The Use of Flow Cytometry for Estimating Genome Sizes and DNA Ploidy Levels in Plants
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Best practices, DAPI, DNA-ploidy level, Desiccated tissues, Flow cytometry, Genome size, Plant nuclei isolation, Plant tissues, Propidium iodide, Seeds,
- MeSH
- buněčné jádro * genetika chemie MeSH
- délka genomu MeSH
- DNA rostlinná genetika analýza MeSH
- genom rostlinný MeSH
- ploidie MeSH
- průtoková cytometrie metody MeSH
- rostliny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
Flow cytometry has emerged as a uniquely flexible, accurate, and widely applicable technology for the analysis of plant cells. One of its most important applications centers on the measurement of nuclear DNA contents. This chapter describes the essential features of this measurement, outlining the overall methods and strategies, but going on to provide a wealth of technical details to ensure the most accurate and reproducible results. The chapter is aimed to be equally accessible to experienced plant cytometrists as well as those newly entering the field. Besides providing a step-by-step guide for estimating genome sizes and DNA-ploidy levels from fresh tissues, special attention is paid to the use of seeds and desiccated tissues for such purposes. Methodological aspects regarding field sampling, transport, and storage of plant material are also given in detail. Finally, troubleshooting information for the most common problems that may arise during the application of these methods is provided.
Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Heller FO (1973) DNS-Bestimmung an Keimwurzeln von Vicia faba L. mit Hilfe der Impulscytophotometrie. Ber Dtsch Bot Ges 86:437–441. https://doi.org/10.1111/j.1438-8677.1973.tb02427.x DOI
Galbraith DW, Harkins KR, Maddox JM et al (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. https://doi.org/10.1016/b978-0-12-715001-7.50090-1 PubMed DOI
Vrána J, Cápal P, Bednářová M, Doležel J (2014) Flow cytometry in plant research: a success story. Plant Cell Monogr 22:395–430. https://doi.org/10.1007/978-3-642-41787-0_13 DOI
Galbraith D, Loureiro J, Antoniadi I et al (2021) Best practices in plant cytometry. Cytom Part A 99:311–317. https://doi.org/10.1002/cyto.a.24295 DOI
Sliwinska E, Loureiro J, Leitch IJ et al (2021) Application-based guidelines for best practices in plant flow cytometry. Cytom Part A 101:749. https://doi.org/10.1002/cyto.a.24499 DOI
Garnatje T, Canela MÁ, Garcia S et al (2011) GSAD: a genome size in the Asteraceae database. Cytom Part A 79(A):401–404. https://doi.org/10.1002/cyto.a.21056 DOI
Pellicer J, Leitch IJ (2020) The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol 226:301–305. https://doi.org/10.1111/nph.16261 PubMed DOI
Castro M, Castro S, Loureiro J (2018) Production of synthetic tetraploids as a tool for polyploid research. Web Ecol 18:129–141. https://doi.org/10.5194/we-18-129-2018 DOI
Bohanec B (2003) Ploidy determination using flow cytometry. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht, pp 397–403. https://doi.org/10.1007/978-94-017-1293-4_52 DOI
Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P (ed) Molecular Plant Taxonomy. Methods in molecular biology, vol 1115. Humana Press, Totowa, pp 279–307. https://doi.org/10.1007/978-1-62703-767-9_14
Temsch EM, Koutecký P, Urfus T et al (2021) Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytom Part A 101:710. https://doi.org/10.1002/cyto.a.24495 DOI
Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790. https://doi.org/10.1093/aob/mcm303 PubMed DOI
Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527. https://doi.org/10.1093/aob/mcl140 PubMed DOI PMC
Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. J Bot 2010:930895. https://doi.org/10.1155/2010/930895 DOI
Čertner M, Lučanová M, Sliwinska E et al (2021) Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytom Part A 101: 737–748. https://doi.org/10.1002/cyto.a.24482
Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytom Part A 64:72–79. https://doi.org/10.1002/cyto.a.20122 DOI
Martínez-Sagarra G, Castro S, Mota L et al (2021) Genome size, chromosome number and morphological data reveal unexpected infraspecific variability in Festuca (Poaceae). Genes (Basel) 12:906. https://doi.org/10.3390/genes12060906 PubMed DOI
Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260. https://doi.org/10.1093/aob/mci019 PubMed DOI PMC
Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA-ploidy level: an appeal for consistent terminology. Taxon 55:447–450. https://doi.org/10.2307/25065591
