Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids

. 2020 Mar 18 ; 48 (5) : 2694-2708.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31919519

Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.

Zobrazit více v PubMed

Burki F., Roger A.J., Brown M.W., Simpson A.G.B.. The new tree of eukaryotes. Trends Ecol. Evol. 2019; 35:43–55. PubMed

Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F. et al. .. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019; 66:4–119. PubMed PMC

de Vargas C., Audic S., Henry N., Decelle J., Mahe F., Logares R., Lara E., Berney C., Le Bescot N., Probert I. et al. .. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015; 348:1261605–1261605. PubMed

Gawryluk R.M.R., del Campo J., Okamoto N., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J.. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016; 26:3053–3059. PubMed

Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., de Vargas C., Bowler C., Lukeš J., Horák A.. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 2016; 26:3060–3065. PubMed

David V., Archibald J.M.. Evolution: Plumbing the depths of diplonemid diversity. Curr. Biol. 2016; 26:R1290–R1292. PubMed

Flegontova O., Flegontov P., Malviya S., Poulain J., de Vargas C., Bowler C., Lukeš J., Horák A.. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 2018; 20:878–889. PubMed

Sibbald S.J., Archibald J.M.. More protist genomes needed. Nat. Ecol. Evol. 2017; 1:0145. PubMed

Keeling P.J., Campo J. del. Marine protists are not just big bacteria. Curr. Biol. 2017; 27:R541–R549. PubMed

Lukeš J., Flegontova O., Horák A.. Diplonemids. Curr. Biol. 2015; 25:R702–R704. PubMed

Tashyreva D., Prokopchuk G., Yabuki A., Kaur B., Faktorová D., Votýpka J., Kusaka C., Fujikura K., Shiratori T., Ishida K.-I. et al. .. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018; 169:158–179. PubMed

Tashyreva D., Prokopchuk G., Votýpka J., Yabuki A., Horák A., Lukeš J.. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbioticbacteria. mBio. 2018; 9:e02447-17. PubMed PMC

Prokopchuk G., Tashyreva D., Yabuki A., Horák A., Masařová P., Lukeš J.. Morphological, ultrastructural, motility and evolutionary characterization of two new hemistasiidae species. Protist. 2019; 170:259–282. PubMed

Okamoto N., Gawryluk R.M.R., Campo J., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J.. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J. Eukaryot. Microbiol. 2019; 66:519–524. PubMed

Valach M., Moreira S., Faktorová D., Lukeš J., Burger G.. Post-transcriptional mending of gene sequences: Looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol. 2016; 13:1204–1211. PubMed PMC

Moreira S., Valach M., Aoulad-Aissa M., Otto C., Burger G.. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016; 44:4907–4919. PubMed PMC

Faktorová D., Valach M., Kaur B., Burger G., Lukeš J.. Cruz-Reyes J, Gray M. Mitochondrial RNA editing and processing in diplonemid protists. RNA Metabolism in Mitochondria. Nucleic Acids and Molecular Biology. 2018; 34:Cham: Springer; 145–176.

Lukeš J., Wheeler R., Jirsová D., David V., Archibald J.M.. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018; 70:1267–1274. PubMed PMC

Kiethega G.N., Yan Y., Turcotte M., Burger G.. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 2013; 10:301–313. PubMed PMC

Sturm N.R., Maslov D.A., Grisard E.C., Campbell D.A.. Diplonema spp. possess spliced leader RNA genes similar to the kinetoplastida. J. Eukaryot. Microbiol. 2001; 48:325–331. PubMed

Lasda E.L., Blumenthal T.. Trans-splicing. Wiley Interdiscip. Rev. RNA. 2011; 2:417–434. PubMed

Glanz S., Kück U.. Trans-splicing of organelle introns–a detour to continuous RNAs. BioEssays. 2009; 31:921–934. PubMed

Marande W., Lukeš J., Burger G.. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot. Cell. 2005; 4:1137–1146. PubMed PMC

Marande W., Burger G.. Mitochondrial DNA as a genomic jigsaw puzzle. Science. 2007; 318:415. PubMed

Vlcek C., Marande W., Teijeiro S., Lukeš J., Burger G.. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011; 39:979–988. PubMed PMC

Valach M., Moreira S., Kiethega G.N., Burger G.. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res. 2014; 42:2660–2672. PubMed PMC

Valach M., Moreira S., Hoffmann S., Stadler P.F., Burger G.. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci. Rep. 2017; 7:14166. PubMed PMC

Kiethega G.N., Turcotte M., Burger G.. Evolutionarily conserved cox1 trans-splicing without cis-motifs. Mol. Biol. Evol. 2011; 28:2425–2428. PubMed

Yabuki A., Tanifuji G., Kusaka C., Takishita K., Fujikura K.. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol. Evol. 2016; 8:2870–2878. PubMed PMC

Rodríguez-Ezpeleta N., Teijeiro S., Forget L., Burger G., Lang B.F.. Parkinson J. Construction of cDNA libraries: Focus on protists and fungi. Expressed Sequence Tags (ESTs). Methods in Molecular Biology (Methods and Protocols). 2009; 533:Totowa, NJ: Humana Press; 33–47. PubMed

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D. et al. .. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19:455–477. PubMed PMC

Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M. et al. .. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013; 8:1494–1512. PubMed PMC

Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402. PubMed PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. et al. .. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28:1647–1649. PubMed PMC

Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC

Valach M., Léveillé-Kunst A., Gray M.W., Burger G.. Respiratory chain complex I of unparalleled divergence in diplonemids. J. Biol. Chem. 2018; 293:16043–16056. PubMed PMC

Eddy S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009; 23:205–211. PubMed

Katoh K., Standley D.M.. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013; 30:772–780. PubMed PMC

Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T.. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25:1972–1973. PubMed PMC

Lartillot N., Lepage T., Blanquart S.. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009; 25:2286–2288. PubMed

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P.. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012; 61:539–542. PubMed PMC

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q.. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015; 32:268–274. PubMed PMC

Stamakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312–1313. PubMed PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S.. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017; 14:587–589. PubMed PMC

Minh B.Q., Hahn M., Lanfear R.. New methods to calculate concordance factors for phylogenomic datasets. 2018; 05 December 2018, preprint: not peer reviewed10.1101/487801. PubMed DOI PMC

Yang J., Harding T., Kamikawa R., Simpson A.G.B., Roger A.J.. Mitochondrial genome evolution and a novel RNA editing system in deep-branching heteroloboseids. Genome Biol. Evol. 2017; 9:1161–1174. PubMed PMC

Bundschuh R., Altmüller J., Becker C., Nürnberg P., Gott J.M.. Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res. 2011; 39:6044–6055. PubMed PMC

Lara E., Moreira D., Vereshchaka A., López-García P.. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ. Microbiol. 2009; 11:47–55. PubMed

Kaur B., Valach M., Peña-Diaz P., Moreira S., Keeling P.J., Burger G., Lukeš J., Faktorová D.. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 2018; 20:1030–1040. PubMed

Ramrath D.J.F.F., Niemann M., Leibundgut M., Bieri P., Prange C., Horn E.K., Leitner A., Boehringer D., Schneider A., Ban N.. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735. PubMed

Weyn-Vanhentenryck S.M., Mele A., Yan Q., Sun S., Farny N., Zhang Z., Xue C., Herre M., Silver P.A., Zhang M.Q. et al. .. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 2014; 6:1139–1152. PubMed PMC

Osigus H.-J., Eitel M., Schierwater B.. Deep RNA sequencing reveals the smallest known mitochondrial micro exon in animals: The placozoan cox1 single base pair exon. PLoS One. 2017; 12:e0177959. PubMed PMC

Ustianenko D., Weyn-Vanhentenryck S.M., Zhang C.. Microexons: discovery, regulation, and function. Wiley Interdiscip. Rev. RNA. 2017; 8:e1418. PubMed PMC

Grewe F., Herres S., Viehöver P., Polsakiewicz M., Weisshaar B., Knoop V.. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Res. 2011; 39:2890–2902. PubMed PMC

Oldenkott B., Yamaguchi K., Tsuji-Tsukinoki S., Knie N., Knoop V.. Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata. RNA. 2014; 20:1499–1506. PubMed PMC

Klinger C.M., Paoli L., Newby R.J., Wang M.Y.W., Carroll H.D., Leblond J.D., Howe C.J., Dacks J.B., Bowler C., Cahoon A.B. et al. .. Plastid transcript editing across dinoflagellate lineages shows lineage-specific application but conserved trends. Genome Biol. Evol. 2018; 10:1019–1038. PubMed PMC

Gott J.M. Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs. Nucleic Acids Res. 2005; 33:5063–5072. PubMed PMC

Schallenberg-Rüdinger M., Lenz H., Polsakiewicz M., Gott J.M., Knoop V.. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol. 2013; 10:1549–1556. PubMed PMC

Jackson C.J., Gornik S.G., Waller R.F.. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: Character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol. Evol. 2012; 4:59–72. PubMed PMC

Wang I.X., Grunseich C., Chung Y.G., Kwak H., Ramrattan G., Zhu Z., Cheung V.G.. RNA–DNA sequence differences in Saccharomyces cerevisiae. Genome Res. 2016; 26:1544–1554. PubMed PMC

Daneck P., Nellaker C., McIntyre R.E., Buendia-Buendia J.E., Bumpstead S., Ponting C.P., Flint J., Durbin R., Keane T.M., Adams D.J.. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol. 2012; 13:R26. PubMed PMC

Agip A.-N.A., Blaza J.N., Bridges H.R., Viscomi C., Rawson S., Muench S.P., Hirst J.. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 2018; 25:548–556. PubMed PMC

Jackson C.J., Norman J.E., Schnare M.N., Gray M.W., Keeling P.J., Waller R.F.. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol. 2007; 5:41. PubMed PMC

Burger G., Jackson C.J., Waller R.F.. Bullerwell C. Unusual mitochondrial genomes and genes. Organelle Genetics. 2012; Berlin, Heidelberg: Springer; 41–77.

Chang J.H., Tong L.. Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta. 2012; 1819:992–997. PubMed PMC

Zimmer S.L., Simpson R.M., Read L.K.. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC

Cruz-Reyes J., Mooers B.H.M., Doharey P.K., Meehan J., Gulati S.. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC

Alfonzo J., Thiemann O., Simpson L.. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997; 25:3751–3759. PubMed PMC

Aphasizhev R., Aphasizheva I.. Uridine insertion/deletion editing intrypanosomes: a playground for RNA-guided information transfer. Wiley Interdiscip. Rev. RNA. 2011; 2:669–685. PubMed PMC

Etheridge R.D., Aphasizheva I., Gershon P.D., Aphasizhev R.. 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008; 27:1596–1608. PubMed PMC

Aphasizheva I., Maslov D., Wang X., Huang L., Aphasizhev R.. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell. 2011; 42:106–117. PubMed PMC

Zhang L., Sement F.M., Suematsu T., Yu T., Monti S., Huang L., Aphasizhev R., Aphasizheva I.. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. EMBO J. 2017; 36:2435–2454. PubMed PMC

Ryan C.M., Read L.K.. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase. RNA. 2005; 11:763–773. PubMed PMC

Aphasizheva I., Aphasizhev R.. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol. Cell. Biol. 2010; 30:1555–1567. PubMed PMC

Burger G., Valach M.. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life. 2018; 70:1197–1206. PubMed

Gray M.W., Lukes J., Archibald J.M., Keeling P.J., Doolittle W.F.. Irremediable complexity?. Science. 2010; 330:920–921. PubMed

Flegontov P., Gray M.W., Burger G., Lukeš J.. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?. Curr. Genet. 2011; 57:225–232. PubMed

Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F., Gray M.W.. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011; 63:528–537. PubMed

Stoltzfus A. Constructive neutral evolution: Exploring evolutionary theory's curious disconnect. Biol. Direct. 2012; 7:35. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Probing mechanical selection in diverse eukaryotic genomes through accurate prediction of 3D DNA mechanics

. 2024 Dec 23 ; () : . [epub] 20241223

On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa

. 2024 Dec 11 ; 15 (12) : e0293624. [epub] 20241030

Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment

. 2024 Apr 24 ; 52 (7) : 3870-3885.

Mitochondrial genomes revisited: why do different lineages retain different genes?

. 2024 Jan 25 ; 22 (1) : 15. [epub] 20240125

Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans

. 2023 Nov ; 9 (11) : .

Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle

. 2023 Oct 31 ; 14 (5) : e0192123. [epub] 20230922

Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway

. 2023 Jul 07 ; 51 (12) : 6443-6460.

Functional differentiation of Sec13 paralogues in the euglenozoan protists

. 2023 Jun ; 13 (6) : 220364. [epub] 20230614

Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes

. 2023 May 04 ; 21 (1) : 99. [epub] 20230504

Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes

. 2022 Jul 02 ; 14 (7) : .

Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory

. 2022 May ; 16 (5) : 1409-1419. [epub] 20220118

Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria

. 2021 Jul 29 ; 38 (8) : 3170-3187.

Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans

. 2021 May 17 ; 19 (1) : 103. [epub] 20210517

Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events

. 2021 Apr 06 ; 49 (6) : 3354-3370.

A Uniquely Complex Mitochondrial Proteome from Euglena gracilis

. 2020 Aug 01 ; 37 (8) : 2173-2191.

Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa

. 2020 Apr 01 ; 9 (4) : . [epub] 20200401

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...