Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31919519
PubMed Central
PMC7049700
DOI
10.1093/nar/gkz1215
PII: 5699674
Knihovny.cz E-zdroje
- MeSH
- chromozomy genetika MeSH
- editace RNA genetika MeSH
- Euglenozoa genetika MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- geny * MeSH
- konzervovaná sekvence MeSH
- mitochondriální DNA genetika MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.
Faculty of Science Charles University BIOCEV 25250 Vestec Czech Republic
Faculty of Sciences University of South Bohemia 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Burki F., Roger A.J., Brown M.W., Simpson A.G.B.. The new tree of eukaryotes. Trends Ecol. Evol. 2019; 35:43–55. PubMed
Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F. et al. .. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019; 66:4–119. PubMed PMC
de Vargas C., Audic S., Henry N., Decelle J., Mahe F., Logares R., Lara E., Berney C., Le Bescot N., Probert I. et al. .. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015; 348:1261605–1261605. PubMed
Gawryluk R.M.R., del Campo J., Okamoto N., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J.. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016; 26:3053–3059. PubMed
Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., de Vargas C., Bowler C., Lukeš J., Horák A.. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 2016; 26:3060–3065. PubMed
David V., Archibald J.M.. Evolution: Plumbing the depths of diplonemid diversity. Curr. Biol. 2016; 26:R1290–R1292. PubMed
Flegontova O., Flegontov P., Malviya S., Poulain J., de Vargas C., Bowler C., Lukeš J., Horák A.. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 2018; 20:878–889. PubMed
Sibbald S.J., Archibald J.M.. More protist genomes needed. Nat. Ecol. Evol. 2017; 1:0145. PubMed
Keeling P.J., Campo J. del. Marine protists are not just big bacteria. Curr. Biol. 2017; 27:R541–R549. PubMed
Lukeš J., Flegontova O., Horák A.. Diplonemids. Curr. Biol. 2015; 25:R702–R704. PubMed
Tashyreva D., Prokopchuk G., Yabuki A., Kaur B., Faktorová D., Votýpka J., Kusaka C., Fujikura K., Shiratori T., Ishida K.-I. et al. .. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018; 169:158–179. PubMed
Tashyreva D., Prokopchuk G., Votýpka J., Yabuki A., Horák A., Lukeš J.. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbioticbacteria. mBio. 2018; 9:e02447-17. PubMed PMC
Prokopchuk G., Tashyreva D., Yabuki A., Horák A., Masařová P., Lukeš J.. Morphological, ultrastructural, motility and evolutionary characterization of two new hemistasiidae species. Protist. 2019; 170:259–282. PubMed
Okamoto N., Gawryluk R.M.R., Campo J., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J.. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J. Eukaryot. Microbiol. 2019; 66:519–524. PubMed
Valach M., Moreira S., Faktorová D., Lukeš J., Burger G.. Post-transcriptional mending of gene sequences: Looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol. 2016; 13:1204–1211. PubMed PMC
Moreira S., Valach M., Aoulad-Aissa M., Otto C., Burger G.. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016; 44:4907–4919. PubMed PMC
Faktorová D., Valach M., Kaur B., Burger G., Lukeš J.. Cruz-Reyes J, Gray M. Mitochondrial RNA editing and processing in diplonemid protists. RNA Metabolism in Mitochondria. Nucleic Acids and Molecular Biology. 2018; 34:Cham: Springer; 145–176.
Lukeš J., Wheeler R., Jirsová D., David V., Archibald J.M.. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018; 70:1267–1274. PubMed PMC
Kiethega G.N., Yan Y., Turcotte M., Burger G.. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 2013; 10:301–313. PubMed PMC
Sturm N.R., Maslov D.A., Grisard E.C., Campbell D.A.. Diplonema spp. possess spliced leader RNA genes similar to the kinetoplastida. J. Eukaryot. Microbiol. 2001; 48:325–331. PubMed
Lasda E.L., Blumenthal T.. Trans-splicing. Wiley Interdiscip. Rev. RNA. 2011; 2:417–434. PubMed
Glanz S., Kück U.. Trans-splicing of organelle introns–a detour to continuous RNAs. BioEssays. 2009; 31:921–934. PubMed
Marande W., Lukeš J., Burger G.. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot. Cell. 2005; 4:1137–1146. PubMed PMC
Marande W., Burger G.. Mitochondrial DNA as a genomic jigsaw puzzle. Science. 2007; 318:415. PubMed
Vlcek C., Marande W., Teijeiro S., Lukeš J., Burger G.. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011; 39:979–988. PubMed PMC
Valach M., Moreira S., Kiethega G.N., Burger G.. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res. 2014; 42:2660–2672. PubMed PMC
Valach M., Moreira S., Hoffmann S., Stadler P.F., Burger G.. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci. Rep. 2017; 7:14166. PubMed PMC
Kiethega G.N., Turcotte M., Burger G.. Evolutionarily conserved cox1 trans-splicing without cis-motifs. Mol. Biol. Evol. 2011; 28:2425–2428. PubMed
Yabuki A., Tanifuji G., Kusaka C., Takishita K., Fujikura K.. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol. Evol. 2016; 8:2870–2878. PubMed PMC
Rodríguez-Ezpeleta N., Teijeiro S., Forget L., Burger G., Lang B.F.. Parkinson J. Construction of cDNA libraries: Focus on protists and fungi. Expressed Sequence Tags (ESTs). Methods in Molecular Biology (Methods and Protocols). 2009; 533:Totowa, NJ: Humana Press; 33–47. PubMed
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D. et al. .. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19:455–477. PubMed PMC
Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M. et al. .. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013; 8:1494–1512. PubMed PMC
Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402. PubMed PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. et al. .. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28:1647–1649. PubMed PMC
Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC
Valach M., Léveillé-Kunst A., Gray M.W., Burger G.. Respiratory chain complex I of unparalleled divergence in diplonemids. J. Biol. Chem. 2018; 293:16043–16056. PubMed PMC
Eddy S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009; 23:205–211. PubMed
Katoh K., Standley D.M.. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013; 30:772–780. PubMed PMC
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T.. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25:1972–1973. PubMed PMC
Lartillot N., Lepage T., Blanquart S.. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009; 25:2286–2288. PubMed
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P.. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012; 61:539–542. PubMed PMC
Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q.. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015; 32:268–274. PubMed PMC
Stamakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312–1313. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S.. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017; 14:587–589. PubMed PMC
Minh B.Q., Hahn M., Lanfear R.. New methods to calculate concordance factors for phylogenomic datasets. 2018; 05 December 2018, preprint: not peer reviewed10.1101/487801. PubMed DOI PMC
Yang J., Harding T., Kamikawa R., Simpson A.G.B., Roger A.J.. Mitochondrial genome evolution and a novel RNA editing system in deep-branching heteroloboseids. Genome Biol. Evol. 2017; 9:1161–1174. PubMed PMC
Bundschuh R., Altmüller J., Becker C., Nürnberg P., Gott J.M.. Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res. 2011; 39:6044–6055. PubMed PMC
Lara E., Moreira D., Vereshchaka A., López-García P.. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ. Microbiol. 2009; 11:47–55. PubMed
Kaur B., Valach M., Peña-Diaz P., Moreira S., Keeling P.J., Burger G., Lukeš J., Faktorová D.. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 2018; 20:1030–1040. PubMed
Ramrath D.J.F.F., Niemann M., Leibundgut M., Bieri P., Prange C., Horn E.K., Leitner A., Boehringer D., Schneider A., Ban N.. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735. PubMed
Weyn-Vanhentenryck S.M., Mele A., Yan Q., Sun S., Farny N., Zhang Z., Xue C., Herre M., Silver P.A., Zhang M.Q. et al. .. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 2014; 6:1139–1152. PubMed PMC
Osigus H.-J., Eitel M., Schierwater B.. Deep RNA sequencing reveals the smallest known mitochondrial micro exon in animals: The placozoan cox1 single base pair exon. PLoS One. 2017; 12:e0177959. PubMed PMC
Ustianenko D., Weyn-Vanhentenryck S.M., Zhang C.. Microexons: discovery, regulation, and function. Wiley Interdiscip. Rev. RNA. 2017; 8:e1418. PubMed PMC
Grewe F., Herres S., Viehöver P., Polsakiewicz M., Weisshaar B., Knoop V.. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res. 2011; 39:2890–2902. PubMed PMC
Oldenkott B., Yamaguchi K., Tsuji-Tsukinoki S., Knie N., Knoop V.. Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata. RNA. 2014; 20:1499–1506. PubMed PMC
Klinger C.M., Paoli L., Newby R.J., Wang M.Y.W., Carroll H.D., Leblond J.D., Howe C.J., Dacks J.B., Bowler C., Cahoon A.B. et al. .. Plastid transcript editing across dinoflagellate lineages shows lineage-specific application but conserved trends. Genome Biol. Evol. 2018; 10:1019–1038. PubMed PMC
Gott J.M. Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs. Nucleic Acids Res. 2005; 33:5063–5072. PubMed PMC
Schallenberg-Rüdinger M., Lenz H., Polsakiewicz M., Gott J.M., Knoop V.. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol. 2013; 10:1549–1556. PubMed PMC
Jackson C.J., Gornik S.G., Waller R.F.. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: Character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol. Evol. 2012; 4:59–72. PubMed PMC
Wang I.X., Grunseich C., Chung Y.G., Kwak H., Ramrattan G., Zhu Z., Cheung V.G.. RNA–DNA sequence differences in Saccharomyces cerevisiae. Genome Res. 2016; 26:1544–1554. PubMed PMC
Daneck P., Nellaker C., McIntyre R.E., Buendia-Buendia J.E., Bumpstead S., Ponting C.P., Flint J., Durbin R., Keane T.M., Adams D.J.. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol. 2012; 13:R26. PubMed PMC
Agip A.-N.A., Blaza J.N., Bridges H.R., Viscomi C., Rawson S., Muench S.P., Hirst J.. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 2018; 25:548–556. PubMed PMC
Jackson C.J., Norman J.E., Schnare M.N., Gray M.W., Keeling P.J., Waller R.F.. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol. 2007; 5:41. PubMed PMC
Burger G., Jackson C.J., Waller R.F.. Bullerwell C. Unusual mitochondrial genomes and genes. Organelle Genetics. 2012; Berlin, Heidelberg: Springer; 41–77.
Chang J.H., Tong L.. Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta. 2012; 1819:992–997. PubMed PMC
Zimmer S.L., Simpson R.M., Read L.K.. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC
Cruz-Reyes J., Mooers B.H.M., Doharey P.K., Meehan J., Gulati S.. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC
Alfonzo J., Thiemann O., Simpson L.. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997; 25:3751–3759. PubMed PMC
Aphasizhev R., Aphasizheva I.. Uridine insertion/deletion editing intrypanosomes: a playground for RNA-guided information transfer. Wiley Interdiscip. Rev. RNA. 2011; 2:669–685. PubMed PMC
Etheridge R.D., Aphasizheva I., Gershon P.D., Aphasizhev R.. 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008; 27:1596–1608. PubMed PMC
Aphasizheva I., Maslov D., Wang X., Huang L., Aphasizhev R.. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell. 2011; 42:106–117. PubMed PMC
Zhang L., Sement F.M., Suematsu T., Yu T., Monti S., Huang L., Aphasizhev R., Aphasizheva I.. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. EMBO J. 2017; 36:2435–2454. PubMed PMC
Ryan C.M., Read L.K.. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase. RNA. 2005; 11:763–773. PubMed PMC
Aphasizheva I., Aphasizhev R.. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 2010; 30:1555–1567. PubMed PMC
Burger G., Valach M.. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life. 2018; 70:1197–1206. PubMed
Gray M.W., Lukes J., Archibald J.M., Keeling P.J., Doolittle W.F.. Irremediable complexity?. Science. 2010; 330:920–921. PubMed
Flegontov P., Gray M.W., Burger G., Lukeš J.. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?. Curr. Genet. 2011; 57:225–232. PubMed
Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F., Gray M.W.. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011; 63:528–537. PubMed
Stoltzfus A. Constructive neutral evolution: Exploring evolutionary theory's curious disconnect. Biol. Direct. 2012; 7:35. PubMed PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
Mitochondrial genomes revisited: why do different lineages retain different genes?
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes
Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria
Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis
Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa