Genetic tool development in marine protists: emerging model organisms for experimental cell biology
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 GM040478
NIGMS NIH HHS - United States
PubMed
32251396
PubMed Central
PMC7200600
DOI
10.1038/s41592-020-0796-x
PII: 10.1038/s41592-020-0796-x
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- DNA aplikace a dávkování MeSH
- druhová specificita MeSH
- ekosystém MeSH
- Eukaryota klasifikace fyziologie MeSH
- mořská biologie * MeSH
- transformace genetická * MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- zelené fluorescenční proteiny MeSH
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
AGADA Biosciences Inc Halifax Nova Scotia Canada
Bigelow Laboratory for Ocean Sciences East Boothbay ME USA
Catalan Institution for Research and Advanced Studies Barcelona Spain
Center for Genomics and Systems Biology New York University New York NY USA
Center for Tropical and Emerging Global Diseases University of Georgia Athens GA USA
Centre for Organismal Studies University of Heidelberg Heidelberg Germany
Departament de Genètica Microbiologia i Estadıśtica Universitat de Barcelona Barcelona Spain
Department of Biochemistry University of Cambridge Cambridge UK
Department of Biology California Institute of Technology Pasadena CA USA
Department of Botany University of British Columbia Vancouver British Columbia Canada
Department of Ecology and Evolution Stony Brook University Stony Brook NY USA
Department of Environmental Biotechnology Moss Landing Marine Laboratories Moss Landing CA USA
Department of Marine Sciences University of Connecticut Groton CT USA
Department of Mechanical Engineering Massachusetts Institute of Technology Boston MA USA
Department of Molecular and Cell Biology University of California Berkeley CA USA
Department of Molecular Genetics and Cell Biology University of Chicago Chicago IL USA
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Department of Systems Biology Harvard Medical School Boston MA USA
Division of Environmental Photobiology National Institute for Basic Biology Okazaki Aichi Japan
Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
Gordon and Betty Moore Foundation Palo Alto CA USA
Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
Institut de Biologia Evolutiva CSIC Universitat Pompeu Fabra Barcelona Spain
Institute of Cell Biology University of Bern Bern Switzerland
Institute of Oceanography Minjiang University Fuzhou China
Instituto Milenio de Oceanografia de Chile Concepción Chile
Laboratory of Molecular and Evolutionary Parasitology University of Kent Kent UK
Lasry Center for Biosciences Clark University Worcester MA USA
Max Planck Institute for Developmental Biology Tübingen Germany
Microbial and Environmental Genomics J Craig Venter Institute La Jolla CA USA
Molecular Cell and Developmental Biology University of California Santa Cruz CA USA
Monterey Bay Aquarium Research Institute Moss Landing CA USA
School of Biological Sciences University of Nebraska Lincoln NE USA
School of Biosciences and Veterinary Medicine University of Camerino Camerino Italy
School of Biosciences University of Kent Canterbury Kent UK
School of Biosciences University of Nottingham Sutton Bonington UK
School of Environmental Sciences University of East Anglia Norwich UK
School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA
Sorbonne Université CNRS UMR7621 Observatoire Océanologique Banyuls sur Mer France
University of Delaware College of Earth Ocean and Environment Lewes DE USA
Woods Hole Oceanographic Institution Woods Hole MA USA
Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA USA
Zobrazit více v PubMed
Worden AZ, et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594. PubMed
de Vargas C, et al. Eukaryotic plankton diversity in the sunlit global ocean. Science. 2015;348:1261605. PubMed
Collier JL, Rest JS. Swimming, gliding, and rolling toward the mainstream: cell biology of marine protists. Mol. Biol. Cell. 2019;30:1245–1248. PubMed PMC
Curtis BA, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. PubMed
Armbrust EV, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. PubMed
Read BA, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 2013;499:209–213. PubMed
Keeling PJ, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889. PubMed PMC
Nymark M, Sharma AK, Sparstad T, Bones AM, Winge PA. CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep. 2016;6:24951. PubMed PMC
Hopes A, Nekrasov V, Kamoun S, Mock T. Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Meth. 2016;12:49. PubMed PMC
Carradec Q, et al. A global atlas of eukaryotic genes. Nat. Commun. 2018;9:373. PubMed PMC
Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. 1996;252:572–579. PubMed
Paschke P, et al. Genetic engineering of Dictyostelium discoideum cells based on selection and growth on bacteria. J. Vis. Exp. 2019;143:e58981. PubMed PMC
Karas BJ, et al. Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 2015;6:6925. PubMed PMC
Hirakawa Y, Kofuji R, Ishida K. Transient transformation of a chlorarachniophyte alga, Lotharella amoebiformis (chlorarachniophyceae), with uidA and egfp reporter genes. J. Phycol. 2008;44:814–820. PubMed
Nimmo IC, et al. Genetic transformation of the dinoflagellate chloroplast. eLife. 2019;8:e45292. PubMed PMC
Fernández Robledo JA, Lin Z, Vasta GR. Transfection of the protozoan parasite Perkinsus marinus. Mol. Biochem. Parasitol. 2008;157:44–53. PubMed
Sakamoto H, et al. Puromycin selection for stable transfectants of the oyster-infecting parasite Perkinsus marinus. Parasitol. Int. 2018;69:13–16. PubMed
Kaur B, et al. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine micro-eukaryotes Diplonemida (Euglenozoa) Env. Microbiol. 2018;20:1030–1040. PubMed
Diao J, Song X, Zhang X, Chen L, Zhang W. Genetic engineering of Crypthecodinium cohnii to increase growth and lipid accumulation. Front. Microbiol. 2018;9:492. PubMed PMC
Sakaguchi K, et al. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for thraustochytrids. Appl. Environ. Microbiol. 2012;78:3193–3202. PubMed PMC
Booth D, Middleton H, King N. Choanoflagellate transfection illuminates their cell biology and the ancestry of animal septins. Mol. Biol. Cell. 2018;29:3026–3038. PubMed PMC
Wetzel LA, et al. Predicted glycosyltransferases promote development and prevent spurious cell clumping in the choanoflagellate S. rosetta. eLife. 2018;7:e41482. PubMed PMC
van Baren MJ, et al. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics. 2016;17:1–22. PubMed PMC
Lozano JC, et al. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J. 2014;78:1073–1083. PubMed
Van Ooijen G, Knox K, Kis K, Bouget FY, Millar AJ. Genomic transformation of the picoeukaryote Ostreococcus tauri. J. Vis. Exp. 2012;65:e4074. PubMed PMC
Hovde BT, et al. Genome sequence and transcriptome analyses of Chrysochromulina tobin: metabolic tools for enhanced algal fitness in the prominent order Prymnesiales (Haptophyceae) PLoS Genet. 2015;11:e1005469. PubMed PMC
Endo H, et al. Stable nuclear transformation system for the coccolithophorid alga Pleurochrysis carterae. Sci. Rep. 2016;6:22252. PubMed PMC
Dörner J, Carbonell P, Pino S, Farias A. Variation of fatty acids in Isochrysis galbana (T-Iso) and Tetraselmis suecica, cultured under different nitrate availabilities. J. Fish. Aquacult. 2014;5:1–3.
Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 1995;31:1004–1012.
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–240. PubMed
Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS. All new faces of diatoms: potential source of nanomaterials and beyond. Front. Microbiol. 2017;8:1239. PubMed PMC
Mock T, et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature. 2017;541:536–540. PubMed
Brunson JK, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–1358. PubMed PMC
Kroth PG. Genetic transformation: a tool to study protein targeting in diatoms. Methods Mol. Biol. 2007;390:257–267. PubMed
Sabatino V, et al. Establishment of genetic transformation in the sexually reproducing diatoms Pseudo-nitzschia multistriata and Pseudo-nitzschia arenysensis and inheritance of the transgene. Mar. Biotech. 2015;17:452–462. PubMed
Ono, K., Aki, T. & Kawamoto, S. Method for introducing a gene into labyrinthulomycota. US patent 7,888,123 (2011).
Kilian O, Benemann CS, Niyogi KK, Vick B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl Acad. Sci. USA. 2011;108:21265–21269. PubMed PMC
Duda K, et al. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases of CRISPR/Cas9 nicase pairs. Nucl. Acids Res. 2014;42:e84. PubMed PMC
Donald RG, Roos DS. Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc. Natl Acad. Sci. USA. 1993;90:11703–11707. PubMed PMC
Barbrook AC, Howe CJ, Nisbet RER. Breaking up is hard to do: the complexity of the dinoflagellate chloroplast genome. Perspect. Phycol. 2019;6:31–37.
Sprecher BN, Zhang H, Lin S. Nuclear gene transformation in the dinoflagellate Oxyrrhis marina. Microorganisms. 2020;8:126. PubMed PMC
Zhang H, et al. Signal recognition particle RNA in dinoflagellates and the perkinsid Perkinsus marinus. Protist. 2013;164:748–761. PubMed
Chambouvet A, et al. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc. Natl Acad. Sci. USA. 2015;112:E4743–E4751. PubMed PMC
Adl SM, et al. Revision to the classification, nomenclature and diversity of eukaryotes. J. Euk. Microbiol. 2019;66:4–119. PubMed PMC
Matthews KR. 25 years of African trypanosome research: from description to molecular dissection and new drug discovery. Mol. Biochem. Parasitol. 2015;200:30–40. PubMed PMC
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. PubMed
Richter DJ, Fozouni P, Eisen M, King N. Gene family innovation, conservation and loss on the animal stem lineage. eLife. 2018;7:1–43. PubMed PMC
Parra-Acero H, et al. Transfection of Capsaspora owczarzaki, a close unicellular relative of animals. Development. 2018;145:162107. PubMed PMC
Suga H, Ruiz-Trillo I. Development of ichthyosporean sheds light on the origin of metazoan multicellularity. Dev. Biol. 2013;377:284–292. PubMed PMC
Waller RF, et al. Strength in numbers: collaborative science for new experimental model systems. PLoS Biol. 2018;16:e2006333. PubMed PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Horizontal Gene Transfer and Fusion Spread Carotenogenesis Among Diverse Heterotrophic Protists
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses