On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
39475241
PubMed Central
PMC11633173
DOI
10.1128/mbio.02936-24
Knihovny.cz E-zdroje
- Klíčová slova
- Diplonemea, Kinetoplastea, Paradiplonema, cell division, cenH3/CENP-A, kinetochore,
- MeSH
- Euglenozoa * genetika metabolismus MeSH
- fylogeneze MeSH
- kinetochory * metabolismus MeSH
- protozoální proteiny metabolismus genetika MeSH
- segregace chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
UNLABELLED: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE: A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
Faculty of Sciences University of South Bohemia České Budějovice Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Oncode Institute Hubrecht Institute Royal Academy of Arts and Sciences Utrecht the Netherlands
Zobrazit více v PubMed
Chodasewicz K. 2014. Evolution, reproduction and definition of life. Theory Biosci 133:39–45. doi:10.1007/s12064-013-0184-5 PubMed DOI PMC
Tetz VV, Tetz GV. 2020. A new biological definition of life. Biomol Concepts 11:1–6. doi:10.1515/bmc-2020-0001 PubMed DOI
McIntosh JR. 2016. Mitosis. Cold Spring Harb Perspect Biol 8:a023218. doi:10.1101/cshperspect.a023218 PubMed DOI PMC
McAinsh AD, Kops GJPL. 2023. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 24:543–559. doi:10.1038/s41580-023-00593-z PubMed DOI
Keeling PJ, Burki F. 2019. Progress towards the Tree of Eukaryotes. Curr Biol 29:R808–R817. doi:10.1016/j.cub.2019.07.031 PubMed DOI
Drinnenberg IA, Akiyoshi B. 2017. Evolutionary lessons from species with unique kinetochores. Prog Mol Subcell Biol 56:111–138. doi:10.1007/978-3-319-58592-5_5 PubMed DOI
Tromer EC, van Hooff JJE, Kops GJPL, Snel B. 2019. Mosaic origin of the eukaryotic kinetochore. Proc Natl Acad Sci U S A 116:12873–12882. doi:10.1073/pnas.1821945116 PubMed DOI PMC
Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology (Basel) 6:5. doi:10.3390/biology6010005 PubMed DOI PMC
McAinsh AD, Marston AL. 2022. The four causes: the functional architecture of centromeres and kinetochores. Annu Rev Genet 56:279–314. doi:10.1146/annurev-genet-072820-034559 PubMed DOI PMC
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23. doi:10.1186/gb-2006-7-3-r23 PubMed DOI PMC
van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. 2017. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 18:1559–1571. doi:10.15252/embr.201744102 PubMed DOI PMC
Kops G, Snel B, Tromer EC. 2020. Evolutionary dynamics of the spindle assembly checkpoint in eukaryotes. Curr Biol 30:R589–R602. doi:10.1016/j.cub.2020.02.021 PubMed DOI
Ishii M, Akiyoshi B. 2022. Plasticity in centromere organization and kinetochore composition: Lessons from diversity. Curr Opin Cell Biol 74:47–54. doi:10.1016/j.ceb.2021.12.007 PubMed DOI PMC
Drinnenberg IA, deYoung D, Henikoff S, Malik HS. 2014. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 3:e03676. doi:10.7554/eLife.03676 PubMed DOI PMC
Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev IV, Heitman J, Sanyal K, Garre V. 2019. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr Biol 29:3791–3802. doi:10.1016/j.cub.2019.09.024 PubMed DOI PMC
Cortes-Silva N, Ulmer J, Kiuchi T, Hsieh E, Cornilleau G, Ladid I, Dingli F, Loew D, Katsuma S, Drinnenberg IA. 2020. CenH3-independent kinetochore assembly in lepidoptera requires CCAN, including CENP-T. Curr Biol 30:561–572. doi:10.1016/j.cub.2019.12.014 PubMed DOI
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, Salas-Leiva JS, Gallot-Lavallée L, Williams SK, Kops G, Archibald JM, Simpson AGB, Roger AJ. 2021. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun 12:6003. doi:10.1038/s41467-021-26077-2 PubMed DOI PMC
Zeeshan M, Pandey R, Ferguson DJP, Tromer EC, Markus R, Abel S, Brady D, Daniel E, Limenitakis R, Bottrill AR, Le Roch KG, Holder AA, Waller RF, Guttery DS, Tewari R. 2020. Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. J Cell Sci 134:jcs245753. doi:10.1242/jcs.245753 PubMed DOI PMC
Brusini L, Dos Santos Pacheco N, Tromer EC, Soldati-Favre D, Brochet M. 2022. Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. J Cell Biol 221:e202111084. doi:10.1083/jcb.202111084 PubMed DOI PMC
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, et al. . 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422. doi:10.1126/science.1112642 PubMed DOI
Akiyoshi B, Gull K. 2013. Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open Biol 3:130023. doi:10.1098/rsob.130023 PubMed DOI PMC
Akiyoshi B, Gull K. 2014. Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258. doi:10.1016/j.cell.2014.01.049 PubMed DOI PMC
Nerusheva OO, Akiyoshi B. 2016. Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol 6:150206. doi:10.1098/rsob.150206 PubMed DOI PMC
D’Archivio S, Wickstead B. 2017. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol 216:379–391. doi:10.1083/jcb.201608043 PubMed DOI PMC
Nerusheva OO, Ludzia P, Akiyoshi B. 2019. Identification of four unconventional kinetoplastid kinetochore proteins KKT22-25 in Trypanosoma brucei. Open Biol 9:190236. doi:10.1098/rsob.190236 PubMed DOI PMC
Brusini L, D’Archivio S, McDonald J, Wickstead B. 2021. Trypanosome KKIP1 dynamically links the inner kinetochore to a kinetoplastid outer kinetochore complex. Front Cell Infect Microbiol 11:641174. doi:10.3389/fcimb.2021.641174 PubMed DOI PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, et al. . 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38:D457–D462. doi:10.1093/nar/gkp851 PubMed DOI PMC
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, Hartley C, Sanders M, Wastling JM, Dacks JB, Acosta-Serrano A, Field MC, Ginger ML, Berriman M. 2016. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol 26:161–172. doi:10.1016/j.cub.2015.11.055 PubMed DOI PMC
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 18:23. doi:10.1186/s12915-020-0754-1 PubMed DOI PMC
Tikhonenkov DV, Gawryluk RMR, Mylnikov AP, Keeling PJ. 2021. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep 11:2946. doi:10.1038/s41598-021-82369-z PubMed DOI PMC
Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. 2021. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol 11:210049. doi:10.1098/rsob.210049 PubMed DOI PMC
Cavalier-Smith T. 2016. Higher classification and phylogeny of Euglenozoa. Eur J Protistol 56:250–276. doi:10.1016/j.ejop.2016.09.003 PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407. doi:10.1098/rsob.200407 PubMed DOI PMC
Lax G, Kolisko M, Eglit Y, Lee WJ, Yubuki N, Karnkowska A, Leander BS, Burger G, Keeling PJ, Simpson AGB. 2021. Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol Phylogenet Evol 159:107088. doi:10.1016/j.ympev.2021.107088 PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, et al. . 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. doi:10.1126/science.1261605 PubMed DOI
Flegontova Olga, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol 26:3060–3065. doi:10.1016/j.cub.2016.09.031 PubMed DOI
Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. 2022. Diplonemids - A review on “new” flagellates on the oceanic block. Protist 173:125868. doi:10.1016/j.protis.2022.125868 PubMed DOI
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 22:4014–4031. doi:10.1111/1462-2920.15190 PubMed DOI
Tashyreva D, Týč J, Horák A, Lukeš J. 2023. Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle. mBio 14:e0192123. doi:10.1128/mbio.01921-23 PubMed DOI PMC
van Hooff JJE, Raas MWD, Tromer EC, Eme L. 2024. Shaping up genomes: prokaryotic roots and eukaryotic diversification of SMC complexes. bioRxiv. doi:10.1101/2024.01.07.573240 DOI
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. 2018. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 20:1030–1040. doi:10.1111/1462-2920.14041 PubMed DOI
Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L, Allen AE, Ares M Jr, Aresté C, Balestreri C, Barbrook AC, et al. . 2020. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods 17:481–494. doi:10.1038/s41592-020-0796-x PubMed DOI PMC
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol 22:3660–3670. doi:10.1111/1462-2920.15130 PubMed DOI
Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. 2023. Functional differentiation of Sec13 paralogues in the euglenozoan protists. Open Biol 13:220364. doi:10.1098/rsob.220364 PubMed DOI PMC
Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, Oeffinger M, Burger G, Gray MW, Lukeš J. 2023. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res 51:6443–6460. doi:10.1093/nar/gkad422 PubMed DOI PMC
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. 2023. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21:99. doi:10.1186/s12915-023-01563-9 PubMed DOI PMC
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, Prokopchuk G, Butenko A, Lukáčová V, Kohútová L, Bučková B, Horák A, Faktorová D, Horváth A, Šimek P, Lukeš J. 2021. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 19:251. doi:10.1186/s12915-021-01186-y PubMed DOI PMC
Wells JN, Marsh JA. 2019. A graph-based approach for detecting sequence homology in highly diverged repeat protein families, p 251–261. In Sikosek T (ed), Computational Methods in Protein Evolution. Springer, New York, NY. PubMed
Schou KB, Andersen JS, Pedersen LB. 2014. A divergent calponin homology (NN-CH) domain defines A novel family: implications for evolution of ciliary IFT complex B proteins. Bioinformatics 30:899–902. doi:10.1093/bioinformatics/btt661 PubMed DOI
Holden JM, Koreny L, Obado S, Ratushny AV, Chen W-M, Chiang J-H, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. 2014. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 25:1421–1436. doi:10.1091/mbc.E13-12-0750 PubMed DOI PMC
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. 2024. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 14:240025. doi:10.1098/rsob.240025 PubMed DOI PMC
van Wijk LM, Snel B. 2020. The first eukaryotic kinome tree illuminates the dynamic history of present-day kinases. bioRxiv. doi:10.1101/2020.01.27.920793 DOI
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. 2015. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–9. doi:10.1073/pnas.1420657112 PubMed DOI PMC
Stok C, Tsaridou S, van den Tempel N, Everts M, Wierenga E, Bakker FJ, Kok Y, Alves IT, Jae LT, Raas MWD, et al. . 2023. FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics. Cell Rep 42:112668. doi:10.1016/j.celrep.2023.112668 PubMed DOI
van Rooijen LE, Tromer EC, van Hooff JJE, Kops GJPL, Snel B. 2023. Increased sampling and intracomplex homologies favor vertical over horizontal inheritance of the Dam1 complex. Genome Biol Evol 15:evad017. doi:10.1093/gbe/evad017 PubMed DOI PMC
Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol Evol 35:43–55. doi:10.1016/j.tree.2019.08.008 PubMed DOI
Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J. 2011. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 13:1234–1243. doi:10.1038/ncb2347 PubMed DOI PMC
Osman F, Whitby MC. 2013. Emerging roles for centromere-associated proteins in DNA repair and genetic recombination. Biochem Soc Trans 41:1726–1730. doi:10.1042/BST20130200 PubMed DOI
Malik HS, Henikoff S. 2003. Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891. doi:10.1038/nsb996 PubMed DOI
Luo X, Tang Z, Rizo J, Yu H. 2002. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol Cell 9:59–71. doi:10.1016/s1097-2765(01)00435-x PubMed DOI
Aravind L, Koonin EV. 1998. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286. doi:10.1016/s0968-0004(98)01257-2 PubMed DOI
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. . 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493–500. doi:10.1038/s41586-024-07487-w PubMed DOI PMC
Carmena M, Wheelock M, Funabiki H, Earnshaw WC. 2012. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803. doi:10.1038/nrm3474 PubMed DOI PMC
Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC. 2008. Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLoS ONE 3:e2354. doi:10.1371/journal.pone.0002354 PubMed DOI PMC
Ballmer D, Akiyoshi B. 2024. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 13:RP93522. doi:10.7554/eLife.93522 PubMed DOI PMC
Adams RR, Wheatley SP, Gouldsworthy AM, Kandels-Lewis SE, Carmena M, Smythe C, Gerloff DL, Earnshaw WC. 2000. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10:1075–1078. doi:10.1016/s0960-9822(00)00673-4 PubMed DOI
Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A. 2005. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18:379–391. doi:10.1016/j.molcel.2005.03.031 PubMed DOI
Komaki S, Tromer EC, De Jaeger G, De Winne N, Heese M, Schnittger A. 2022. Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution. Proc Natl Acad Sci U S A 119:e2200108119. doi:10.1073/pnas.2200108119 PubMed DOI PMC
Zickler D, Kleckner N. 2023. Meiosis: dances between homologs. Annu Rev Genet 57:1–63. doi:10.1146/annurev-genet-061323-044915 PubMed DOI
Ishii M, Akiyoshi B. 2020. Characterization of unconventional kinetochore kinases KKT10 and KKT19 in Trypanosoma brucei J Cell Sci 133:jcs240978. doi:10.1242/jcs.240978 PubMed DOI PMC
Hardie DG. 1999. Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131. doi:10.1146/annurev.arplant.50.1.97 PubMed DOI
Lindberg MF, Meijer L. 2021. Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) in human disease, an overview. Int J Mol Sci 22:6047. doi:10.3390/ijms22116047 PubMed DOI PMC
Garcia-Silva M-R, Sollelis L, MacPherson CR, Stanojcic S, Kuk N, Crobu L, Bringaud F, Bastien P, Pagès M, Scherf A, Sterkers Y. 2017. Identification of the centromeres of Leishmania major: revealing the hidden pieces. EMBO Rep 18:1968–1977. doi:10.15252/embr.201744216 PubMed DOI PMC
Geoghegan V, Carnielli JBT, Jones NG, Saldivia M, Antoniou S, Hughes C, Neish R, Dowle A, Mottram JC. 2022. CLK1/CLK2-driven signalling at the Leishmania kinetochore is captured by spatially referenced proximity phosphoproteomics. Commun Biol 5:1305. doi:10.1038/s42003-022-04280-1 PubMed DOI PMC
Porter D. 1973. Isonema papillatum sp. n., a new colorless marine flagellate: a light- and electronmicroscopic study . J Protozool 20:351–356. doi:10.1111/j.1550-7408.1973.tb00895.x DOI
Triemer RE. 1992. Ultrastructure of mitosis in Diplonema ambulator larsen and patterson (euglenozoa). Eur J Protistol 28:398–404. doi:10.1016/S0932-4739(11)80003-9 PubMed DOI
Lowell JE, Cross GAM. 2004. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci 117:5937–5947. doi:10.1242/jcs.01515 PubMed DOI
Alfieri C, Chang L, Barford D. 2018. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 559:274–278. doi:10.1038/s41586-018-0281-1 PubMed DOI PMC
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. 2024. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 15:2310452. doi:10.1080/19491034.2024.2310452 PubMed DOI PMC
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DP, Lukeš J, Lebert M, Vaughan S, Hampl V, Carrington M, Ginger ML, Dacks JB, Kelly S, Field MC. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 17:11. doi:10.1186/s12915-019-0626-8 PubMed DOI PMC
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. 2021. Interplay between CMGC kinases targeting SR proteins and viral replication: splicing and beyond. Front Microbiol 12:658721. doi:10.3389/fmicb.2021.658721 PubMed DOI PMC
Lukeš J, Speijer D, Zíková A, Alfonzo JD, Hashimi H, Field MC. 2023. Trypanosomes as a magnifying glass for cell and molecular biology. Trends Parasitol 39:902–912. doi:10.1016/j.pt.2023.08.004 PubMed DOI
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J. 2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 48:2694–2708. doi:10.1093/nar/gkz1215 PubMed DOI PMC
Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G. 2017. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep 7:14166. doi:10.1038/s41598-017-14286-z PubMed DOI PMC
George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, Lukeš J, Keeling PJ. 2022. Gene transfer agents in bacterial endosymbionts of microbial eukaryotes. Genome Biol Evol 14:evac099. doi:10.1093/gbe/evac099 PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi:10.1038/nprot.2013.084 PubMed DOI PMC
Huang Y, Niu B, Gao Y, Fu L, Li W. 2010. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. doi:10.1093/bioinformatics/btq003 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC
Wheeler RJ. 2021. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS ONE 16:e0259871. doi:10.1371/journal.pone.0259871 PubMed DOI PMC
Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi:10.1038/nbt.3988 PubMed DOI
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer J 2:e56. doi:10.24072/pcjournal.173 DOI
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. doi:10.1038/s41592-022-01488-1 PubMed DOI PMC
Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. doi:10.1093/bioinformatics/14.9.755 PubMed DOI
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. doi:10.1186/s13059-019-1832-y PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC
Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ, Söding J. 2019. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20:473. doi:10.1186/s12859-019-3019-7 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303 PubMed DOI PMC
van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M. 2024. Fast and accurate protein structure search with Foldseek. Nat Biotechnol 42:243–246. doi:10.1038/s41587-023-01773-0 PubMed DOI PMC
de Potter B, Raas MWD, Seidl MF, Verrijzer CP, Snel B. 2023. Uncoupled evolution of the Polycomb system and deep origin of non-canonical PRC1. Commun Biol 6:1144. doi:10.1038/s42003-023-05501-x PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. doi:10.1093/molbev/msaa015 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. doi:10.1038/nmeth.4285 PubMed DOI PMC
Masuda T, Tomita M, Ishihama Y. 2008. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740. doi:10.1021/pr700658q PubMed DOI
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi:10.1038/nbt.1511 PubMed DOI
Tyanova S, Cox J. 2018. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research, p 133–148. In Stechow L (ed), Cancer systems biology: methods and protocols. Springer, New York, NY. PubMed
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC