Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum

. 2021 Nov 24 ; 19 (1) : 251. [epub] 20211124

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34819072
Odkazy

PubMed 34819072
PubMed Central PMC8611851
DOI 10.1186/s12915-021-01186-y
PII: 10.1186/s12915-021-01186-y
Knihovny.cz E-zdroje

BACKGROUND: The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS: We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS: The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.

Zobrazit více v PubMed

Lukeš J, Leander BS, Keeling PJ. Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci U S A. 2009;106(Supplement_1):9963–9970. doi: 10.1073/pnas.0901004106. PubMed DOI PMC

Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37(2):100–116. doi: 10.1016/j.pt.2020.10.001. PubMed DOI

Cavalier-Smith T. Higher classification and phylogeny of Euglenozoa. Eur J Protistol. 2016;56:250–276. doi: 10.1016/j.ejop.2016.09.003. PubMed DOI

Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26(22):3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI

Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, Ishemgulova A, Jackson AP, Kelly S, Kostygov AY, Logacheva MD, Maslov DA, Opperdoes FR, O’Reilly A, Sádlová J, Ševčíková T, Venkatesh D, Vlček Č, Volf P, Jan Votýpka, Záhonová K, Yurchenko V, Lukeš J. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6(1):23704. doi: 10.1038/srep23704. PubMed DOI PMC

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3):200407. doi: 10.1098/rsob.200407. PubMed DOI PMC

Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol. 2020;22(9):4014–4031. doi: 10.1111/1462-2920.15190. PubMed DOI

Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida KI, Horák A, Lukeš J. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018;169(2):158–179. doi: 10.1016/j.protis.2018.02.001. PubMed DOI

Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist. 2019;170(3):259–282. doi: 10.1016/j.protis.2019.04.001. PubMed DOI

Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol. 2020;22(9):3660–3670. doi: 10.1111/1462-2920.15130. PubMed DOI

Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L, Allen AE, Ares M, Jr, Aresté C, Balestreri C, Barbrook AC, Beardslee P, Bender S, Booth DS, Bouget FY, Bowler C, Breglia SA, Brownlee C, Burger G, Cerutti H, Cesaroni R, Chiurillo MA, Clemente T, Coles DB, Collier JL, Cooney EC, Coyne K, Docampo R, Dupont CL, Edgcomb V, Einarsson E, Elustondo PA, Federici F, Freire-Beneitez V, Freyria NJ, Fukuda K, García PA, Girguis PR, Gomaa F, Gornik SG, Guo J, Hampl V, Hanawa Y, Haro-Contreras ER, Hehenberger E, Highfield A, Hirakawa Y, Hopes A, Howe CJ, Hu I, Ibañez J, Irwin NAT, Ishii Y, Janowicz NE, Jones AC, Kachale A, Fujimura-Kamada K, Kaur B, Kaye JZ, Kazana E, Keeling PJ, King N, Klobutcher LA, Lander N, Lassadi I, Li Z, Lin S, Lozano JC, Luan F, Maruyama S, Matute T, Miceli C, Minagawa J, Moosburner M, Najle SR, Nanjappa D, Nimmo IC, Noble L, Novák Vanclová AMG, Nowacki M, Nuñez I, Pain A, Piersanti A, Pucciarelli S, Pyrih J, Rest JS, Rius M, Robertson D, Ruaud A, Ruiz-Trillo I, Sigg MA, Silver PA, Slamovits CH, Jason Smith G, Sprecher BN, Stern R, Swart EC, Tsaousis AD, Tsypin L, Turkewitz A, Turnšek J, Valach M, Vergé V, von Dassow P, von der Haar T, Waller RF, Wang L, Wen X, Wheeler G, Woods A, Zhang H, Mock T, Worden AZ, Lukeš J. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods. 2020;17(5):481–494. doi: 10.1038/s41592-020-0796-x. PubMed DOI PMC

Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18(1):23. doi: 10.1186/s12915-020-0754-1. PubMed DOI PMC

Morales J, Hashimoto M, Williams TA, Hirawake-Mogi H, Makiuchi T, Tsubouchi A, Kaga N, Taka H, Fujimura T, Koike M, Mita T, Bringaud F, Concepción JL, Hashimoto T, Embley TM, Nara T. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc Biol Sci. 2016;283(1830):20160520. doi: 10.1098/rspb.2016.0520. PubMed DOI PMC

Burger G, Valach M. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life. 2018;70(12):1197–1206. doi: 10.1002/iub.1927. PubMed DOI

Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1567–1274. doi: 10.1002/iub.1894. PubMed DOI PMC

Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26(22):3060–3065. doi: 10.1016/j.cub.2016.09.031. PubMed DOI

Sekerci Y, Petrovskii S. Mathematical modelling of plankton–oxygen dynamics under the climate change. Bull Math Biol. 2015;77(12):2325–2353. doi: 10.1007/s11538-015-0126-0. PubMed DOI

Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TGE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 2020;225(4):1578–1592. doi: 10.1111/nph.16237. PubMed DOI

Harcet M, Perina D, Pleše B. Opine dehydrogenases in marine invertebrates. Biochem Genet. 2013;51(9-10):666–676. doi: 10.1007/s10528-013-9596-7. PubMed DOI

Lukeš J, Flegontova O, Horák A. Diplonemids. Curr Biol. 2015;25(16):R702–R704. doi: 10.1016/j.cub.2015.04.052. PubMed DOI

Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. MBio. 2018;9(2):e02447–e02417. doi: 10.1128/mBio.02447-17. PubMed DOI PMC

Mukherjee I, Salcher MM, Andrei AŞ, Kavagutti VS, Shabarova T, Grujčić V, Haber M, Layoun P, Hodoki Y, Nakano SI, Šimek K, Ghai R. A freshwater radiation of diplonemids. Environ Microbiol. 2020;22(11):4658–4668. doi: 10.1111/1462-2920.15209. PubMed DOI

Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3’ enhancer. Proc Natl Acad Sci U S A. 1994;91(14):6496–6500. doi: 10.1073/pnas.91.14.6496. PubMed DOI PMC

Nakazawa M, Hayashi R, Takenaka S, Inui H, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K. Physiological functions of pyruvate:NADP+ oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions. Biosci Biotechnol Biochem. 2017;81(7):1386–1393. doi: 10.1080/09168451.2017.1318696. PubMed DOI

Maklashina E, Berthold DA, Cecchini G. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J Bacteriol. 1998;180(22):5989–5996. doi: 10.1128/JB.180.22.5989-5996.1998. PubMed DOI PMC

Messner KR, Imlay JA. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002;277(45):42563–42571. doi: 10.1074/jbc.M204958200. PubMed DOI

Van Hellemond JJ, Klockiewicz M, Gaasenbeek CPH, Roos MH, Tielensi AGM. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J Biol Chem. 1995;270(52):31065–31070. doi: 10.1074/jbc.270.52.31065. PubMed DOI

Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. Biochim Biophys Acta - Bioenerg. 1862;2021(1):148334. doi: 10.1016/j.bbabio.2020.148334. PubMed DOI

Hoffmeister M, van der Klei A, Rotte C, van Grinsven KW, van Hellemond JJ, Henze K, et al. Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem. 2004;279(21):22422–22429. doi: 10.1074/jbc.M400913200. PubMed DOI

Tamaki S, Nishino K, Ogawa T, Maruta T, Sawa Y, Arakawa K, Ishikawa T. Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. PLoS One. 2019;14(12):e0227226. doi: 10.1371/journal.pone.0227226. PubMed DOI PMC

Denicola A, Rubbo H, Haden L, Turrens JF. Extramitochondrial localization of NADH-fumarate reductase in trypanosomatids. Comp Biochem Physiol - B Biochem Mol Biol. 2002;133(1):23–27. doi: 10.1016/S1096-4959(02)00094-5. PubMed DOI

Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F. Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem. 2002;277(41):38001–38012. doi: 10.1074/jbc.M201759200. PubMed DOI

Tucci S, Vacula R, Krajčovič J, Proksch P, Martin W. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol. 2010;57(1):63–69. doi: 10.1111/j.1550-7408.2009.00452.x. PubMed DOI

Sasidharan S, Saudagar P. Mapping N- and C-terminals of Leishmania donovani tyrosine aminotransferase by gene truncation strategy: a functional study using in vitro and in silico approaches. Sci Rep. 2020;10(1):12463. doi: 10.1038/s41598-020-69512-y. PubMed DOI PMC

Guest JR. Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. J Gen Microbiol. 1981;122(2):171–179. doi: 10.1099/00221287-122-2-171. PubMed DOI

Van Weelden SWH, Van Hellemond JJ, Opperdoes FR, Tielens AGM. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. J Biol Chem. 2005;280(13):12451–12460. doi: 10.1074/jbc.M412447200. PubMed DOI

Van Weelden SWH, Fast B, Vogt A, Van der Meer P, Saas J, Van Hellemond JJ, et al. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem. 2003;278(15):12854–12863. doi: 10.1074/jbc.M213190200. PubMed DOI

Allmann S, Wargnies M, Cahoreau E, Biran M, Plazolles N, Morand P, et al. “Metabolic contest”, a new way to control carbon source preference. bioRxiv. 2019;:doi:10.110/800839.

Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149(1):1–9. doi: 10.1016/j.molbiopara.2006.03.017. PubMed DOI

Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S. Occurrence of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in mitochondria of Euglena gracilis. FEBS Lett. 1986;195(1-2):43–47. doi: 10.1016/0014-5793(86)80126-0. DOI

Zhang S, Bryant DA. The tricarboxylic acid cycle in cyanobacteria. Science. 2011;334(6062):1551–1553. doi: 10.1126/science.1210858. PubMed DOI

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27(21):R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI

Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The mitochondrion of Euglena gracilis. In: Schwartzbach SD, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Cham: Springer International Publishing; 2017. pp. 19–37.

Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001;18(5):710–720. doi: 10.1093/oxfordjournals.molbev.a003853. PubMed DOI

Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, et al. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere. 2020;5(5):e00675–e00620. doi: 10.1128/mSphere.00675-20. PubMed DOI PMC

Berg JM, Tymoczko JL, Stryer L. 22. Fatty acid metabolism. In: Freeman WH, editor. Biochemistry. 5th ed. New York; 2002. p. 897–942.

Wamelink MMC, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–717. doi: 10.1007/s10545-008-1015-6. PubMed DOI

Marchese L, Nascimento JDF, Damasceno FS, Bringaud F, Michels PAM, Silber AM. The uptake and metabolism of amino acids, and their unique role in the biology of pathogenic trypanosomatids. Pathogens. 2018;7(2):36. doi: 10.3390/pathogens7020036. PubMed DOI PMC

Williams PJLB, Berman T, Holm-Hansen O. Amino acid uptake and respiration by marine heterotrophs. Mar Biol. 1976;35(1):41–47. doi: 10.1007/BF00386673. DOI

Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, Šimek P, Lukeš J. Unique dynamics of paramylon storage in the marine euglenozoan Diplonema papillatum. Protist. 2020;171(2):125717. doi: 10.1016/j.protis.2020.125717. PubMed DOI

Mantilla BS, Marchese L, Casas-Sánchez A, Dyer NA, Ejeh N, Biran M, Bringaud F, Lehane MJ, Acosta-Serrano A, Silber AM. Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Pathog. 2017;13(1):e1006158. doi: 10.1371/journal.ppat.1006158. PubMed DOI PMC

Schmidt H, Kamp G. The Pasteur effect in facultative anaerobic metazoa. Experientia. 1996;52(5):440–448. doi: 10.1007/BF01919313. PubMed DOI

Bakker BM, Mensonides FIC, Teusink B, Van Hoek P, Michels PAM, Westerhoff HV. Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A. 2000;97(5):2087–2092. doi: 10.1073/pnas.030539197. PubMed DOI PMC

Vaccaro RF, Hicks SE, Jannasch HW, Carey FG. The occurrence and role of glucose in seawater. Limnol Oceanogr. 1968;13(2):356–360. doi: 10.4319/lo.1968.13.2.0356. DOI

Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76(2):444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC

Ballantyne JS. Mitochondria: aerobic and anaerobic design - lessons from molluscs and fishes. Comp Biochem Physiol - B Biochem Mol Biol. 2004;139(3):461–467. doi: 10.1016/j.cbpc.2004.09.015. PubMed DOI

Kan-no N, Sato M, Yokoyama T, Nagahisa E. Occurrence of β-alanine-specific opine dehydrogenase in the muscle of the limpet Cellana grata Gould (Archaeogastropoda) Comp Biochem Physiol - B Biochem Mol Biol. 1999;123(2):125–136. doi: 10.1016/S0305-0491(99)00031-0. PubMed DOI

Watanabe S, Sueda R, Fukumori F, Watanabe Y. Characterization of flavin-containing opine dehydrogenase from bacteria. PLoS One. 2015;10(9):e0138434. doi: 10.1371/journal.pone.0138434. PubMed DOI PMC

Gäde G. Purification and properties of tauropine dehydrogenase from the shell adductor muscle of the ormer. Haliotis lamellosa. Eur J Biochem. 1986;160(2):311–318. doi: 10.1111/j.1432-1033.1986.tb09973.x. PubMed DOI

Kato M, Sakai M, Adachi K, Ikemoto H, Sano H. Distribution of betaine lipids in marine algae. Phytochemistry. 1996;42(5):1341–1345. doi: 10.1016/0031-9422(96)00115-X. DOI

Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in nannochloropsis. Plant Physiol. 2018;177(1):181–193. doi: 10.1104/pp.17.01573. PubMed DOI PMC

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17(1):11. doi: 10.1186/s12915-019-0626-8. PubMed DOI PMC

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Wishner KF, Seibel BA, Roman C, Deutsch C, Outram D, Shaw CT, et al. Ocean deoxygenation and zooplankton: very small oxygen differences matter. Sci Adv. 2018;4:eaau5180. doi: 10.1126/sciadv.aau5180. PubMed DOI PMC

Gebser B, Thume K, Steinke M, Pohnert G. Phytoplankton-derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. Microbiologyopen. 2020;9(5):e1014. doi: 10.1002/mbo3.1014. PubMed DOI PMC

Kim AH, Yum SS, Lee H, Chang DY, Shim S. Polar cooling effect due to increase of phytoplankton and dimethyl-sulfide emission. Atmosphere (Basel) 2018;9:384. doi: 10.3390/atmos9100384. DOI

Heal KR, Durham B, Boysen AK, Carlson LT, Qin W, Ribalet F, et al. Marine community metabolomes carry fingerprints of phytoplankton community composition. bioRxiv. 2020;:2020.12.22.424086. PubMed PMC

Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa) Environ Microbiol. 2018;20(3):1030–1040. doi: 10.1111/1462-2920.14041. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. 2019;8:giz100. doi: 10.1093/gigascience/giz100. PubMed DOI PMC

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–3435. doi: 10.1093/nar/gkn176. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC

Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: Prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinform Online. 2018;14:1176934318819835. doi: 10.1177/1176934318819835. PubMed DOI PMC

Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10(1):274. doi: 10.1186/1471-2105-10-274. PubMed DOI PMC

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14(4):1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC

Opperdoes FR, Szikora JP. In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol. 2006;147(2):193–206. doi: 10.1016/j.molbiopara.2006.02.010. PubMed DOI

Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics. 2012;11(3):O111.013698. doi: 10.1074/mcp.O111.013698. PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol. 2014;193(1):55–65. doi: 10.1016/j.molbiopara.2014.02.003. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Sec P, Garaiova M, Gajdos P, Certik M, Griac P, Hapala I, Holic R. Baker’s yeast deficient in storage lipid synthesis uses cis-vaccenic acid to reduce unsaturated fatty acid toxicity. Lipids. 2015;50(7):621–630. doi: 10.1007/s11745-015-4022-z. PubMed DOI

Dianišková P, Korduláková J, Skovierová H, Kaur D, Jackson M, Brennan PJ, et al. Investigation of ABC transporter from mycobacterial arabinogalactan biosynthetic cluster. Gen Physiol Biophys. 2011;30(3):239–250. doi: 10.4149/gpb_2011_03_239. PubMed DOI PMC

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. NCBI https//www.ncbi.nlm.nih.gov/bioproject/PRJNA741790 (2021). PubMed PMC

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yılmaz Ş, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. PRIDE database. 2021. https://www.ebi.ac.uk/pride/archive/projects/PXD025411. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace