Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
FRN-142349
CIHR - Canada
PubMed
34650064
PubMed Central
PMC8516963
DOI
10.1038/s41467-021-26077-2
PII: 10.1038/s41467-021-26077-2
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- DNA metabolismus MeSH
- Eukaryota genetika MeSH
- eukaryotické buňky metabolismus MeSH
- genom * MeSH
- genomika * MeSH
- mikrobiologie MeSH
- paraziti genetika MeSH
- proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- proteiny MeSH
Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.
Department of Biochemistry University of Cambridge Cambridge United Kingdom
Institute of Parasitology Biology Centre Czech Acad Sci České Budějovice Czech Republic
Zobrazit více v PubMed
Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519:431–435. PubMed PMC
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2017;52:107–144. PubMed PMC
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div. 2012;7:22. PubMed PMC
Burgers PMJ, Kunkel TA. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 2017;86:417–438. PubMed PMC
Riera A, et al. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31:1073–1088. PubMed PMC
Reusswig, K. U. & Pfander, B. Control of eukaryotic DNA replication initiation-mechanisms to ensure smooth transitions. Genes10, 99 (2019). PubMed PMC
Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. PubMed PMC
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 2018;293:10524–10535. PubMed PMC
Ravoityte, B. & Wellinger, R. E. Non-canonical replication initiation: you’re fired! Genes8, 54 (2017). PubMed PMC
Stuckey R, Garcia-Rodriguez N, Aguilera A, Wellinger RE. Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc. Natl Acad. Sci. USA. 2015;112:5779–5784. PubMed PMC
Musacchio, A. & Desai, A. A molecular view of kinetochore assembly and function. Biology6, 5 (2017). PubMed PMC
Hustedt N, Gasser SM, Shimada K. Replication checkpoint: tuning and coordination of replication forks in S phase. Genes. 2013;4:388–434. PubMed PMC
Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008;27:589–605. PubMed PMC
Adam RD, et al. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig) Genome Biol. Evol. 2013;5:2498–2511. PubMed PMC
Xu F, et al. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10:e1004053. PubMed PMC
Tanifuji G, et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS ONE. 2018;13:e0194487. PubMed PMC
Ocaña-Pallares E, et al. Origin recognition complex (ORC) evolution is influenced by global gene duplication/loss patterns in eukaryotic genomes. Genome Biol. Evol. 2020;12:3878–3889. PubMed PMC
van Hooff JJ, Tromer EC, van Wijk LM, Snel B, Kops GJ. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18:1559–1571. PubMed PMC
Hampl V, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl Acad. Sci. USA. 2009;106:3859–3864. PubMed PMC
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:245. PubMed PMC
Ebbert MTW, et al. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol. 2019;20:97. PubMed PMC
Hamann E, et al. Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J. 2017;11:1205–1217. PubMed PMC
Leger MM, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 2017;1:0092. PubMed PMC
Lydeard JR, et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 2010;24:1133–1144. PubMed PMC
Liu J, et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell. 2000;6:637–648. PubMed
Georgescu RE, et al. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife. 2015;4:e04988. PubMed PMC
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus. 2018;9:460–473. PubMed PMC
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421. PubMed PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comp. Biol. 2011;7:e1002195. PubMed PMC
Nenarokova, A. et al. Causes and effects of loss of classical non-homologous end joining pathway in parasitic eukaryotes. MBio10, e01541-19 (2019). PubMed PMC
Aymard F, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014;21:366–374. PubMed PMC
Keskin H, et al. Transcript-RNA-templated DNA recombination and repair. Nature. 2014;515:436–439. PubMed PMC
Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. RNA-templated DNA repair. Nature. 2007;447:338–341. PubMed PMC
Chandramouly G, et al. Pol theta reverse transcribes RNA and promotes RNA-templated DNA repair. Sci. Adv. 2021;7:eabf1771. PubMed PMC
Ramesh MA, Malik SB, Logsdon JM., Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 2005;15:185–191. PubMed
Bugreev DV, et al. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat. Struct. Mol. Biol. 2011;18:56–60. PubMed PMC
Byrd AK, Raney KD. Structure and function of Pif1 helicase. Biochem. Soc. Trans. 2017;45:1159–1171. PubMed PMC
Wilson MA, et al. Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013;502:393–396. PubMed PMC
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell. 2017;66:801–817. PubMed
Calzetta, N. L., Gonzalez Besteiro, M. A. & Gottifredi, V. Mus81-Eme1-dependent aberrant processing of DNA replication intermediates in mitosis impairs genome integrity. Sci. Adv. 6, eabc8257 (2020). PubMed PMC
Sacristan C, Kops GJ. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 2015;25:21–28. PubMed
Kops GJPL, Snel B, Tromer EC. Evolutionary dynamics of the spindle assembly checkpoint in eukaryotes. Curr. Biol. 2020;30:R589–R602. PubMed
Alfieri, C., Zhang, S. & Barford, D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol. 7, 170204 (2017). PubMed PMC
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. PubMed PMC
D’Archivio S, Wickstead B. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J. Cell Biol. 2017;216:379–391. PubMed PMC
Drinnenberg IA, Henikoff S, Malik HS. Evolutionary turnover of kinetochore proteins: a ship of theseus? Trends Cell Biol. 2016;26:498–510. PubMed PMC
Markova K, et al. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis. Eur. J. Cell Biol. 2016;95:355–367. PubMed
Tromer, E. C., Bade, D., Snel, B. & Kops, G. J. Phylogenomics-guided discovery of a novel conserved cassette of short linear motifs in BubR1 essential for the spindle checkpoint. Open Biol. 6, 160315 (2016). PubMed PMC
Muramoto T, Takeda S, Furuya Y, Urushihara H. Reverse genetic analyses of gamete-enriched genes revealed a novel regulator of the cAMP signaling pathway in Dictyostelium discoideum. Mech. Dev. 2005;122:733–743. PubMed
Cai X, Wang X, Clapham DE. Early evolution of the eukaryotic Ca2+ signaling machinery: conservation of the CatSper channel complex. Mol. Biol. Evol. 2014;31:2735–2740. PubMed PMC
von Dassow P, Montresor M. Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J. Plankton Res. 2010;33:3–12.
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 2013;11:777–788. PubMed
He Y-Z, et al. A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc. Natl Acad. Sci. USA. 2020;117:16928–16937. PubMed PMC
Yoshimura A, Seki M, Enomoto T. The role of WRNIP1 in genome maintenance. Cell Cycle. 2017;16:515–521. PubMed PMC
Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009;276:1494–1505. PubMed PMC
Tadokoro T, Kanaya S. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J. 2009;276:1482–1493. PubMed
Steenwyk JL, et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 2019;17:e3000255. PubMed PMC
Sekelsky J. DNA repair in Drosophila: mutagens, models, and missing genes. Genetics. 2017;205:471–490. PubMed PMC
Corradi N. Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu. Rev. Microbiol. 2015;69:167–183. PubMed
Roger, A. J., Kolisko, M. & Simpson, A. G. B. In Evolution of Virulence in Eukaryotic Microbes (eds Sibley, L. D., Howlett, B. J. & Heitman, J.) Ch. 3 (Wiley, 2013).
Rancati G, et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell. 2008;135:879–893. PubMed PMC
Mendonca AG, Alves RJ, Pereira-Leal JB. Loss of genetic redundancy in reductive genome evolution. PLoS Comput. Biol. 2011;7:e1001082. PubMed PMC
Tumova P, Uzlikova M, Jurczyk T, Nohynkova E. Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis. MicrobiologyOpen. 2016;5:560–574. PubMed PMC
Kulda, J., Nohýnková, E. & Čepička, I. Retortamonadida (with notes on Carpediemonas-Like organisms and Caviomonadidae). In Handbook of the Protists (eds Archibald, J. M. et al.) Ch. 34 (Springer, 2017).
Bogenschutz NL, Rodriguez J, Tsukiyama T. Initiation of DNA replication from non-canonical sites on an origin-depleted chromosome. PLoS ONE. 2014;9:e114545. PubMed PMC
Shibata, E. et al. Two subunits of human ORC are dispensable for DNA replication and proliferation. Elife5, e19084 (2016). PubMed PMC
Park SY, Asano M. The origin recognition complex is dispensable for endoreplication in Drosophila. Proc. Natl Acad. Sci. USA. 2008;105:12343–12348. PubMed PMC
Okano-Uchida T, et al. Endoreduplication of the mouse genome in the absence of ORC1. Genes Dev. 2018;32:978–990. PubMed PMC
Theis JF, et al. The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet. 2010;6:e1001227. PubMed PMC
Hawkins M, Malla S, Blythe MJ, Nieduszynski CA, Allers T. Accelerated growth in the absence of DNA replication origins. Nature. 2013;503:544–547. PubMed PMC
Gillespie KA, Mehta KP, Laimins LA, Moody CA. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol. 2012;86:9520–9526. PubMed PMC
Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 1997;61:212–238. PubMed PMC
Gerhold JM, et al. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria. J. Biol. Chem. 2014;289:22659–22670. PubMed PMC
Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 2005;25:933–944. PubMed PMC
Jain S, et al. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 2009;23:291–303. PubMed PMC
Drissi R, et al. Destabilization of the minichromosome maintenance (MCM) complex modulates the cellular response to DNA double strand breaks. Cell Cycle. 2018;17:2593–2609. PubMed PMC
Ouyang, J. et al. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature594, 283–288 (2021). PubMed PMC
Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat. Rev. Mol. Cell Biol. 2004;5:792–804. PubMed
Das M, Singh S, Pradhan S, Narayan G. MCM paradox: abundance of eukaryotic replicative helicases and genomic integrity. Mol. Biol. Int. 2014;2014:574850. PubMed PMC
Sasaki T, Gilbert DM. The many faces of the origin recognition complex. Curr. Opin. Cell Biol. 2007;19:337–343. PubMed
Muller CA, Nieduszynski CA. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res. 2012;22:1953–1962. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. PubMed PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC
Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42:e119. PubMed PMC
Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinforma. 2006;7:62. PubMed PMC
Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–5666. PubMed PMC
Waterhouse RM, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. PubMed PMC
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 2005;6:31. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC
Correa Dos Santos R, Goldman GH, Riano-Pachon D. M. ploidyNGS: visually exploring ploidy with next generation sequencing data. Bioinformatics. 2017;33:2575–2576. PubMed
Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics. 2016;32:3246–3251. PubMed PMC
Tan-Wong SM, Dhir S, Proudfoot NJ. R-Loops promote antisense transcription across the mammalian genome. Mol. Cell. 2019;76:600–616. PubMed PMC
Mazina OM, et al. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 2020;295:14203–14213. PubMed PMC
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 2017;18:622–636. PubMed PMC
Longhese MP, Plevani P, Lucchini G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 1994;14:7884–7890. PubMed PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. PubMed PMC
The expanded genome of Hexamita inflata, a free-living diplomonad
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
A unique symbiosome in an anaerobic single-celled eukaryote
Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes
Dryad
10.5061/dryad.wh70rxwnv