Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans

. 2023 Nov ; 9 (11) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37994879

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.

Zobrazit více v PubMed

Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics. 2014;109:400–416. doi: 10.1016/j.jprot.2014.07.005. PubMed DOI

Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, et al. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol. 2009;26:1533–1548. doi: 10.1093/molbev/msp068. PubMed DOI

Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–123. doi: 10.1016/j.cell.2008.06.016. PubMed DOI PMC

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–5. doi: 10.1093/nar/gkr1029. PubMed DOI PMC

Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9:434–450. doi: 10.1002/pmic.200800477. PubMed DOI PMC

Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, et al. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 2007;374:837–863. doi: 10.1016/j.jmb.2007.09.051. PubMed DOI

Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76:444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC

Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140326. doi: 10.1098/rstb.2014.0326. PubMed DOI PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI

Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106:21731–21736. doi: 10.1073/pnas.0907106106. PubMed DOI PMC

Beltrán NC, Horváthová L, Jedelský PL, Sedinová M, Rada P, et al. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One. 2013;8:e65148. doi: 10.1371/journal.pone.0065148. PubMed DOI PMC

Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis . PLoS One. 2011;6:e24428. doi: 10.1371/journal.pone.0024428. PubMed DOI PMC

Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis . PLoS One. 2011;6:e17285. doi: 10.1371/journal.pone.0017285. PubMed DOI PMC

Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, et al. Hydrogenosomes in the diplomonad Spironucleus salmonicida . Nat Commun. 2013;4:2493. doi: 10.1038/ncomms3493. PubMed DOI PMC

Fang Y-K, Chien K-Y, Huang K-Y, Cheng W-H, Ku F-M, et al. Responding to a zoonotic emergency with multi-omics research: Pentatrichomonas hominis hydrogenosomal protein characterization with use of RNA sequencing and proteomics. OMICS. 2016;20:662–669. doi: 10.1089/omi.2016.0111. PubMed DOI

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41:1421–1434. doi: 10.1016/j.ijpara.2011.10.001. PubMed DOI PMC

Zítek J, Füssy Z, Treitli SC, Peña-Diaz P, Vaitová Z, et al. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol. 2022;32:5057–5068. doi: 10.1016/j.cub.2022.10.028. PubMed DOI PMC

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, et al. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26:1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI

Cavalier-Smith T. Archamoebae: the ancestral eukaryotes? Biosystems. 1991;25:25–38. doi: 10.1016/0303-2647(91)90010-i. PubMed DOI

Walker G, Simpson AGB, Edgcomb V, Sogin ML, Patterson DJ. Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista) Eur J Protistol. 2001;37:25–49. doi: 10.1078/0932-4739-00780. DOI

Constenla M, Padrós F, Palenzuela O. Endolimax piscium sp. nov. (Amoebozoa), causative agent of systemic granulomatous disease of cultured sole, Solea senegalensis Kaup. J Fish Dis. 2014;37:229–240. doi: 10.1111/jfd.12097. PubMed DOI

Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, et al. Evolution of Archamoebae: morphological and molecular evidence for pelobionts including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax . Protist. 2013;164:380–410. doi: 10.1016/j.protis.2012.11.005. PubMed DOI

Zadrobílková E, Walker G, Čepička I. Morphological and molecular evidence support a close relationship between the free-living archamoebae Mastigella and Pelomyxa . Protist. 2015;166:14–41. doi: 10.1016/j.protis.2014.11.003. PubMed DOI

Zadrobílková E, Smejkalová P, Walker G, Čepička I. Morphological and molecular diversity of the neglected genus Rhizomastix Alexeieff, 1911 (Amoebozoa: Archamoebae) with description of five new species. J Eukaryot Microbiol. 2016;63:181–197. doi: 10.1111/jeu.12266. PubMed DOI

Seravin L, Goodkov A. Cytoplasmic microbody-like granules of the amoeba Pelomyxa palustris . Tsitologiya. 1987;29:600–603.

Mi-ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T, et al. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci U S A. 2015;112:E2884–90. doi: 10.1073/pnas.1423718112. PubMed DOI PMC

Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica . PLoS Negl Trop Dis. 2011;5:e1263. doi: 10.1371/journal.pntd.0001263. PubMed DOI PMC

Nývltová E, Šuták R, Harant K, Šedinová M, Hrdy I, et al. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi . Proc Natl Acad Sci U S A. 2013;110:7371–7376. doi: 10.1073/pnas.1219590110. PubMed DOI PMC

Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, et al. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32:1039–1055. doi: 10.1093/molbev/msu408. PubMed DOI PMC

Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P, et al. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 2022;20:56. doi: 10.1186/s12915-022-01247-w. PubMed DOI PMC

Walker G, Zadrobílková E, Čepička I. In: Handbook of the Protists. Archibald JM, Simpson AGB, Slamovits CH, editors. Cham: Springer International Publishing; 2017. Archamoebae; pp. 1349–1403. DOI

Cepicka I, Hampl V, Kulda J, Flegr J. New evolutionary lineages, unexpected diversity, and host specificity in the parabasalid genus Tetratrichomonas . Mol Phylogenet Evol. 2006;39:542–551. doi: 10.1016/j.ympev.2006.01.005. PubMed DOI

Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, et al. Between a pod and a hard test: the deep evolution of Amoebae. Mol Biol Evol. 2017;34:2258–2270. doi: 10.1093/molbev/msx162. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC

Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Caler EV, et al. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species. Nucleic Acids Res. 2011;39:D612–9. doi: 10.1093/nar/gkq1006. PubMed DOI PMC

Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun. 2021;12:7350. doi: 10.1038/s41467-021-27605-w. PubMed DOI PMC

Barlow LD, Maciejowski W, More K, Terry K, Vargová R, et al. In: Golgi: Methods and Protocols. Wang Y, Lupashin VV, Graham TR, editors. New York, NY: Springer US; 2023. Comparative genomics for evolutionary cell biology using AMOEBAE: understanding the Golgi and beyond; pp. 431–452. PubMed DOI

Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica . PLoS Pathog. 2010;6:e1000812. doi: 10.1371/journal.ppat.1000812. PubMed DOI PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2:e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC

Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinform Online. 2018;14:117693431881983. doi: 10.1177/1176934318819835. PubMed DOI PMC

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC

Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10:274. doi: 10.1186/1471-2105-10-274. PubMed DOI PMC

Small I, Peeters N, Legeai F, Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004;4:1581–1590. doi: 10.1002/pmic.200300776. PubMed DOI

Hawkins J, Bodén M. Detecting and sorting targeting peptides with neural networks and support vector machines. J Bioinform Comput Biol. 2006;4:1–18. doi: 10.1142/s0219720006001771. PubMed DOI

Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006;64:643–651. doi: 10.1002/prot.21018. PubMed DOI

Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50:W228–W234. doi: 10.1093/nar/gkac278. PubMed DOI PMC

Patron NJ, Waller RF. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays. 2007;29:1048–1058. doi: 10.1002/bies.20638. PubMed DOI

Eddy SR. A new generation of homology search tools based onprobabilistic inference. Genome Inf. 2009;23:205–211. doi: 10.1142/9781848165632_0019. PubMed DOI

Jones P, Binns D, Chang H-Y, Fraser M, Li W, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56. doi: 10.24072/pcjournal.173. DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. 2022;13:6968. doi: 10.1038/s41467-022-34630-w. PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep. 2022;12:11173. doi: 10.1038/s41598-022-15372-7. PubMed DOI PMC

Tice AK, Spiegel FW, Brown MW. Phylogenetic placement of the protosteloid amoeba Microglomus paxillus identifies another case of sporocarpic fruiting in Discosea (Amoebozoa) J Eukaryot Microbiol. 2023;70:e12971. doi: 10.1111/jeu.12971. PubMed DOI

Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, et al. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 2015;7:2716–2726. doi: 10.1093/gbe/evv175. PubMed DOI PMC

Dolezal P, Makki A, Dyall SD. In: Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes, Microbiology Monographs. Tachezy J, editor. Vol. 9. Cham: Springer; 2019. Protein Import into hydrogenosomes and mitosomes; pp. 31–84. vol. DOI

Garg SG, Gould SB. The role of charge in protein targeting evolution. Trends Cell Biol. 2016;26:894–905. doi: 10.1016/j.tcb.2016.07.001. PubMed DOI

Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis . PLoS Pathog. 2008;4:e1000243. doi: 10.1371/journal.ppat.1000243. PubMed DOI PMC

Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 2008;9:42–49. doi: 10.1038/sj.embor.7401126. PubMed DOI PMC

Laloraya S, Gambill BD, Craig EA. A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci U S A. 1994;91:6481–6485. doi: 10.1073/pnas.91.14.6481. PubMed DOI PMC

Marada A, Allu PK, Murari A, PullaReddy B, Tammineni P, et al. Mge1, a nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70 function. Mol Biol Cell. 2013;24:692–703. doi: 10.1091/mbc.E12-10-0719. PubMed DOI PMC

Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. Elife. 2018;7:e34292. doi: 10.7554/eLife.34292. PubMed DOI PMC

Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. Biochim Biophys Acta Bioenerg. 2021;1862:148334. doi: 10.1016/j.bbabio.2020.148334. PubMed DOI

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes . Nat Ecol Evol. 2017;1:14. doi: 10.1038/s41559-017-0092. PubMed DOI PMC

Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31:5605–5612. doi: 10.1016/j.cub.2021.10.010. PubMed DOI

Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem. 1973;1:169–187. doi: 10.1007/BF01659328. PubMed DOI

Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad, Ser B. 2008;84:246–263. doi: 10.2183/pjab.84.246. PubMed DOI PMC

Dale RA. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochim Biophys Acta. 1978;544:496–503. doi: 10.1016/0304-4165(78)90324-0. PubMed DOI

Bird MI, Nunn PB, Lord LAJ. Formation of glycine and aminoacetone from L-threonine by rat liver mitochondria. Biochim Biophys Acta. 1984;802:229–236. doi: 10.1016/0304-4165(84)90166-1. PubMed DOI

Struck AW, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem. 2012;13:2642–2655. doi: 10.1002/cbic.201200556. PubMed DOI

Zaitsev AV, Martinov MV, Vitvitsky VM, Ataullakhanov FI. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci Rep. 2019;9:7657. doi: 10.1038/s41598-019-44009-5. PubMed DOI PMC

Lawrence SA, Titus SA, Ferguson J, Heineman AL, Taylor SM, et al. Mammalian mitochondrial and cytosolic folylpolyglutamate synthetase maintain the subcellular compartmentalization of folates. J Biol Chem. 2014;289:29386–29396. doi: 10.1074/jbc.M114.593244. PubMed DOI PMC

Land H, Senger M, Berggren G, Stripp ST. Current state of [FeFe]-hydrogenase research: biodiversity and spectroscopic investigations. ACS Catal. 2020;10:7069–7086. doi: 10.1021/acscatal.0c01614. DOI

Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res. 2021;1868:118863. doi: 10.1016/j.bbamcr.2020.118863. PubMed DOI

Tsaousis AD. On the origin of iron/sulfur cluster biosynthesis in eukaryotes. Front Microbiol. 2019;10:2478. doi: 10.3389/fmicb.2019.02478. PubMed DOI PMC

Garcia PS, D’Angelo F, Ollagnier de Choudens S, Dussouchaud M, Bouveret E, et al. An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation. Nat Ecol Evol. 2022;6:1564–1572. doi: 10.1038/s41559-022-01857-1. PubMed DOI

Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, et al. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol. 2010;12:331–342. doi: 10.1111/j.1462-5822.2009.01397.x. PubMed DOI

Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, et al. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol. 2016;102:701–714. doi: 10.1111/mmi.13487. PubMed DOI

Mi-ichi F, Nozawa A, Yoshida H, Tozawa Y, Nozaki T. Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3′-phosphoadenosine 5′-phosphosulfate and ATP. Eukaryot Cell. 2015;14:1144–1150. doi: 10.1128/EC.00130-15. PubMed DOI PMC

Ashykhmina N, Lorenz M, Frerigmann H, Koprivova A, Hofsetz E, et al. PAPST2 plays critical roles in removing the stress signaling molecule 3’-phosphoadenosine 5’-phosphate from the cytosol and Its subsequent degradation in plastids and mitochondria. Plant Cell. 2019;31:231–249. doi: 10.1105/tpc.18.00512. PubMed DOI PMC

Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta. 2016;1863:2362–2378. doi: 10.1016/j.bbamcr.2016.03.007. PubMed DOI

Satre M, Mattei S, Aubry L, Gaudet P, Pelosi L, et al. Mitochondrial carrier family: repertoire and peculiarities of the cellular slime mould Dictyostelium discoideum . Biochimie. 2007;89:1058–1069. doi: 10.1016/j.biochi.2007.03.004. PubMed DOI

Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, et al. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys. 2023;742:109638. doi: 10.1016/j.abb.2023.109638. PubMed DOI PMC

Yamaoka S, Hara-Nishimura I. The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. Front Plant Sci. 2014;5:350. doi: 10.3389/fpls.2014.00350. PubMed DOI PMC

Fransson S, Ruusala A, Aspenström P. The atypical Rho GTPases miro-1 and miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006;344:500–510. doi: 10.1016/j.bbrc.2006.03.163. PubMed DOI

Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum . Eur J Cell Biol. 2011;90:342–355. doi: 10.1016/j.ejcb.2010.10.012. PubMed DOI

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, et al. Transcriptome, proteome and draft genome of Euglena gracilis . BMC Biol. 2019;17:11. doi: 10.1186/s12915-019-0626-8. PubMed DOI PMC

Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, et al. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep. 2018;8:17012. doi: 10.1038/s41598-018-35389-1. PubMed DOI PMC

Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, et al. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48:2694–2708. doi: 10.1093/nar/gkz1215. PubMed DOI PMC

Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, et al. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum . BMC Biol. 2021;19:251. doi: 10.1186/s12915-021-01186-y. PubMed DOI PMC

Dziurdzik SK, Conibear E. The Vps13 family of lipid transporters and its role at membrane contact sites. Int J Mol Sci. 2021;22:2905. doi: 10.3390/ijms22062905. PubMed DOI PMC

Guillén-Samander A, Leonzino M, Hanna MG, Tang N, Shen H, et al. VPS13D bridges the ER to mitochondria and peroxisomes via miro. J Cell Biol. 2021;220:e20201000405052021c. doi: 10.1083/jcb.20201000405052021c. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...