Hiddemann W, Schumann J, Andreeff M et al (1984) Convention on nomenclature for DNA cytometry. Cytom Part A 5:445–446. https://doi.org/10.1002/cyto.990050502 DOI
Prančl J, Koutecký P, Trávníček P et al (2018) Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia 90:195–223. https://doi.org/10.23855/preslia.2018.195
Burson BL, Actkinson JM, Hussey MA, Jessup RW (2012) Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry. South African J Bot 79:91–95. https://doi.org/10.1016/j.sajb.2011.12.003 DOI
Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321. https://doi.org/10.1093/aob/mch037 PubMed DOI PMC
Castro M, Castro S, Figueiredo A et al (2018) Complex cytogeographical patterns reveal a dynamic tetraploid-octoploid contact zone. AoB Plants 10:ply012. https://doi.org/10.1093/aobpla/ply012 PubMed DOI PMC
Castro M, Loureiro J, Figueiredo A et al (2020) Different patterns of ecological divergence between two tetraploids and their diploid counterpart in a parapatric linear coastal distribution polyploid complex. Front Plant Sci 11:315. https://doi.org/10.3389/fpls.2020.00315 PubMed DOI PMC
Castro M, Loureiro J, Serrano M et al (2019) Mosaic distribution of cytotypes in a mixed-ploidy plant species, Jasione montana: nested environmental niches but low geographical overlap. Bot J Linn Soc 190:51–66. https://doi.org/10.1093/botlinnean/boz007 DOI
Čertner M, Fenclová E, Kúr P et al (2017) Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann Bot 120:303–315. https://doi.org/10.1093/aob/mcx032
Čertner M, Kolář F, Schönswetter P, Frajman B (2015) Does hybridization with a widespread congener threaten the long-term persistence of the Eastern Alpine rare local endemic Knautia carinthiaca? Ecol Evol 5:4263–4276. https://doi.org/10.1002/ece3.1686 PubMed DOI PMC
Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108. https://doi.org/10.1046/j.1365-313X.2000.00647.x PubMed DOI
Laport RG, Minckley RL, Pilson D (2021) Pollinator assemblage and pollen load differences on sympatric diploid and tetraploid cytotypes of the desert-dominant Larrea tridentata. Am J Bot 108:297–308. https://doi.org/10.1002/ajb2.1605 PubMed DOI PMC
Husband BC (2003) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytol 161:703–713. https://doi.org/10.1046/j.1469-8137.2003.00998.x PubMed DOI
Šafářová D, Kopecký D, Vagera J (2005) The effect of a short heat treatment on the in vitro induced androgenesis in Silene latifolia ssp. alba. Biol Plant 49:261–264. https://doi.org/10.1007/s10535-005-1264-2 DOI
Miyashita C, Mii M, Aung T, Ogiwara I (2012) Effect of cross direction and cultivars on crossability of interspecific hybridization between Vaccinium corymbosum and Vaccinium virgatum. Sci Hortic (Amsterdam) 142:1–6. https://doi.org/10.1016/j.scienta.2012.04.015 DOI
Rounsaville TJ, Touchell DH, Ranney TG (2011) Fertility and reproductive pathways in diploid and triploid Miscanthus sinensis. HortScience 46:1353–1357. https://doi.org/10.21273/hortsci.46.10.1353 DOI
Loureiro J, Pinto G, Lopes T et al (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822. https://doi.org/10.1007/s00425-005-1492-x PubMed DOI
Lopes T, Pinto G, Loureiro J et al (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152. https://doi.org/10.1093/treephys/26.9.1145 PubMed DOI
Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159. https://doi.org/10.1007/s11240-013-0311-5 DOI
Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587. https://doi.org/10.1007/s00122-004-1655-3 PubMed DOI
Schubert I, Vu GTH (2016) Genome stability and evolution: attempting a holistic view. Trends Plant Sci 21:749–757. https://doi.org/10.1016/j.tplants.2016.06.003 PubMed DOI
Doležel J, Čížková J, Šimková H, Bartoš J (2018) One major challenge of sequencing large plant genomes is to know how big they really are. Int J Mol Sci 19:3554. https://doi.org/10.3390/ijms19113554 PubMed DOI PMC
Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876. https://doi.org/10.1146/annurev.ecolsys.38.091206.095504 DOI
Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. https://doi.org/10.1093/aob/mci005 PubMed DOI PMC
Sliwinska E, Pisarczyk I, Pawlik A, Galbraith DW (2009) Measuring genome size of desert plants using dry seeds. Botany 87:127–135. https://doi.org/10.1139/B08-120 DOI
Kolář F, Štech M, Trávníček P et al (2009) Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974. https://doi.org/10.1093/aob/mcp016
Lepší M, Koutecký P, Nosková J et al (2019) Versatility of reproductive modes and ploidy level interactions in Sorbus s.l. (Malinae, Rosaceae). Bot J Linn Soc 191:502–522. https://doi.org/10.1093/botlinnean/boz054 DOI
Mráz P, Zdvořák P (2019) Reproductive pathways in Hieracium s.s. (Asteraceae): strict sexuality in diploids and apomixis in polyploids. Ann Bot 123:391–403. https://doi.org/10.1093/aob/mcy137 PubMed DOI
Dušková E, Kolář F, Sklenář P et al (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148
Trávníček P, Suda J (2006) Reliable DNA-ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A 69A:273–280. https://doi.org/10.1002/cyto.a.20253
Suda J, Trávníček P (2006) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr Protoc Cytom 38(Unit7):30. https://doi.org/10.1002/0471142956.cy0730s38 DOI
Suda J, Weiss-Schneeweiss H, Tribsch A et al (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401. https://doi.org/10.3732/ajb.94.8.1391 PubMed DOI
Hülber K, Sonnleitner M, Flatscher R et al (2009) Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309–319 PubMed PMC
Bendiksby M, Tribsch A, Borgen L et al (2011) Allopolyploid origins of the Galeopsis tetraploids - revisiting Müntzing’s classical textbook example using molecular tools. New Phytol 191:1150–1167. https://doi.org/10.1111/j.1469-8137.2011.03753.x PubMed DOI
Frajman B, Rešetnik I, Weiss-Schneeweiss H et al (2015) Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae). BMC Evol Biol 15:19–21. https://doi.org/10.1186/s12862-015-0425-y DOI
Cresti L, Schönswetter P, Peruzzi L et al (2019) Pleistocene survival in three Mediterranean refugia: origin and diversification of the Italian endemic Euphorbia gasparrinii from the E. verrucosa alliance (Euphorbiaceae). Bot J Linn Soc 189:262–280. https://doi.org/10.1093/botlinnean/boy082 DOI
Bainard JD, Husband BC, Baldwin SJ et al (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosom Res 19:825–842. https://doi.org/10.1007/s10577-011-9232-5 DOI
Cires E, Cuesta C, Peredo EL et al (2009) Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Syst Evol 281:193–208. https://doi.org/10.1007/s00606-009-0201-9 DOI
Šmarda P (2008) DNA-ploidy level variability of some fescues (Festuca subg. Festuca, Poaceae) from Central and Southern Europe measured in fresh plants and herbarium specimens. Biologia (Bratisl) 63:349–367. https://doi.org/10.2478/s11756-008-0052-9 DOI
Šmarda P (2006) DNA-ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca, Poaceae) measured in fresh and herbarium material. Folia Geobot 41:417–432. https://doi.org/10.1007/BF02806558 DOI
Kolář F, Lučanová M, Těšitel J et al (2012) Glycerol-treated nuclear suspensions – an efficient preservation method for flow cytometric analysis of plant samples. Chromosom Res 20:303–315. https://doi.org/10.1007/s10577-012-9277-0
Kron P, Husband BC (2012) Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann Bot 110:1067–1078. https://doi.org/10.1093/aob/mcs167 PubMed DOI PMC
Kron P, Loureiro J, Castro S, Čertner M (2021) Flow cytometric analysis of pollen and spores: an overview of applications and methodology. Cytom Part A 99:348–358. https://doi.org/10.1002/cyto.a.24330 DOI
Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58. https://doi.org/10.3732/ajb.95.1.50 PubMed DOI
Nsabimana A, van Staden J (2006) Ploidy investigation of bananas (Musa spp.) from the National Banana Germplasm Collection at Rubona-Rwanda by flow cytometry. South African J Bot 72:302–305. https://doi.org/10.1016/j.sajb.2005.10.004 DOI
Sabara HA, Kron P, Husband BC (2013) Cytotype coexistence leads to triploid hybrid production in a diploid-tetraploid contact zone of Chamerion angustifolium (Onagraceae). Am J Bot 100:962–970. https://doi.org/10.3732/ajb.1200583 PubMed DOI
Nagl W, Treviranus A (1995) A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 gGenotypes). Bot Acta 108:403–406. https://doi.org/10.1111/j.1438-8677.1995.tb00513.x
Cros J, Combes MC, Chabrillange N et al (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20. https://doi.org/10.1139/b95-002 DOI
Staszak AM, Rewers M, Sliwinska E et al (2019) DNA synthesis pattern, proteome, and ABA and GA signalling in developing seeds of Norway maple (Acer platanoides). Funct Plant Biol 46:152–164. https://doi.org/10.1071/FP18074 PubMed DOI
Pfosser M, Königshofer H, Kandeler R (1990) Free, conjugated, and bound polyamines during the cell cycle of synchronized cell suspension cultures of Nicotiana tabacum. J Plant Physiol 136:574–579. https://doi.org/10.1016/S0176-1617(11)80216-6 DOI
Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408. https://doi.org/10.1093/jexbot/52.360.1401 PubMed DOI
Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal 2:143–154. https://doi.org/10.1002/pca.2800020402 DOI
Greilhuber J (1988) “Self-tanning” – a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96. https://doi.org/10.1007/BF00936335 DOI
Chiatante D, Brusa P, Levi M et al (1990) A simple protocol to purify fresh nuclei from milligram amounts of meristematic pea root tissue for biochemical and flow cytometry applications. Physiol Plant 78:501–506. https://doi.org/10.1111/j.1399-3054.1990.tb05233.x DOI
Hopping ME (1993) Preparation and preservation of nuclei from plant tissues for quantitative DNA analysis by flow cytometry. New Zeal J Bot 31:391–401. https://doi.org/10.1080/0028825X.1993.10419517 DOI
Kobrlová L, Dančák M, Sukmaria Sukri R et al (2020) Application of glycerol-preserved nuclei protocol for genome size estimation in the field conditions of a tropical rainforest. Plant Syst Evol 306. https://doi.org/10.1007/s00606-020-01702-7
Galbraith DW (2021) Validation of crowd-sourced plant genome size measurements. Cytom Part A 101:703. https://doi.org/10.1002/cyto.a.24493 DOI
Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. https://doi.org/10.1093/annbot/mcm152 PubMed DOI PMC
Otto FJ (1992) Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A (ed) Flow cytometry and cell sorting. Springer Lab Manual. Springer, Berlin, Heidelberg, pp 65–68. https://doi.org/10.1007/978-3-662-02785-1_8 DOI
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310 PubMed DOI
Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689. https://doi.org/10.1093/aob/mcl141 PubMed DOI PMC
Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106. https://doi.org/10.1002/cyto.990190203 PubMed DOI
Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631. https://doi.org/10.1111/j.1399-3054.1992.tb04764.x DOI
Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128. https://doi.org/10.1002/cyto.a.10013 DOI
Kron P (2015) Endopolyploidy, genome size, and flow cytometry. Cytom Part A 87:887–889. https://doi.org/10.1002/cyto.a.22718 DOI
Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934. https://doi.org/10.1006/anbo.2000.1255 DOI
Barow M, Jovtchev G (2007) Endopolyploidy in plants and its analysis by flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 349–372. https://doi.org/10.1002/9783527610921.ch15 DOI
Scholes DR, Paige KN (2015) Plasticity in ploidy: a generalized response to stress. Trends Plant Sci 20:165–175. https://doi.org/10.1016/j.tplants.2014.11.007 PubMed DOI
Zedek F, Plačková K, Veselý P et al (2021) Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. Ann Bot 126:883–889. https://doi.org/10.1093/AOB/MCAA109 DOI
Loureiro J, Kron P, Temsch EM et al (2021) Isolation of plant nuclei for estimation of nuclear DNA content: overview and best practices. Cytom Part A 99:318–327. https://doi.org/10.1002/cyto.a.24331 DOI
Šmarda P, Knápek O, Březinová A et al (2019) Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91:117–142. https://doi.org/10.23855/preslia.2019.117 DOI
Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32:701–712. https://doi.org/10.1046/j.1365-313X.2002.01458.x PubMed DOI
Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120. https://doi.org/10.1007/BF02907241 DOI
Pfosser M, Heberle-Bors E, Amon A, Lelley T (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat–rye addition lines. Cytometry 21:387–393. https://doi.org/10.1002/cyto.990210412 PubMed DOI
Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Report 9:229–241. https://doi.org/10.1007/BF02672073 DOI
Ebihara A, Ishikawa H, Matsumoto S et al (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. Am J Bot 92:1535–1547. https://doi.org/10.3732/ajb.92.9.1535 PubMed DOI
Bino RJ, Lanteri S, Verhoeven HA, Kraak HL (1993) Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot 72:181–187. https://doi.org/10.1006/anbo.1993.1097 DOI
de Laat AMM, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467. https://doi.org/10.1007/BF00263414 PubMed DOI
Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282. https://doi.org/10.1046/j.1365-313X.2001.01026.x PubMed DOI
Bourge M, Brown SC, Siljak-Yakovlev S (2018) Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet Appl 2:1. https://doi.org/10.31383/ga.vol2iss2pp1-12 DOI
Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol 194:231–239. https://doi.org/10.1007/BF00982857 DOI
Mishiba KI, Ando T, Mii M et al (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673. https://doi.org/10.1006/anbo.2000.1122
Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim DOI
Rayburn AL, Auger JA, Benzinger EA, Hepburn AG (1989) Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot 40:1179–1183. https://doi.org/10.1093/jxb/40.11.1179 DOI
Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61