. Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2018;2:629–46. 10.1042/ETLS20180031 PubMed DOI PMC

De Graaf RM, Ricard G, Van Alen TAet al. . The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011;28:2379–91. 10.1093/molbev/msr059 PubMed DOI PMC

Patra A, Park T, Kim Met al. . Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Animal Sci Biotechnol 2017;8:13. 10.1186/s40104-017-0145-9 PubMed DOI PMC

Levy B, Jami E. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 2018;9:2526. 10.3389/fmicb.2018.02526 PubMed DOI PMC

Samuel BS, Hansen EE, Manchester JKet al. . Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. PNAS 2007;104:10643–8. 10.1073/pnas.0704189104 PubMed DOI PMC

Yang S, Liebner S, Winkel Met al. . In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem 2017;111:66–77. 10.1016/j.soilbio.2017.03.007 DOI

Sato Y, Wippler J, Wentrup Cet al. . Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. Microbiome 2022;10:178. 10.1186/s40168-022-01372-2 PubMed DOI PMC

Li J, Li S, Su Het al. . Comprehensive phylogenomic analyses reveal that order Armophorida is most closely related to class Armophorea (Protista, Ciliophora). Mol Phylogenet Evol 2023;182:107737. 10.1016/j.ympev.2023.107737 PubMed DOI

Rotterová J, Pánek T, Salomaki EDet al. . Single cell transcriptomics reveals UAR codon reassignment in Palmarella Salina (Metopida, Armophorea) and confirms Armophorida belongs to APM clade. Mol Phylogenet Evol 2024;191:107991. 10.1016/j.ympev.2023.107991 PubMed DOI

Boscaro V, Fokin SI, Petroni Get al. . Symbiont replacement between bacteria of different classes reveals additional layers of complexity in the evolution of symbiosis in the ciliate Euplotes. Protist 2018;169:43–52. 10.1016/j.protis.2017.12.003 PubMed DOI

Boscaro V, Husnik F, Vannini Cet al. . Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria–eukaryote endosymbioses. Proc R Soc B 2019;286:20190693. 10.1098/rspb.2019.0693 PubMed DOI PMC

Boscaro V, Syberg-Olsen MJ, Irwin NATet al. . All essential endosymbionts of the ciliate Euplotes are cyclically replaced. Curr Biol 2022;32:R826–7. 10.1016/j.cub.2022.06.052 PubMed DOI

Russell SL, Corbett-Detig RB, Cavanaugh CM. Mixed transmission modes and dynamic genome evolution in an obligate animal–bacterial symbiosis. ISME J. 2017;11:1359–71. 10.1038/ismej.2017.10 PubMed DOI PMC

Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019;366:366. 10.1093/femsle/fnz013 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace