Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-06479X
Czech Science Foundation
#9354
Gordon and Betty Moore Foundation (GBMF)
LM2023050
Czech-BioImaging
21-26209S
Czech Science Foundation
PubMed
37737610
PubMed Central
PMC10653844
DOI
10.1128/mbio.01921-23
Knihovny.cz E-zdroje
- Klíčová slova
- 3-dimensional reconstruction, Euglenozoa, SBF-SEM, cell division, diplonemid, ultrastructure,
- MeSH
- Eukaryota * MeSH
- mikroskopie elektronová rastrovací MeSH
- organely MeSH
- zobrazování trojrozměrné * metody MeSH
- Publikační typ
- časopisecké články MeSH
The knowledge of cell biology of a eukaryotic group is essential for correct interpretation of ecological and molecular data. Although diplonemid protists are one of the most species-rich lineages of marine eukaryotes, only very fragmentary information is available about the cellular architecture of this taxonomically diverse group. Here, a large serial block-face scanning electron microscopy data set complemented with light and fluorescence microscopy allowed the first detailed three-dimensional reconstruction of a diplonemid species. We describe numerous previously unknown peculiarities of the cellular architecture and cell division characteristic for diplonemid flagellates, and illustrate the obtained results with multiple three-dimensional models, comprehensible for non-specialists in protist ultrastructure.
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol 26:3060–3065. doi:10.1016/j.cub.2016.09.031 PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D. 2015. Eukaryotic plankton diversity in the sunlit ocean. Sci 348:1261605. doi:10.1126/science.1261605 PubMed DOI
Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2016. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol 26:3053–3059. doi:10.1016/j.cub.2016.09.013 PubMed DOI
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, Arndt H. 2021. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol 4:501. doi:10.1038/s42003-021-02012-5 PubMed DOI PMC
Flegontova O, Flegontov P, Jachníková N, Lukeš J, Horák A. 2023. Water masses shape PICO-nano eukaryotic communities of the weddell sea. Commun Biol 6:64. doi:10.1038/s42003-023-04452-7 PubMed DOI PMC
Okamoto N, Gawryluk RMR, Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2019. A revised taxonomy of diplonemids including the eupelagonemidae N. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J Eukaryote Microbiol 66:519–524. doi:10.1111/jeu.12679 PubMed DOI
Yabuki A, Tame A. 2015. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J Eukaryote Microbiol 62:426–429. doi:10.1111/jeu.12191 PubMed DOI
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida K-I, Horák A, Lukeš J. 2018. Phylogeny and morphology of new diplonemids from Japan. Protist 169:158–179. doi:10.1016/j.protis.2018.02.001 PubMed DOI
Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. 2022. “Diplonemids – a review on “new” flagellates on the oceanic block” 173:125868. doi:10.1016/j.protis.2022.125868 PubMed DOI
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 18:23. doi:10.1186/s12915-020-0754-1 PubMed DOI PMC
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. 2023. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21:99. doi:10.1186/s12915-023-01563-9 PubMed DOI PMC
Burger G, Valach M. 2018. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life 70:1197–1206. doi:10.1002/iub.1927 PubMed DOI
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J. 2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 48:2694–2708. doi:10.1093/nar/gkz1215 PubMed DOI PMC
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9:e02447-17. doi:10.1128/mBio.02447-17 PubMed DOI PMC
George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, Lukeš J, Keeling PJ. 2022. Gene transfer agents in bacterial endosymbionts of microbial eukaryotes. Genome Biol Evol 14:evac099. doi:10.1093/gbe/evac099 PubMed DOI PMC
Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. 2023. Functional differentiation of sec13 paralogues in the euglenozoan protists. Open Biol 13:220364. doi:10.1098/rsob.220364 PubMed DOI PMC
Pilátová J, Tashyreva D, Týč J, Vancová M, Bokhari SNH, Skoupý R, Klementová M, Küpper H, Mojzeš P, Lukeš J. 2023. Massive accumulation of strontium and barium in diplonemid protists. mBio 14:e0327922. doi:10.1128/mbio.03279-22 PubMed DOI PMC
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol 22:3660–3670. doi:10.1111/1462-2920.15130 PubMed DOI
Nerad T. 1990. The life history, cytology and taxonomy of Isonema and Isonema-like flagellates 259 p PhD Thesis, University of Maryland, College Park, MD:
Montegut-Felkner AE, Triemer RE. 1994. Phylogeny of Diplonema ambulator (Larsen and Patterson). 1. homologies of the flagellar apparatus. Eur J Protistol 30:227–237. doi:10.1016/S0932-4739(11)80033-7 DOI
Montegut-Felkner AE, Triemer RE. 1996. Phylogeny of Diplonema ambulator (Larsen and Patterson). 2. homologies of the feeding apparatus. Eur J Protistol 32:64–76. doi:10.1016/S0932-4739(96)80040 DOI
Simpson AGB. 1997. The identity and composition of the Euglenozoa. Archiv für Protistenkunde 148:318–328. doi:10.1016/S0003-9365(97)80012-7 DOI
Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. 2019. Morphological, ultrastructural, motility and evolutionary characterization of two new hemistasiidae species. Protist 170:259–282. doi:10.1016/j.protis.2019.04.001 PubMed DOI
DeVorkin L, Gorski SM. 2014. Lysotracker staining to aid in monitoring autophagy in Drosophila. Cold Spring Harb Protoc 2014:951–958. doi:10.1101/pdb.prot080325 PubMed DOI
Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. 2017. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci 130:637–647. doi:10.1242/jcs.198887 PubMed DOI
Bílý T, Sheikh S, Mallet A, Bastin P, Pérez-Morga D, Lukeš J, Hashimi H. 2021. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryote Microbiol 68:e12846. doi:10.1111/jeu.12846 PubMed DOI
Pellegrini M. 1980. Three-dimensional reconstruction of organelles in Euglena gracilis Z. I. qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous cultures during bleaching. J Cell Sci 46:313–340. doi:10.1242/jcs.46.1.313 PubMed DOI
Marande W, Lukeš J, Burger G. 2005. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146. doi:10.1128/EC.4.6.1137-1146.2005 PubMed DOI PMC
Smoliński DJ, Kołowerzo A. 2012. mRNA accumulation in the cajal bodies of the diplotene larch microsporocyte. Chromosoma 121:37–48. doi:10.1007/s00412-011-0339-4 PubMed DOI PMC
Hollenstein DM, Kraft C. 2020. Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol 65:50–57. doi:10.1016/j.ceb.2020.02.012 PubMed DOI PMC
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. 2020. Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr Biol 30:R575–R588. doi:10.1016/j.cub.2020.02.053 PubMed DOI
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryote Microbiol 66:4–119. doi:10.1111/jeu.12691 PubMed DOI PMC
Twu O, Johnson PJ. 2014. Parasite extracellular vesicles: mediators of intercellular communication. PLoS Pathog 10:e1004289. doi:10.1371/journal.ppat.1004289 PubMed DOI PMC
Wiser MF. 2021. Unique endomembrane systems and virulence in pathogenic protozoa. Life 11:822. doi:10.3390/life11080822 PubMed DOI PMC
Mantel P-Y, Marti M. 2014. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 16:344–354. doi:10.1111/cmi.12259 PubMed DOI PMC
Beri D, Rodriguez M, Singh M, Liu Y, Rasquinha G, An X, Yazdanbakhsh K, Lobo CA. 2022. Identification and characterization of extracellular vesicles from red cells infected with Babesia divergens and Babesia microti. Front Cell Infect Microbiol 12:962944. doi:10.3389/fcimb.2022.962944 PubMed DOI PMC
Costa AO, Chagas IAR, Menezes-Neto A, Rêgo FD, Nogueira PM, Torrecilhas AC, Furst C, Fux B, Soares RP. 2021. Distinct immunomodulatory properties of extracellular vesicles released by different strains of Acanthamoeba. Cell Biol Int 45:1060–1071. doi:10.1002/cbin.11551 PubMed DOI
Alcantara C de L, Vidal JC, de Souza W, Cunha-E-Silva NL. 2016. The cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes disassembles during cell division. J Cell Sci 130:164–176. doi:10.1242/jcs.187419 PubMed DOI
Rosner M. 1988. Serial reconstruction of dividing and non-dividing cells of Euglena gracilis. University of Illinois at Chicago, Chicago.
Frolov AO, Skarlato SO. 1998. Unusual pattern of mitosis in the free-living flagellate Dimastigella mimosa (kinetoplastida). Protoplasma 201:101–109. doi:10.1007/BF01280716 DOI
Leander BS, Lax G, Karnkowska A, Simpson AGB. 2017. Euglenida, p 1–42. In Handbook of the protists. Springer Int Publ. doi:10.1007/978-3-319-32669-6 DOI
Leander BS, Esson HJ, Breglia SA. 2007. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000. doi:10.1002/bies.20645 PubMed DOI
Triemer RE. 1988. Ultrastructure of mitosis in Entosiphon sulcatum (euglenida). J Protozool 35:231–237. doi:10.1111/j.1550-7408.1988.tb04330.x DOI
Triemer RE, Fritz L. 1988. Ultrastructural features of mitosis in Ploeotia costata (heteronematales, euglenophyta). J Phycol 24:514–519. doi:10.1111/j.1529-8817.1988.tb04256.x DOI
Brugerolle G. 1992. Flagellar apparatus duplication and partition, flagellar transformation during division in Entosiphon sulcatum. Biosyst 28:203–209. doi:10.1016/0303-2647(92)90021-p PubMed DOI
Ozasa K, Kang H, Song S, Tamaki S, Shinomura T, Maeda M. 2021. Regeneration of the eyespot and flagellum in Euglena gracilis during cell division. Plants 10:2004. doi:10.3390/plants10102004 PubMed DOI PMC
Mignot JP, Brugerolle G, Bricheux G. 1987. Intercalary strip development and dividing cell morphogenesis in the euglenid Cyclidiopsis acus. Protoplasma 139:51–65. doi:10.1007/BF01417535 DOI
Elbrächter M, Schnepf E, Balzer I. 1996. Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Archiv für Protistenkunde 147:125–136. doi:10.1016/S0003-9365(96)80028-5 DOI
Pan J, Snell WJ. 2005. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 9:431–438. doi:10.1016/j.devcel.2005.07.010 PubMed DOI
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. 2019. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 17:e3000381. doi:10.1371/journal.pbio.3000381 PubMed DOI PMC
Belhadri A, Brugerolle G. 1992. Morphogenesis of the feeding apparatus of Entosiphon sulcatum. Protoplasma 168:125–135. doi:10.1007/BF01666258 DOI
Motta MCM, Catta-Preta CMC, Schenkman S, Martins AC de A, Miranda K, de Souza W, Elias MC. 2010. The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus. PLoS One 5:e12415. doi:10.1371/journal.pone.0012415 PubMed DOI PMC
Kostygov AY, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, Tesařová M, Spodareva VV, Režnarová J, Macedo DH, Butenko A, d’Avila-Levy CM, Lukeš J, Yurchenko V. 2020. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol 18:187. doi:10.1186/s12915-020-00916-y PubMed DOI PMC
Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. 2013. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol Microbiol 90:1339–1355. doi:10.1111/mmi.12436 PubMed DOI PMC
Alves AA, Alcantara CL, Dantas-Jr MVA, Sunter JD, De Souza W, Cunha-E-Silva NL. 2022. Dynamics of the orphan myosin Myof over Trypanosoma cruzi life cycle and along the Endocytic pathway. Parasitol Int 86:102444. doi:10.1016/j.parint.2021.102444 PubMed DOI
Gillott MA, Triemer RE. 1978. The ultrastructure of cell division in Euglena gracilis. J Cell Sci 31:25–35. doi:10.1242/jcs.31.1.25 PubMed DOI
Abeywickrema M, Vachova H, Farr H, Mohr T, Wheeler RJ, Lai D, Vaughan S, Gull K, Sunter JD, Varga V. 2019. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei. Mol Microbiol 112:1024–1040. doi:10.1111/mmi.14345 PubMed DOI PMC
Russell MRG, Nickerson DP, Odorizzi G. 2006. Molecular mechanisms of late endosome morphology, identity and sorting. Curr Opin Cell Biol 18:422–428. doi:10.1016/j.ceb.2006.06.002 PubMed DOI
Olzmann JA, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20:137–155. doi:10.1038/s41580-018-0085-z PubMed DOI PMC
Hashemi HF, Goodman JM. 2015. The life cycle of lipid droplets. Curr Opin Cell Biol 33:119–124. doi:10.1016/j.ceb.2015.02.002 PubMed DOI PMC
Schnepf E. 1994. Light and electron microscopical observations in Rhynchopus coscinodiscivorus SPEC. nov., a colorless, phagotrophic euglenozoon with concealed flagella). Archiv für Protistenkunde 144:63–74. doi:10.1016/S0003-9365(11)80225-3 DOI
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. 2009. Autophagy regulates lipid metabolism. Nat 458:1131–1135. doi:10.1038/nature07976 PubMed DOI PMC
Breglia SA, Yubuki N, Leander BS. 2013. Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: a eukaryovorouse euglenid with a cytoproct. J Eukaryote Microbiol 60:107–120. doi:10.1111/jeu.12014 PubMed DOI
Klionsky DJ, Herman PK, Emr SD. 1990. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292. doi:10.1128/mr.54.3.266-292.1990 PubMed DOI PMC
Minh BQ, Chernomor O, Lanfear R, Schmidt HA, Haeseler A von, Schrempf D, Woodhams MD. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. doi:10.1093/molbev/msaa015 PubMed DOI PMC
Lartillot N, Lepage T, Blanquart S. 2009. Phylobayes 3: a bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288. doi:10.1093/bioinformatics/btp368 PubMed DOI
Keevend K, Stiefel M, Neuer AL, Matter MT, Neels A, Bertazzo S, Herrmann IK. 2017. Tb3+-doped LaF3 nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focused ion beam-sectioned biological samples. Nanoscale 9:4383–4387. doi:10.1039/c6nr09187c PubMed DOI