Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33715388
PubMed Central
PMC8061765
DOI
10.1098/rsob.200407
Knihovny.cz E-zdroje
- Klíčová slova
- Diplonemida, Euglenida, Kinetoplastida, microbial eukaryotes, phylogeny, systematics,
- MeSH
- ekosystém MeSH
- Euglenozoa klasifikace genetika fyziologie virologie MeSH
- fylogeneze MeSH
- Mimiviridae patogenita MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zoological Institute Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Lukeš J, Leander BS, Keeling PJ. 2009. Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc. Natl Acad. Sci. USA 106, 9963-9970. (10.1073/pnas.0901004106) PubMed DOI PMC
Leander BS, Lax G, Karnkowska A, Simpson AGB. 2017. Euglenida. In Handbook of the protists (ed. Archibald JM), pp. 1-42. Cham, Switzerland: Springer International Publishing.
Adl SM, et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119. (10.1111/jeu.12691) PubMed DOI PMC
Goldstein B, King N. 2016. The future of cell biology: emerging model organisms. Trends Cell Biol. 26, 818-824. (10.1016/j.tcb.2016.08.005.) PubMed DOI PMC
Pawlowski J, et al. 2012. CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419. (10.1371/journal.pbio.1001419) PubMed DOI PMC
Butenko A, et al. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 18, 23. (10.1186/s12915-020-0754-1) PubMed DOI PMC
Yubuki N, Leander BS. 2018. Diversity and evolutionary history of the Symbiontida (Euglenozoa). Front. Ecol. Evol. 6, 100. (10.3389/fevo.2018.00100) DOI
Lax G, et al. 2021. Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. (10.1016/j.ympev.2021.107088) PubMed DOI
Gibson W. 2017. Kinetoplastea. In Handbook of the protists (eds Archibald JM, Simpson AGB, Slamovits CH), pp. 1089-1138. Cham, Switzerland: Springer International Publishing.
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1-27. (10.1017/S0031182018000951) PubMed DOI
Gawryluk RMR, del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2016. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 26, 3053-3059. (10.1016/j.cub.2016.09.013) PubMed DOI
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060-3065. (10.1016/j.cub.2016.09.031) PubMed DOI
Ebenezer TE, et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 11. (10.1186/s12915-019-0626-8) PubMed DOI PMC
Clayton CE. 2016. Gene expression in Kinetoplastids. Curr. Opin. Microbiol. 32, 46-51. (10.1016/j.mib.2016.04.018) PubMed DOI
Campbell DA, Thomas S, Sturm NR. 2003. Transcription in kinetoplastid protozoa: why be normal? Microb. Infect. 5, 1231-1240. (10.1016/j.micinf.2003.09.005) PubMed DOI
Portman N, Gull K. 2010. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int. J. Parasitol. 40, 135-148. (10.1016/j.ijpara.2009.10.005) PubMed DOI PMC
Sunter J, Gull K. 2017. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol. 7, 170165. (10.1098/rsob.170165) PubMed DOI PMC
Wheeler RJ. 2017. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput. Biol. 13, e1005353. (10.1371/journal.pcbi.1005353) PubMed DOI PMC
Horáková E, Changmai P, Vancová M, Sobotka R, van den Abbeele J, Vanhollebeke B, Lukeš J. 2017. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J. Biol. Chem. 292, 6998-7010. (10.1074/jbc.M116.762997) PubMed DOI PMC
Liang XH, Haritan A, Uliel S, Michaeli S. 2003. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot. Cell 2, 830-840. (10.1128/EC.2.5.830-840.2003) PubMed DOI PMC
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. 2016. Intermediate introns in nuclear genes of euglenids—are they a distinct type? BMC Evol. Biol. 16, 49. (10.1186/s12862-016-0620-5) PubMed DOI PMC
del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I. 2014. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252-259. (10.1016/j.tree.2014.03.006) PubMed DOI PMC
Jensen RE, Englund PT. 2012. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473-491. (10.1146/annurev-micro-092611-150057) PubMed DOI
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. 2020. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res. 48, 9747-9761. (10.1093/nar/gkaa700) PubMed DOI PMC
Burger G, Valach M. 2018. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life 70, 1197-1206. (10.1002/iub.1927) PubMed DOI
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. 2018. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 70, 1267-1274. (10.1002/iub.1894) PubMed DOI PMC
Dobáková E, Flegontov P, Skalický T, Lukeš J. 2015. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol. Evol. 7, 3358-3367. (10.1093/gbe/evv229) PubMed DOI PMC
Novák Vanclová AMG, et al. 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 225, 1578-1592. (10.1111/nph.16237) PubMed DOI
Jackson AP, et al. 2016. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr. Biol. 26, 161-172. (10.1016/j.cub.2015.11.055) PubMed DOI PMC
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. 2021. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 37, 100-116. (10.1016/j.pt.2020.10.001) PubMed DOI
Matthews KR. 2015. 25 years of African trypanosome research: from description to molecular dissection and new drug discovery. Mol. Biochem. Parasitol. 200, 30-40. (10.1016/j.molbiopara.2015.01.006) PubMed DOI PMC
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. 2018. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 20, 1030-1040. (10.1111/1462-2920.14041) PubMed DOI
Nomura T, Inoue K, Uehara-Yamaguchi Y, Yamada K, Iwata O, Suzuki K, Mochida K. 2019. Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalga Euglena gracilis using Cas9 ribonucleoproteins. Plant Biotechnol. J. 17, 2032-2034. (10.1111/pbi.13174) PubMed DOI PMC
Faktorová D, et al. 2020. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat. Methods 17, 481-494. (10.1038/s41592-020-0796-x) PubMed DOI PMC
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ. Microbiol. 22, 3660-3670. (10.1111/1462-2920.15130) PubMed DOI
Gomaa F, Garcia PA, Delaney J, Girguis PR, Buie CR, Edgcomb VP. 2017. Toward establishing model organisms for marine protists: successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata). Environ. Microbiol. 19, 3487-3499. (10.1111/1462-2920.13830) PubMed DOI
Vickerman K. 1991. Organization of the bodonid flagellates. In The biology of free-living heterotrophic flagellates. The systematics association special volume (eds Patterson DJ, Larsen J), pp. 159-176. Oxford, UK: Clarendon Press.
Patterson DJ, Simpson AGB. 1996. Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol.y 32, 423-448. (10.1016/S0932-4739(96)80003-4) DOI
Arndt H, Dietrich D, Auer B, Cleven E-J, Gräfenhan T, Weitere M, Mylnikov AP. 2000. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The flagellates (eds Leadbeater BSC, Green JC), pp. 240-268. London, UK: Taylor & Francis Ltd.
Ekelund F. 2002. Tolerance of soil flagellates to increased NaCl levels. J. Eukaryot. Microbiol. 49, 324-328. (10.1111/j.1550-7408.2002.tb00378.x) PubMed DOI
Edgcomb VP, Breglia SA, Yubuki N, Beaudoin D, Patterson DJ, Leander BS, Bernhard JM. 2011. Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution. ISME J. 5, 231-243. (10.1038/ismej.2010.121) PubMed DOI PMC
Boenigk J, Arndt H. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 81, 465-480. (10.1023/A:1020509305868) PubMed DOI
Patterson DJ, Nygaard K, Steinberg G, Turley CM. 1993. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67-95. (10.1017/S0025315400032653) DOI
Vørs N, Buck KR, Chavez FP, Eikrem W, Hansen LE, Østergaard JB, Thomsen HA. 1995. Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep-Sea Res. Part II Top. Stud. Oceanogr. 42, 585-602. (10.1016/0967-0645(95)00018-L) DOI
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. 2018. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 20, 878-889. (10.1111/1462-2920.14034) PubMed DOI
Salani FS, Arndt H, Hausmann K, Nitsche F, Scheckenbach F. 2012. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales. ISME J. 6, 713-723. (10.1038/ismej.2011.138) PubMed DOI PMC
Mukherjee I, Hodoki Y, Nakano S-I. 2015. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91, fiv083. (10.1093/femsec/fiv083) PubMed DOI
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol. 22, 4014-4031. (10.1111/1462-2920.15190) PubMed DOI
Ekelund F, Patterson DJ. 1997. Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch. Protistenk. 148, 461-478. (10.1016/S0003-9365(97)80022-X) DOI
von der Heyden S, Cavalier-Smith T. 2005. Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major clade within ancestrally freshwater Neobodo designis. Int. J. Syst. Evol. Microbiol. 55, 2605-2621. (10.1099/ijs.0.63606-0) PubMed DOI
Hassall AH. 1859. On the development and signification of Vibrio lineola, Bodo urinarius, and on certain fungoid and other organic productions generated in alkaline and albuminous urine. Lancet 74, 503-506. (10.1016/S0140-6736(02)74345-6) DOI
Vickerman K. 1978. The free-living trypanoplasms: descriptions of three species of the genus Procryptobia n. g., and redescription of Dimastigella trypaniformis Sandon, with notes on their relevance to the microscopical diagnosis of disease in man and animals. Trans. Am. Microsc. Soc. 97, 485-502. (10.2307/3226165) PubMed DOI
Vandersea MW, Birkenheuer AJ, Litaker RW, Vaden SL, Renschler JS, Gookin JL. 2015. Identification of Parabodo caudatus (class Kinetoplastea) in urine voided from a dog with hematuria. J. Vet. Diag. Invest. 27, 117-120. (10.1177/1040638714562827) PubMed DOI
Kaczmarek A, Śledź A, Cielecka D, Sałamatin R. 2019. Diagnostic traps: Parabodo cf. caudatus. Ann. Parasitol. 65, s133.
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115-122. (10.1016/j.molbiopara.2014.05.007) PubMed DOI
Isaksen TE, Karlsbakk E, Watanabe K, Nylund A. 2011. Ichthyobodo salmonis sp. n. (Ichthyobodonidae, Kinetoplastida), an euryhaline ectoparasite infecting Atlantic salmon (Salmo salar L.). Parasitology 138, 1164-1175. (10.1017/S0031182011000916) PubMed DOI PMC
Woo PTK. 1994. Flagellate parasites of fish. In Parasitic protozoa, vol. 8 (ed. Kreier JP), pp. 1-80. London, UK: Academic Press.
Dyková I, Fiala I, Lom J, Lukeš J. 2003. Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. Eur. J. Protistol. 39, 37-52. (10.1078/0932-4739-00901) DOI
Tanifuji G, et al. 2017. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci. Rep. 7, 11688. (10.1038/s41598-017-11866-x) PubMed DOI PMC
Williams JB. 1999. Description of a new flagellate protist Desmomonas prorhynchi gen. et sp. n. associated with problematical cell masses, parasitic in the turbellarian Prorhynchus sp. (Lecithoepitheliata). Fol. Parasitol. 46, 248-256.
Hitchen ET. 1974. The fine structure of the colonial kinetoplastid flagellate Cephalothamnium cyclopum Stein. J. Protozool. 21, 221-231. (10.1111/j.1550-7408.1974.tb03645.x) PubMed DOI
Hirose E, Nozawa A, Kumagai A, Kitamura SI. 2012. Azumiobodo hoyamushi gen. nov. et sp. nov. (Euglenozoa, Kinetoplastea, Neobodonida): a pathogenic kinetoplastid causing the soft tunic syndrome in ascidian aquaculture. Dis. Aquat. Organ. 97, 227-235. (10.3354/dao02422) PubMed DOI
Nam KW, Shin YK, Park KI. 2015. Seasonal variation in Azumiobodo hoyamushi infection among benthic organisms in the southern coast of Korea. Parasites Vectors 8, 569-575. (10.1186/s13071-015-1179-5) PubMed DOI PMC
Nawata A, Hirose E, Kitamura SI, Kumagai A. 2015. Encystment and excystment of kinetoplastid Azumiobodo hoyamushi, causal agent of soft tunic syndrome in ascidian aquaculture. Dis. Aquat. Organ. 115, 253-262. (10.3354/dao02897) PubMed DOI
Goodwin JD, Lee TF, Kugrens P, Simpson AGB. 2018. Allobodo chlorophagus n. gen. n. sp., a kinetoplastid that infiltrates and feeds on the invasive alga Codium fragile. Protist 169, 911-925. (10.1016/j.protis.2018.07.001) PubMed DOI
Lom J. 1979. Biology of the trypanosomes and trypanoplasms of fish. In Biology of the kinetoplastida, vol. 2 (eds Lumsden WHR, Evans DA), pp. 269-337. London, UK: Academic Press London.
Kruse P, Steinhagen D, Körting W. 1989. Development of Trypanoplasma borreli (Mastigophora: Kinetoplastida) in the leech vector Piscicola geometra and its infectivity for the common carp, Cyprinus carpio. J. Parasitol. 75, 527-530. (10.2307/3282901) PubMed DOI
Losev A, Grybchuk-Ieremenko A, Kostygov AY, Lukeš J, Yurchenko V. 2015. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol. Res. 114, 1071-1078. (10.1007/s00436-014-4277-y) PubMed DOI
Steinhagen D, Kruse P, Körting W. 1990. Some haematological observations on carp, Cyprinus carpio L., experimentally infected with Trypanoplasma borreli Laveran & Mesnil, 1901 (Protozoa: Kinetoplastida). J. Fish Dis. 13, 157-162. (10.1111/j.1365-2761.1990.tb00768.x) DOI
Saeij JPJ, Stet RJM, de Vries BJ, van Muiswinkel WB, Wiegertjes GF. 2003. Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev. Comp. Immunol. 27, 29-41. (10.1016/S0145-305X(02)00064-2) PubMed DOI
Rankin JS. 1937. An ecological study of parasites of some North Carolina salamanders. Ecol. Monogr. 7, 169-269. (10.2307/1943289) DOI
Woo PTK. 1987. Cryptobia and cryptobiosis in fishes. Adv. Parasitol. 26, 199-237. (10.1016/S0065-308X(08)60297-3) PubMed DOI
Vickerman K. 1976. The diversity of the kinetoplastid flagellates. In Biology of the kinetoplastida, vol. 1 (eds Lumsden WHR, Evans DA), pp. 1-34. London, UK: Academic Press.
Bradbury PC. 1994. Parasitic protozoa of molluscs and crustacea. In Parasitic protozoa, Vol. 8 (ed. Kreier JP), pp. 139-264. Amsterdam, The Netherlands: Elsevier.
Kozloff EN. 2004. Redescription of Cryptobia helicis Leidy, 1846 (Kinetoplasta: Bodonea: Cryptobiidae), disposition of flagellates mistakenly assigned to this species, and description of a new species from a North American pulmonate snail. Acta Protozool. 43, 123-132.
Lukeš J, Jirků M, Avliyakulov N, Benada O. 1998. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J. 17, 838-846. (10.1093/emboj/17.3.838) PubMed DOI PMC
Hesse E. 1910. Trypanoplasma vaginalis n. sp., parasite du vagin de la sangsue . C. R. Hebd. Séances Acad. Sci. Paris 151, 504-505.
Frolov AO, Kornakova EE. 2001. [Cryptobia udonellae sp. n. (Kinetoplastidea: Cryptobiida)—parasites of the excretory system of Udonella murmanica (Udonellida)] (In Russian). Parazitologiia 35, 454-459. PubMed
Fantham HB, Porter A. 1910. On a new trypanoplasm, T. dendrocoeli sp. n. from Dendrocoelum lacteum . Proc. Zool. Soc. Lond. 3, 670-671.
Hovasse R. 1924. Trypanoplasma sagittae nov. sp. Comptes Rendus des Séances et Mémoires de la Société de Biologie, Paris 91, 1254–1255.
Vickerman K. 1977. DNA throughout the single mitochondrion of a kinetoplastid flagellate: observations on the ultrastructure of Cryptobia vaginalis (Hesse, 1910). J. Protozool. 24, 221-233. (10.1111/j.1550-7408.1977.tb00970.x) DOI
Walker EL. 1910. Trypanoplasma ranæ n. sp. and its life-cycle in cultures. J. Med. Res. 23, 391-406. PubMed PMC
Bovee EC, Telford SR. 1962. Protozoan inquilines from Florida reptiles. III. Rigidomastix scincorum n. sp.; Cercobodo stilosomorum n. sp.; and Cryptobia geccorum n. sp. Q. J. Florida Acad. Sci. 25, 180-191.
Nohýnková E. 1984. A new pathogenic Cryptobia from freshwater fishes: light and electron microscopic study. Protistologica 20, 181-195.
Dyková I, Lom J. 1985. Histopathological changes due to infections with Cryptobia iubilans Nohýnková 1984, in two cichlid fishes. J. Appl. Ichthyol. 1, 34-38. (10.1111/j.1439-0426.1985.tb00409.x) DOI
Yanong RPE, Curtis E, Russo R, Francis-Floyd R, Klinger RE, Berzins I, Kelley K, Poynton SL. 2004. Cryptobia iubilans infection in juvenile discus. J. Am. Vet. Med. Assoc. 224, 1644-1650. (10.2460/javma.2004.224.1644) PubMed DOI
Poynton SL, Whitaker B, Heinrich A. 2001. A novel trypanoplasm-like flagellate Jarrellia atramenti n. g., n. sp. (Kinetoplastida: Bodonidae) and ciliates from the blowhole of a stranded pygmy sperm whale Kogia breviceps (Physeteridae): morphology, life cycle and potential pathogenic. Dis. Aquat. Organ. 44, 191-201. (10.3354/dao044191) PubMed DOI
d'Avila-Levy CM, et al. 2015. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem. Inst. Oswaldo Cruz 110, 956-965. (10.1590/0074-02760150253) PubMed DOI PMC
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466-480. (10.1016/j.pt.2018.03.002) PubMed DOI
Podlipaev S. 2001. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int. J. Parasitol. 31, 648-652. (10.1016/S0020-7519(01)00139-4) PubMed DOI
Podlipaev SA. 1990. Catalogue of world fauna of Trypanosomatidae (Protozoa) (in Russian). Leningrad, Russia: Zoologicheskii Institut AN SSSR.
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 29, 43-52. (10.1016/j.pt.2012.11.001) PubMed DOI
Kaufer A, Ellis J, Stark D, Barratt J. 2017. The evolution of trypanosomatid taxonomy. Parasit. Vectors 10, 287-303. (10.1186/s13071-017-2204-7) PubMed DOI PMC
Wallace FG. 1966. The trypanosomatid parasites of insects and arachnids. Exp. Parasitol. 18, 124-193. (10.1016/0014-4894(66)90015-4) PubMed DOI
Kraeva N, et al. 2015. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 11, e1005127. (10.1371/journal.ppat.1005127) PubMed DOI PMC
Camargo EP. 1999. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv. Parasitol. 42, 29-112. (10.1016/s0065-308x(08)60148-7) PubMed DOI
Nicoli RM, Penaud A. 1971. Sur la definition du genre Leptomonas Saville Kent, 1880 (Trypanosomatida). Bull. Soc. Zool. France 96, 15-17.
Wallace FG. 1976. Biology of the Kinetoplastida of arthropods. In Biology of the Kinetoplastida, vol. 2 (eds Lumsden WHR, Evans DA), pp. 213-240. London, UK: Academic Press.
Králová J, Grybchuk-Ieremenko A, Votýpka J, Novotný V, Kment P, Lukeš J, Yurchenko V, Kostygov AY. 2019. Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int. J. Parasitol. 49, 1075-1086. (10.1016/j.ijpara.2019.09.004) PubMed DOI
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. 2018. Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLoS ONE 13, e0204467. (10.1371/journal.pone.0204467) PubMed DOI PMC
Smirnoff WA, Lipa JJ. 1970. Herpetomonas swainei sp. n., a new flagellate parasite of Neodiprion swainei (Hymenoptera: Tenthredinidae). J. Invertebr. Pathol. 16, 187-195. (10.1016/0022-2011(70)90059-5) DOI
Frolov AO, Skarlato SO. 1987. [Light and electron microscopy studies of Leptomonas pyrrhocoris (Trypanosomatidae)] (In Russian). Parazitologiya 21, 3-9.
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Yurchenko V, Kostygov AY. 2019. Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLoS ONE 14, e0214484. (10.1371/journal.pone.0214484) PubMed DOI PMC
Wille JJ, Weidner EJ, Steffens WL. 1981. Intranuclear parasitism of the ciliate Euplotes by a trypanosomatid flagellate. J. Protozool. 28, 223-227. (10.1111/j.1550-7408.1981.tb02837.x) DOI
Görtz HD, Dieckmann J. 1987. Leptomonas ciliatorum n. sp. (Kinetoplastida, Trypanosomatidae) in the macronucleus of a hypotrichous ciliate. J. Protozool. 34, 259-263. (10.1111/j.1550-7408.1987.tb03171.x) DOI
Fokin SI, Schrallhammer M, Chiellini C, Verni F, Petroni G. 2014. Free-living ciliates as potential reservoirs for eukaryotic parasites: occurrence of a trypanosomatid in the macronucleus of Euplotes encysticus. Parasit. Vectors 7, 203. (10.1186/1756-3305-7-203) PubMed DOI PMC
Gillies C, Hanson ED. 1963. A new species of Leptomonas parasitizing the macronucleus of Paramecium trichium. J. Protozool. 10, 467-473. (10.1111/j.1550-7408.1963.tb01707.x) PubMed DOI
Schaub GA. 1994. Pathogenicity of trypanosomatids on insects. Parasitol. Today 10, 463-468. (10.1016/0169-4758(94)90155-4) PubMed DOI
Gómez-Moracho T, et al. 2020. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int. J. Parasitol. 50, 1117-1124. (10.1016/j.ijpara.2020.06.009) PubMed DOI
Bailey CH, Brooks WM. 1972. Effects of Herpetomonas muscarum on development and longevity of the eye gnat, Hippelates pusio (Diptera: Chloropidae). J. Invertebr. Pathol. 20, 31-36. (10.1016/0022-2011(72)90077-8) PubMed DOI
Arnqvist G, Mäki M. 1990. Infection rates and pathogenicity of trypanosomatid gut parasites in the water strider Gerris odontogaster (Zett.) (Heteroptera: Gerridae). Oecologia 84, 194-198. (10.1007/BF00318271) PubMed DOI
Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, Lemaitre B, Perlman SJ. 2015. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio 6, e01356-15. (10.1128/mBio.01356-15) PubMed DOI PMC
Shykoff JA, Schmid-Hempel P. 1991. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22, 117-125. (10.1051/apido:19910204) DOI
Brown MJF, Schmid-Hempel R, Schmid-Hempel P. 2003. Strong context-dependent virulence in a host-parasite system: reconciling genetic evidence with theory. J. Animal Ecol. 72, 994-1002. (10.1046/j.1365-2656.2003.00770.x) DOI
Gegear RJ, Otterstatter MC, Thomson JD. 2006. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073-1078. (10.1098/rspb.2005.3423) PubMed DOI PMC
Otterstatter MC, Gegear RJ, Colla SR, Thomson JD. 2005. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58, 383-389. (10.1007/s00265-005-0945-3) DOI
Schaub GA. 2009. Interactions of trypanosomatids and triatomines. Adv. Insect Physiol. 37, 177-242. (10.1016/S0065-2806(09)37004-6) DOI
Klingenberg CP, Barrington Leigh RH, Keddie BA, Spence JR. 1997. Influence of gut parasites on growth performance in the water strider Gerris buenoi (Hemiptera: Gerridae). Ecography 20, 29-36. (10.1111/j.1600-0587.1997.tb00344.x) DOI
Jaskowska E, Butler C, Preston G, Kelly S. 2015. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog. 11, e1004484. (10.1371/journal.ppat.1004484) PubMed DOI PMC
Schwelm A, et al. 2018. Not in your usual Top 10: protists that infect plants and algae. Mol. Plant Pathol. 19, 1029-1044. (10.1111/mpp.12580) PubMed DOI PMC
Jankevicius JV, Jankevicius SI, Campaner M, Conchon I, Maeda LA, Teixeira MMG, Freymüller E, Camargo EP. 1989. Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J. Protozool. 36, 265-271. (10.1111/j.1550-7408.1989.tb05361.x) DOI
Freymüller E, Milder R, Jankevicius JV, Jankevicius SI, Camargo EP. 1990. Ultrastructural studies on the trypanosomatid Phytomonas serpens in the salivary glands of a phytophagous hemipteran. J. Protozool. 37, 225-229. (10.1111/j.1550-7408.1990.tb01132.x) DOI
Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. 2017. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist 168, 71-79. (10.1016/j.protis.2016.11.002) PubMed DOI
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. 2016. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur. J. Protistol. 52, 1-10. (10.1016/j.ejop.2015.08.002) PubMed DOI
Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. 2018. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 145, 430-442. (10.1017/S0031182016002092) PubMed DOI
Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, Rose K, Walton SF. 2011. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 41, 571-579. (10.1016/j.ijpara.2010.12.008) PubMed DOI
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 10, e0004349. (10.1371/journal.pntd.0004349) PubMed DOI PMC
Butenko A, et al. 2019. Comparative genomics of Leishmania (Mundinia). BMC Genomics 20, 726. (10.1186/s12864-019-6126-y) PubMed DOI PMC
Dostálová A, Volf P. 2012. Leishmania development in sand flies: parasite-vector interactions overview. Parasit. Vectors 5, 276-288. (10.1186/1756-3305-5-276) PubMed DOI PMC
Bates PA. 2007. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 37, 1097-1106. (10.1016/j.ijpara.2007.04.003) PubMed DOI PMC
Antoine JC, Prina E, Courret N, Lang T. 2004. Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts. Adv. Parasitol. 58, 1-68. (10.1016/S0065-308X(04)58001-6) PubMed DOI
WHO. 2020. Leishmaniasis. See https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 2 March 2020).
Symmers WS. 1960. Leishmaniasis acquired by contagion: a case of marital infection in Britain. Lancet 275, 127-132. (10.1016/S0140-6736(60)90052-0) PubMed DOI
Pagliano P, Carannante N, Rossi M, Gramiccia M, Gradoni L, Faella FS, Gaeta GB. 2005. Visceral leishmaniasis in pregnancy: a case series and a systematic review of the literature. J. Antimicrob. Chemother. 55, 229-233. (10.1093/jac/dkh538) PubMed DOI
Boehme CC, Hain U, Novosel A, Eichenlaub S, Fleischmann E, Löscher T. 2006. Congenital visceral leishmaniasis. Emerg. Infect. Dis. 12, 359. (10.3201/eid1202.050449) PubMed DOI PMC
Zinchuk A, Nadraga A. 2010. Congenital visceral leishmaniasis in Ukraine: case report. Ann. Trop. Paediatr. 30, 161-164. (10.1179/146532810X12703902516400) PubMed DOI
Ribeiro RR, Michalick MSM, da Silva ME, dos Santos CCP, Frézard FJG, da Silva SM. 2018. Canine leishmaniasis: an overview of the current status and strategies for control. BioMed Res. Int. 2018, 3296893. (10.1155/2018/3296893) PubMed DOI PMC
Lobsiger L, Müller N, Schweizer T, Frey CF, Wiederkehr D, Zumkehr B, Gottstein B. 2010. An autochthonous case of cutaneous bovine leishmaniasis in Switzerland. Vet. Parasitol. 169, 408-414. (10.1016/j.vetpar.2010.01.022) PubMed DOI
Müller N, et al. 2009. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe . Vet. Parasitol. 166, 346-351. (10.1016/j.vetpar.2009.09.001) PubMed DOI
Kreutzer RD, et al. 1991. Characterization of Leishmania colombiensis sp. n. (Kinetoplastida: Trypanosomatidae), a new parasite infecting humans, animals, and phlebotomine sand flies in Colombia and Panama. Am. J. Trop. Med. Hyg. 44, 662-675. (10.4269/ajtmh.1991.44.662) PubMed DOI
Rodriguez-Bonfante C, Bonfante-Garrido R, Grimaldi G, Momen H, Cupolillo E. 2003. Genotypically distinct Leishmania colombiensis isolates from Venezuela cause both cutaneous and visceral leishmaniasis in humans. Infect. Genet. Evol. 3, 119-124. (10.1016/S1567-1348(03)00012-1) PubMed DOI
Hoare CA. 1972. The trypanosomes of mammals. A zoological monograph. Oxford, UK: Blackwell Scientific Publications.
Stevens JR, Teixeira MM, Bingle LE, Gibson WC. 1999. The taxonomic position and evolutionary relationships of Trypanosoma rangeli. Int. J. Parasitol. 29, 749-757. (10.1016/s0020-7519(99)00016-8) PubMed DOI
Galen SC, Borner J, Perkins SL, Weckstein JD. 2020. Phylogenomics from transcriptomic ‘bycatch’ clarify the origins and diversity of avian trypanosomes in North America. PLoS ONE 15, e0240062. (10.1371/journal.pone.0240062) PubMed DOI PMC
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl Acad. Sci. USA 105, 1999-2004. (10.1073/pnas.0711799105) PubMed DOI PMC
Brun R, Hecker H, Lun ZR. 1998. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review). Vet. Parasitol. 79, 95-107. (10.1016/s0304-4017(98)00146-0) PubMed DOI
Deane MP, Lenzi HL, Jansen A. 1984. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem. Inst. Oswaldo Cruz. 79, 513-515. (10.1590/S0074-02761984000400021) PubMed DOI
Rocha G, Martins A, Gama G, Brandão F, Atouguia J. 2004. Possible cases of sexual and congenital transmission of sleeping sickness. Lancet 363, 247. (10.1016/S0140-6736(03)15345-7) PubMed DOI
Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. 2014. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG 121, 22-33. (10.1111/1471-0528.12396.Frequency) PubMed DOI PMC
Gomes C, Almeida AB, Rosa AC, Araujo PF, Teixeira ARL. 2019. American trypanosomiasis and Chagas disease: sexual transmission. Int. J. Infect. Dis. 81, 81-84. (10.1016/j.ijid.2019.01.021) PubMed DOI
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R. 2008. Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301-1310. (10.1172/JCI33945) PubMed DOI PMC
Trindade S, et al. 2016. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19, 837-848. (10.1016/j.chom.2016.05.002) PubMed DOI PMC
Kennedy PGE. 2013. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol. 12, 186-194. (10.1016/S1474-4422(12)70296-X) PubMed DOI
Barrett MP. 2018. The elimination of human African trypanosomiasis is in sight: report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl. Trop. Dis. 12, e0006925. (10.1371/journal.pntd.0006925) PubMed DOI PMC
Pérez-Molina JA, Molina I. 2018. Chagas disease. Lancet 391, 82-94. (10.1016/S0140-6736(17)31612-4) PubMed DOI
Kirchhoff LV. 2011. Epidemiology of American trypanosomiasis (Chagas disease). Adv. Parasitol. 75, 1-18. (10.1016/B978-0-12-385863-4.00001-0) PubMed DOI
Guhl F, Vallejo GA. 2003. Trypanosoma (Herpetosoma) rangeli Tejera, 1920—an updated review. Mem. Inst. Oswaldo Cruz 98, 435-442. (10.1590/S0074-02762003000400001) PubMed DOI
Yaro M, Munyard KA, Stear MJ, Groth DM. 2016. Combatting African Animal Trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet. Parasitol. 225, 43-52. (10.1016/j.vetpar.2016.05.003) PubMed DOI
Becker CD. 1977. Flagellate parasites of fish. In Parasitic protozoa Vol. 8. Taxonomy, kinetoplastids, and flagellates of fish (ed. Kreier JP), pp. 357-416. New York, NY: Academic Press.
Dyková I, Lom J. 1979. Histopathological changes in Trypanosoma danilewskyi Laveran & Mesnil, 1904 and Trypanoplasma borelli Laveran & Mesnil, 1902 infections of goldfish, Carassius aurata (L.). J. Fish Dis. 2, 381-390. (10.1111/j.1365-2761.1979.tb00390.x) DOI
Khan RA. 1985. Pathogenesis of Trypanosoma murmanensis in marine fish of the northwestern Atlantic following experimental transmission. Can. J. Zool. 63, 2141-2144. (10.1139/z85-315) DOI
Islam A, Woo P. 1991. Anemia and its mechanism in goldfish Carassius auratus infected with Trypanosoma danilewskyi. Dis. Aquat. Organ. 11, 37-43. (10.3354/dao011037) DOI
Ahmed MS, Shafiq K, Ali H, Ollevier F. 2011. Pathogenic effects associated with Trypanosoma danilewskyi strain FCc 1 infection in juvenile common carp, Cyprinus carpio L. J. Anim. Plant Sci. 21, 800-806.
Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. 2002. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1, 495-502. (10.1128/EC.1.4.495-502.2002) PubMed DOI PMC
Moreira D, López-García P, Vickerman K. 2004. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int. J. Syst. Evol. Microbiol. 54, 1861-1875. (10.1099/ijs.0.63081-0) PubMed DOI
Kolisko M, et al. 2020. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080. (10.1093/database/baaa080) PubMed DOI PMC
Isaksen TE, Karlsbakk E, Nylund A. 2007. Ichthyobodo hippoglossi n. sp. (Kinetoplastea: Prokinetoplastida: Ichthyobodonidae fam. nov.), an ectoparasitic flagellate infecting farmed Atlantic halibut Hippoglossus hippoglossus . Dis. Aquat. Organ. 73, 207-217. (10.3354/dao073207) PubMed DOI
Dyková I, Fiala I, Pecková H. 2008. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande, 1980): coevolution demonstrated by SSU rRNA gene phylogenies . Eur. J. Protistol. 44, 269-277. (10.1016/j.ejop.2008.01.004) PubMed DOI
Sibbald SJ, Cenci U, Colp M, Eglit Y, O'Kelly CJ, Archibald JM. 2017. Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. J. Eukaryot. Microbiol. 64, 598-607. (10.1111/jeu.12394) PubMed DOI
Cavalier-Smith T. 2016. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol. 56, 250-276. (10.1016/j.ejop.2016.09.003) PubMed DOI
Stoeck T, Schwarz MVJ, Boenigk J, Schweikert M, von der Heyden S, Behnke A. 2005. Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus Actuariola gen. nov. (Neobodonida) with description of the type species Actuariola framvarensis sp. nov . Int. J. Syst. Evol. Microbiol. 55, 2623-2635. (10.1099/ijs.0.63769-0) PubMed DOI
Zíková A, Vancová M, Jirků M, Lukeš J. 2003. Cruzella marina (Bodonina, Kinetoplastida): non-catenated structure of poly-kinetoplast DNA. Exp. Parasitol. 104, 159-161. (10.1016/j.exppara.2003.08.002) PubMed DOI
Frolov AO, Malysheva MN. 2002. [Ultrastructure of the flagellate Cruzella marina (Kinetoplastidea)] (In Russian). Tsitologiia 44, 477-484. PubMed
Faria J, da Cunha AM, Pinto C. 1922. Estudos sobre Protozoarios do mar. Mem. Inst. Oswaldo Cruz 15, 186-208. (10.1590/S0074-02761922000200013) DOI
Novarino G. 1996. Notes on flagellate nomenclature. I. Cryptaulaxoides nom. n., a zoological substitute for Cryptaulax Skuja, 1948 (Protista incertae sedis) non Cryptaulax Tate, 1869 (Mollusca, Gastropoda) non Cryptaulax Cameron, 1906 (Insecta, Hymenoptera), with remarks on botanical nomenclature . Acta Protozool. 35, 235-238.
Perty M. 1852. Zur Kenntniss Kleinster Lebensformen: Nach Bau, Funktionen, Systematik, mit Specialverzeichniss der in der Schweiz beobachteten. Bern, Switzerland: Verlag von Jent & Reinert.
Tate R. 1869. Contributions to Jurassic palaeontology. I. Cryptaulax, a new genus of Cerithiadae. Ann. Mag. Nat. Hist 4, 417-419. (10.1080/00222936908696088) DOI
Cameron P. 1906. Descriptions of new species of parasitic Hymenoptera chiefly in the collection of the South African Museum, Cape Town. Ann. South Afr. Mus. 5, 17-186.
Bernard C, Simpson AGB, Patterson DJ. 2000. Some free-living flagellates (protista) from anoxic habitats. Ophelia 52, 113-142. (10.1080/00785236.1999.10409422) DOI
von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. 2004. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J. Euk. Microbiol. 51, 402-416. (10.1111/j.1550-7408.2004.tb00387.x) PubMed DOI
Nikolaev SI, Mylnikov AP, Fahrni J, Petrov N, Pawlowski J. 2003. The taxonomic position of Klosteria bodomorphis gen. and sp. nov. (Kinetoplastida) based on ultrastructure and SSU rRNA gene sequence analysis . Protistology 3, 126-135.
Vørs N. 1992. Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988-1990. Ophelia 36, 1-109. (10.1080/00785326.1992.10429930) DOI
Lackey JB. 1940. Some new flagellates from the Woods Hole area. Am. Midland Natural. 23, 463-471. (10.2307/2420679) DOI
Breunig A, König H, Brugerolle G, Vickerman K, Hertel H. 1993. Isolation and ultrastructural features of a new strain of Dimastigella trypaniformis Sandon 1928 (Bodonina, Kinetoplastida) and comparison with a previously isolated strain. Eur. J. Protistol. 29, 416-424. (10.1016/S0932-4739(11)80404-9) PubMed DOI
Frolov AO, Mylnikov AP, Malysheva MN. 1997. [Description and electron microscopical study of the free-living cryptobiid flagellate Dimastigella mimosa sp. n. (Kinetoplastida, Cryptobiidae)] (In Russian). Tsitologiia 39, 447-448.
Swale EMF. 1973. A study of the colourless flagellate Rhynchomonas nasuta (Stokes) Klebs. Biol. J. Linn. Soc. 5, 255-264. (10.1111/j.1095-8312.1973.tb00705.x) DOI
Doležel D, Jirků M, Maslov DA, Lukeš J. 2000. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 50, 1943-1951. (10.1099/00207713-50-5-1943) PubMed DOI
Todal JA, Karlsbakk E, Isaksen TE, Plarre H, Urawa S, Mouton A, Hoel E, Koren CWR, Nylund A. 2004. Ichthyobodo necator (Kinetoplastida)—a complex of sibling species. Dis. Aquat. Organ. 58, 9-16. (10.3354/dao058009) PubMed DOI
Lom J, Dyková I. 1992. Protozoan parasites of fishes. Amsterdam, The Netherlands: Elsevier Science Publishers New York.
Freeman MA, Kristmundsson A. 2018. A closer look at Cryptobia dahli: a parabodonid flagellate from the stomach of the Atlantic lumpfish. Bull. Eur. Assoc. Fish Pathol. 38, 195-201.
Brooker BE. 1971. Fine structure of Bodo saltans and Bodo caudatus (Zoomastigophora: Protozoa) and their affinities with the Trypanosomatidae. Bull. Br. Mus. Nat. Hist. 22, 89-102.
Mylnikov AP. 1986. [Ultrathin structure of the flagellar apparatus in the bacteriotrophic flagellate Parabodo nitrophilus Skuja, 1948 (Kinetoplastea, Excavata)] (In Russian). Tsitologiia 28, 1056-1060.
Frolov AO, Karpov SA, Mylnikov AP. 2001. The ultrastructure of Procryptobia sorokini (Zhukov) comb. nov. and rootlet homology in kinetoplastids. Protistology 2, 85-95.
Schneider A, Ochsenreiter T. 2018. Failure is not an option—mitochondrial genome segregation in trypanosomes. J. Cell Sci. 131, jcs221820. (10.1242/jcs.221820) PubMed DOI
Harmer J, Yurchenko V, Nenarokova A, Lukeš J, Ginger ML. 2018. Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 145, 1311-1323. (10.1017/S0031182018000781) PubMed DOI
Frolov AO, Karpov SA. 1995. Comparative morphology of kinetoplastids. Tsitologiia 37, 1072-1096. PubMed
Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. 2015. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 31, 460-469. (10.1016/j.pt.2015.06.015) PubMed DOI
Lukeš J, Jirků M, Doležel D, Kral'ová I, Hollar L, Maslov DA. 1997. Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J. Mol. Evol. 44, 521-527. (10.1007/PL00006176) PubMed DOI
Stevens JR, Noyes HA, Schofield CJ, Gibson W. 2001. The molecular evolution of Trypanosomatidae. Adv. Parasit. 48, 1-56. (10.1016/s0065-308x(01)48003-1) PubMed DOI
Hamilton PB, Gibson WC, Stevens JR. 2007. Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol. Phyl. Evol. 44, 15-25. (10.1016/j.ympev.2007.03.023) PubMed DOI
Fermino BR, et al. 2015. Field and experimental evidence of a new caiman trypanosome species closely phylogenetically related to fish trypanosomes and transmitted by leeches. Int. J. Parasitol. Parasit. Wildl. 4, 368-378. (10.1016/j.ijppaw.2015.10.005) PubMed DOI PMC
Dvořáková N, Čepička I, Qablan MA, Gibson W, Blažek R, Široký P. 2015. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pienaar, 1962. Protist 166, 599-608. (10.1016/j.protis.2015.10.002) PubMed DOI
Bernal XE, Pinto CM. 2016. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. Int. J. Parasitol. Parasit. Wildl. 5, 40-47. (10.1016/j.ijppaw.2016.01.005) PubMed DOI PMC
Spodareva VV, Grybchuk-Ieremenko A, Losev A, Votýpka J, Lukeš J, Yurchenko V, Kostygov AY. 2018. Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasit. Vectors 11, 447. (10.1186/s13071-018-3023-1) PubMed DOI PMC
Doflein F. 1901. Die Protozoen als Parasiten und Krankheitserreger nach Biologischen Gesichtspunkten Dargestellt. Jena, Germany: Fischer
Woo PTK. 2006. Diplomonadida (Phylum Parabasalia) and Kinetoplastea (Phylum Euglenozoa). In Fish diseases and disorders, Vol. 1: protozoan and metazoan infections (ed. Woo PTK), pp. 46-114. Wallingford, UK: CABI.
Gibson WC, Lom J, Pecková H, Ferris VR, Hamilton PB. 2005. Phylogenetic analysis of freshwater fish trypanosomes from Europe using SSU rRNA gene sequences and random amplification of polymorphic DNA. Parasitology 130, 405-412. (10.1017/S0031182004006778) PubMed DOI
Lemos M, Fermino BR, Simas-Rodrigues C, Hoffmann L, Silva R, Camargo EP, Teixeira MMG, Souto-Padrón T. 2015. Phylogenetic and morphological characterization of trypanosomes from Brazilian armoured catfishes and leeches reveal high species diversity, mixed infections and a new fish trypanosome species. Parasit. Vectors 8, 573-589. (10.1186/s13071-015-1193-7) PubMed DOI PMC
Mayer AFJK. 1843. Spicilegium observationum anatomicarum de organo electrico in raiis anelectricis et de haematozois. Bonnae Caroli Georgii.
Gruby D. 1843. Recherches et observations sur une nouvelle espèce d'hématozoaire, Trypanosoma sanguinis. C. R. Hebd. Séances Acad. Sci. Paris 17, 1134-1136.
International Commission on Zoological Nomenclature. 1926. Opinion 95. Two generic names of Protozoa placed in the Official List of Generic Names. Smithsonian Misc. Collect. 73, 14-15.
Baker JR. 1963. Speculations on the evolution of the family Trypanosomatidae Doflein, 1901. Exp. Parasitol. 13, 219-233. (10.1016/0014-4894(63)90074-2) PubMed DOI
Hoare CA. 1967. Evolutionary trends in mammalian trypanosomes. Adv. Parasitol. 5, 47-91. (10.1016/S0065-308X(08)60375-9) PubMed DOI
Votýpka J, Lukeš J, Oborník M. 2004. Phylogenetic relationship of Trypanosoma corvi with other avian trypanosomes. Acta Protozool. 43, 225-231.
Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. 2012. Trypanosoma culicavium sp. nov., an avian trypanosome transmitted by Culex mosquitoes. Int. J. Syst. Evol. Microbiol. 62, 745-754. (10.1099/ijs.0.032110-0) PubMed DOI
Zídková L, Čepička I, Szabová J, Svobodová M. 2012. Biodiversity of avian trypanosomes. Infect. Genet. Evol. 12, 102-112. (10.1016/j.meegid.2011.10.022) PubMed DOI
Šlapeta J, Morin-Adeline V, Thompson P, McDonell D, Shiels M, Gilchrist K, Votýpka J, Vogelnest L. 2016. Intercontinental distribution of a new trypanosome species from Australian endemic regent honeyeater (Anthochaera phrygia). Parasitology 143, 1012-1025. (10.1017/S0031182016000329) PubMed DOI
Schaudinn F. 1904. Generations-und Wirtswechsel bei Trypanosoma und Spirochaete. Arbeiten aus dem Kaiserl. Gesundheitsamte 20, 566-573.
Sehgal RNM, Valkiūnas G, Iezhova TA, Smith TB. 2006. Blood parasites of chickens in Uganda and Cameroon with molecular descriptions of Leucocytozoon schoutedeni and Trypanosoma gallinarum. J. Parasitol. 92, 1336-1343. (10.1645/GE-927R.1) PubMed DOI
Danilewsky B. 1885. Zur parasitologie des blutes. Biol. Z. 5, 529-537.
Laveran MA. 1903. Sur un trypanosome d'une chouette. C. R. Séances Mém. Soc. Biol. Filial 55, 528-530.
Baker JR. 1976. Biology of the trypanosomes of birds. In Biology of the Kinetoplastida, vol. 1 (eds Lumsden WHR, Evans DA), pp. 131-174. London, UK: Academic Press.
Nandi NC, Bennett GF. 1994. Re-description of Trypanosoma corvi Stephens and Christophers, 1908 emend. Baker, 1976 and remarks on the trypanosomes of the avian family Corvidae. Mem. Inst. Oswaldo Cruz 89, 145-151. (10.1590/s0074-02761994000200005) DOI
Valkiūnas G, Iezhova TA, Carlson JS, Sehgal RNM. 2011. Two new Trypanosoma species from African birds, with notes on the taxonomy of avian trypanosomes. J. Parasitol. 97, 924-930. (10.1645/GE-2796.1) PubMed DOI
Sehgal RNM, Iezhova TA, Marzec T, Valkiūnas G. 2015. Trypanosoma naviformis sp. nov. (Kinetoplastidae: Trypanosomatidae) from widespread African songbirds, the olive sunbird (Cyanomitra olivacea) and yellow-whiskered greenbul (Andropadus latirostris). Zootaxa 4034, 342-250. (10.11646/zootaxa.4034.2.6) PubMed DOI
Lun ZR, et al. 2015. Resistance to normal human serum reveals Trypanosoma lewisi as an underestimated human pathogen. Mol. Biochem. Parasitol. 199, 58-61. (10.1016/j.molbiopara.2015.03.007) PubMed DOI
Maia da Silva F, Marcili A, Ortiz PA, Epiphanio S, Campaner M, Catão-Dias JL, Shaw JJ, Camargo EP, Teixeira MMG. 2010. Phylogenetic, morphological and behavioural analyses support host switching of Trypanosoma (Herpetosoma) lewisi from domestic rats to primates. Infect. Genet. Evol. 10, 522-529. (10.1016/j.meegid.2010.02.005) PubMed DOI
Ortiz PA, et al. 2018. Diagnosis and genetic analysis of the worldwide distributed Rattus-borne Trypanosoma (Herpetosoma) lewisi and its allied species in blood and fleas of rodents. Infect. Genet. Evol. 63, 380-390. (10.1016/j.meegid.2017.09.001) PubMed DOI
Egan SL, Taylor CL, Austen JM, Banks PB, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. 2020. Molecular identification of the Trypanosoma (Herpetosoma) lewisi clade in black rats (Rattus rattus) from Australia. Parasitol. Res. 119, 1691-1696. (10.1007/s00436-020-06653-z) PubMed DOI
Mafie E, Saito-Ito A, Kasai M, Hatta M, Rivera PT, Ma XH, Chen ER, Sato H, Takada N. 2019. Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species. Parasitol. Res. 118, 97-109. (10.1007/s00436-018-6120-3) PubMed DOI
García HA, Blanco PA, Rodrigues AC, Rodrigues CMF, Takata CSA, Campaner M, Camargo EP, Teixeira MMG. 2020. Pan-American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the white-tailed deer Odocoileus virginianus Zimmermann and its deer ked Lipoptena mazamae Rondani, 1878: morphological, developmental and phylogeographical characterisation. Parasit. Vectors 13, 308. (10.1186/s13071-020-04169-0) PubMed DOI PMC
Kingston N, Bobek B, Perzanowski K, Wita I, Maki L. 1992. Description of Trypanosoma (Megatrypanum) stefanskii sp. n. from roe deer (Capreolus capreolus) in Poland. J. Helminthol. Soc. Washington 59, 89-95.
Bruce D, Hamerton AE, Bateman HR, Mackie FP. 1909. Trypanosoma ingens, n. sp. Proc. R. Soc. Lond. B 81, 323-324. (10.1098/rspb.1909.0030) DOI
Weinman D. 1972. Trypanosoma cyclops n. sp.: a pigmented trypanosome from the Malaysian primates Macaca nemestrina and M. ira. Trans. R Soc. Trop. Med. Hyg. 66, 628-636. (10.1016/0035-9203(72)90309-4) PubMed DOI
Weinman D, White EA, Antipa GA. 1984. Trypanosoma lucknowi, a new species of trypanosome from Macaca mulatta with observations on its fine structure. J. Protozool. 31, 429-433. (10.1111/j.1550-7408.1984.tb02990.x) PubMed DOI
Stevens J, Noyes H, Gibson W. 1998. The evolution of trypanosomes infecting humans and primates. Mem. Inst. Oswaldo Cruz 93, 669-676. (10.1590/S0074-02761998000500019) PubMed DOI
Clément L, et al. 2020. Out of Africa: the origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Mol. Phylogenet. Evol. 145, 106705. (10.1016/j.ympev.2019.106705) PubMed DOI
Hamilton PB, Stevens JR. 2017. Classification and phylogeny of Trypanosoma cruzi. In American trypanosomiasis Chagas disease: one hundred years of research (eds Telleria J, Tibayrenc M), pp. 321-344. Amsterdam, The Netherlands: Elsevier.
Espinosa-Álvarez O, et al. 2018. Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi. Int. J. Parasitol. 48, 569-584. (10.1016/j.ijpara.2017.12.008) PubMed DOI
Telleria J, Tibayrenc M. 2017. American trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Amsterdam, The Netherlands: Elsevier.
Lima L, et al. 2015. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop. 151, 166-177. (10.1016/j.actatropica.2015.07.015) PubMed DOI
Adams ER, Hamilton PB, Rodrigues AC, Malele II, Delespaux V, Teixeira MMG, Gibson W. 2010. New Trypanosoma (Duttonella) vivax genotypes from tsetse flies in East Africa. Parasitology 137, 641-650. (10.1017/S0031182009991508) PubMed DOI
Votýpka J, et al. 2015. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Int. J. Parasitol. 45, 741-748. (10.1016/j.ijpara.2015.06.005) PubMed DOI
Rodrigues CMF, et al. 2020. Expanding our knowledge on African trypanosomes of the subgenus Pycnomonas: a novel Trypanosoma suis-like in tsetse flies, livestock and wild ruminants sympatric with Trypanosoma suis in Mozambique. Infect. Genet. Evol. 78, 104143. (10.1016/j.meegid.2019.104143) PubMed DOI
Austen JM, Jefferies R, Friend JA, Ryan U, Adams P, Reid SA. 2009. Morphological and molecular characterization of Trypanosoma copemani n. sp. (Trypanosomatidae) isolated from Gilbert's potoroo (Potorous gilbertii) and quokka (Setonix brachyurus) . Parasitology 136, 783-792. (10.1017/S0031182009005927) PubMed DOI
McInnes LM, Hanger J, Simmons G, Reid SA, Ryan UM. 2011. Novel trypanosome Trypanosoma gilletti sp. (Euglenozoa: Trypanosomatidae) and the extension of the host range of Trypanosoma copemani to include the koala (Phascolarctos cinereus). Parasitology 138, 59-70. (10.1017/S0031182010000971) PubMed DOI
Thompson CK, Botero A, Wayne AF, Godfrey SS, Lymbery AJ, Thompson RCA. 2013. Morphological polymorphism of Trypanosoma copemani and description of the genetically diverse T. vegrandis sp. nov. from the critically endangered Australian potoroid, the brush-tailed bettong (Bettongia penicillata (Gray, 1837)). Parasit. Vectors 6, 121. (10.1186/1756-3305-6-121) PubMed DOI PMC
Cooper C, Clode PL, Peacock C, Thompson RCA. 2017. Host–parasite relationships and life histories of trypanosomes in Australia. Adv. Parasitol. 97, 47-109. (10.1016/bs.apar.2016.06.001) PubMed DOI
Krige AS, Thompson RCA, Clode PL. 2019. ‘Hang on a Tick’—are ticks really the vectors for Australian trypanosomes? Trends Parasitol. 35, 596-606. (10.1016/j.pt.2019.05.008) PubMed DOI
Cooper C, Thompson RCA, Rigby P, Buckley A, Peacock C, Clode PL. 2018. The marsupial trypanosome Trypanosoma copemani is not an obligate intracellular parasite, although it adversely affects cell health. Parasit. Vectors 11, 521. (10.1186/s13071-018-3092-1) PubMed DOI PMC
Novy FG. 1906. The trypanosomes of tsetse flies. J. Infect. Dis. 3, 394-411. (10.1093/infdis/3.3.394) DOI
Hoare CA. 1931. Studies on Trypanosoma grayi. III. Life-cycle in the tsetse-fly and in the crocodile. Parasitology 23, 449-484. (10.1017/S0031182000013858) DOI
Hoare CA. 1929. Studies on Trypanosoma grayi. II. Experimental transmission to the crocodile. Trans. R. Soc. Trop. Med. Hyg. 23, 39-56. (10.1016/S0035-9203(29)90831-2) DOI
Fermino BR, et al. 2013. The phylogeography of trypanosomes from South American alligatorids and African crocodilids is consistent with the geological history of South American river basins and the transoceanic dispersal of Crocodylus at the Miocene. Parasit. Vectors 6, 313-327. (10.1186/1756-3305-6-313) PubMed DOI PMC
Fermino BR, et al. 2019. Shared species of crocodilian trypanosomes carried by tabanid flies in Africa and South America, including the description of a new species from caimans, Trypanosoma kaiowa n. sp. Parasit. Vectors 12, 225. (10.1186/s13071-019-3463-2) PubMed DOI PMC
Wenyon CM. 1908. Report of travelling pathologist and protozoologist. In Third report of the Wellcome Research Laboratories at the Gordon Memorial College, Khartoum (ed. Balfour A), pp. 121-168. London, UK: Bailliere, Tindall and Cox.
Sato H, Takano A, Kawabata H, Une Y, Watanabe H, Mukhtar MM. 2009. Trypanosoma cf. varani in an imported ball python (Python reginus) from Ghana. J. Parasitol. 95, 1029-1033. (10.1645/GE-1816.1) PubMed DOI
Viola LB, Attias M, Takata CSA, Campaner M, de Souza W, Camargo EP, Teixeira MMG. 2009. Phylogenetic analyses based on small subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase genes and ultrastructural characterization of two snake trypanosomes: Trypanosoma serpentis n. sp. from Pseudoboa nigra and Trypanosoma cascavelli from Crotalus durissus terrificus. J. Eukaryot. Microbiol. 56, 594-602. (10.1111/j.1550-7408.2009.00444.x) PubMed DOI
Ayala SC. 1970. Two new trypanosomes from California toads and lizards. J. Protozool. 17, 370-373. (10.1111/j.1550-7408.1970.tb04696.x) DOI
Pessôa SB, de Biasi P. 1972. Trypanosoma cascavelli sp. n. parasita da cascavel: Crotalus durissus terrificus (Laurenti). Atas Soc. Biol. Rio de Janeiro 15, 67-70.
Rodrigues MS, Lima L, Xavier SC das C, Herrera HM, Rocha FL, Roque ALR, Teixeira MMG, Jansen AM. 2019. Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. Int. Parasitol. Parasit. Wildl. 8, 171-181. (10.1016/j.ijppaw.2019.02.004) PubMed DOI PMC
Rêgo SFM, Magalhães AEA, Siqueira AF. 1957. Um novo tripanossomo do gambá, Trypanosoma freitasi n. sp. Rev. Brasil Malaria 9, 277-284.
Ferreira JIGS, da Costa AP, Nunes PH, Ramirez D, Fournier GFR, Saraiva D, Tonhosolo R, Marcili A. 2017. New Trypanosoma species, Trypanosoma gennarii sp. nov., from South American marsupial in Brazilian Cerrado. Acta Trop. 176, 249-255. (10.1016/j.actatropica.2017.08.018) PubMed DOI
Naiff RD, Barrett TV. 2013. Trypanosoma (Megatrypanum) lainsoni n. sp. from Mesomys hispidus (Rodentia: Echimyidae) in Brazil: trypomastigotes described from experimentally infected laboratory mice. Parasite 20, 51-56. (10.1051/parasite/2013049) PubMed DOI PMC
McInnes LM, Gillett A, Ryan UM, Austen J, Campbell RSF, Hanger J, Reid SA. 2009. Trypanosoma irwini n. sp. (Sarcomastigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus). Parasitology 136, 875-885. (10.1017/S0031182009006313) PubMed DOI
Ortiz-Baez AS, et al. 2020. Meta-transcriptomic identification of Trypanosoma spp. in native wildlife species from Australia. Parasit. Vectors 13, 447. (10.1186/s13071-020-04325-6) PubMed DOI PMC
Peirce MA, Neal C. 1974. Trypanosoma (Megatrypanum) pestanai in British badgers (Meles meles). Int. J. Parasitol. 4, 439-440. (10.1016/0020-7519(74)90055-1) PubMed DOI
Ideozu EJ, Whiteoak AM, Tomlinson AJ, Robertson A, Delahay RJ, Hide G. 2015. High prevalence of trypanosomes in European badgers detected using ITS-PCR. Parasit. Vectors 8, 480-485. (10.1186/s13071-015-1088-7) PubMed DOI PMC
Dyachenko V, Steinmann M, Bangoura B, Selzer M, Munderloh U, Daugschies A, Barutzki D. 2017. Co-infection of Trypanosoma pestanai and Anaplasma phagocytophilum in a dog from Germany. Vet. Parasitol. Reg. Stud. Rep. 9, 110-114. (10.1016/j.vprsr.2017.06.001) PubMed DOI
Acosta IDCL, da Costa AP, Nunes PH, Gondim MFN, Gatti A, Rossi JLJ, Gennari SM, Marcili A. 2013. Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazil. Parasit. Vectors 6, 349-361. (10.1186/1756-3305-6-349) PubMed DOI PMC
Kostygov AY, Yurchenko V. 2017. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 64, 020. (10.14411/fp.2017.020) PubMed DOI
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. 2015. Characterization of two species of Trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J. Eukaryot. Microbiol. 62, 567-583. (10.1111/jeu.12209) PubMed DOI
Zídková L, Čepička I, Votýpka J, Svobodová M. 2010. Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera). Int. J. Syst. Evol. Microbiol. 60, 2236-2246. (10.1099/ijs.0.014555-0) PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165, 825-838. (10.1016/j.protis.2014.09.002) PubMed DOI
Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, Lukeš J, Yurchenko V. 2016. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 7, e01985-15. (10.1128/mBio.01985-15) PubMed DOI PMC
Klatt S, Simpson L, Maslov DA, Konthur Z. 2019. Leishmania tarentolae: taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl. Trop. Dis. 13, e0007424. (10.1371/journal.pntd.0007424) PubMed DOI PMC
Jariyapan N, et al. 2018. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasit. Vectors 11, 351. (10.1186/s13071-018-2908-3) PubMed DOI PMC
Šeblová V, Sádlová J, Vojtková B, Votýpka J, Carpenter S, Bates PA, Volf P. 2015. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is capable of developing late stage infections of Leishmania enriettii. PLoS Negl. Trop. Dis. 9, e0004060. (10.1371/journal.pntd.0004060) PubMed DOI PMC
Herrer A. 1971. Leishmania hertigi sp. n., from the tropical porcupine, Coendou rothschildi Thomas. J. Parasitol. 57, 626-629. (10.2307/3277928) PubMed DOI
Lainson R, Shaw JJ. 1977. Leishmanias of neotropical porcupines: Leishmania hertigi deanei nov. subsp. Acta Amazonica 7, 51-57. (10.1590/1809-43921977071051) DOI
Cupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi GJ. 2000. A revised classification for Leishmania and Endotrypanum. Parasitol. Today 16, 142-144. (10.1016/s0169-4758(99)01609-9) PubMed DOI
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. 2016. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J. Eukaryot. Microbiol. 63, 198-209. (10.1111/jeu.12268) PubMed DOI
Borghesan TC, Ferreira RC, Takata CSA, Campaner M, Borda CC, Paiva F, Milder RV, Teixeira MMG, Camargo EP. 2013. Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 164, 129-152. (10.1016/j.protis.2012.06.001) PubMed DOI
Yoshida N, Freymüller E, Wallace FG. 1978. Herpetomonas mariadeanei sp. n. (Protozoa, Trypanosomatidae) from Muscina stabulans (Falléen, 1816) (Diptera, Muscidae). J. Protozool. 25, 421-425. (10.1111/j.1550-7408.1978.tb04161.x) DOI
Teixeira MMG, et al. 2011. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist 162, 503-524. (10.1016/j.protis.2011.01.001) PubMed DOI
Lukeš J, Tesařová M, Yurchenko V, Votýpka J. 2021. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas n. gen. Eur. J. Protistol 2021, 125778. (10.1016/j.ejop.2021.125778) PubMed DOI
Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364-2369. (10.1016/j.cub.2016.06.064) PubMed DOI
Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, Lukeš J, Yurchenko V. 2013. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 164, 763-781. (10.1016/j.protis.2013.08.002) PubMed DOI
Flegontov P, et al. 2013. Paratrypanosoma is a novel early-branching trypanosomatid. Curr. Biol. 23, 1787-1793. (10.1016/j.cub.2013.07.045) PubMed DOI
Skalický T, et al. 2017. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc. Natl Acad. Sci. USA 114, 11 757-11 762. (10.1073/pnas.1712311114) PubMed DOI PMC
Kostygov AY, et al. 2020. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 18, 187. (10.1186/s12915-020-00916-y) PubMed DOI PMC
Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. 2007. Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int. J. Syst. Evol. Microbiol. 57, 423-432. (10.1099/ijs.0.64557-0) PubMed DOI
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 61, 97-112. (10.14411/fp.2014.023) PubMed DOI
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. 2014. Molecular revision of the genus Wallaceina. Protist 165, 594-604. (10.1016/j.protis.2014.07.001) PubMed DOI
Roubaud E. 1911. Cercoplasma (n. gen.) caulleryi (n. sp.); nouveau flagellé à formes trypanosomiennes de l'intestin d’Auchmeromyia luteola Fabr. (Muscide). C. R. Séances Soc. Biol. 71, 503-505.
Nicoli RM, Penaud A, Timon-David P. 1971. Rechèrches systématiques sur les trypanosomides. II. Le genre Malacozoomonas n. gen. Bull. Soc. zool. France 96, 415-419.
Nicoli RM, Penaud A, Timon-David P. 1971. Rechèrches systématiques sur les trypanosomides. I. Le genre Nematodomonas n. gen. Bull. Soc. zool. France 96, 405-415.
Page AM, Canning EU, Barker RJ, Nicholas JP. 1986. A new species of Rhynchoidomonas Patton, 1910 (Kinetoplastida: Trypanosomatina) from Operophtera brumata (Lepidoptera: Geometridae). Syst. Parasitol. 8, 101-105. (10.1007/BF00009866) DOI
Cachon J, Cachon M, Charnier M. 1972. Ultrastructure du bodonidé Trypanophis grobbeni Poche, parasite des siphonophores. Protistologica 8, 223-236.
Larsen J, Patterson DJ. 1990. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801-937. (10.1080/00222939000770571) DOI
Patterson DJ, Vørs N, Simpson AGB, O'Kelly C. 2000. Residual free-living and predatory heterotrophic flagellates. In An illustrated guide to the protozoa (eds Lee JJ, Leedale GF, Bradbury P), pp. 1302-1328. Lawrence, KS: Society of Protozoologists/Allen Press.
Lara E, Moreira D, Vereshchaka A, López-García P. 2009. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ. Microbiol. 11, 47-55. (10.1111/j.1462-2920.2008.01737.x) PubMed DOI
de Vargas C, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. (10.1126/science.1261605) PubMed DOI
López-García P, Vereshchaka A, Moreira D. 2007. Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9, 546-554. (10.1111/j.1462-2920.2006.01158.x) PubMed DOI
López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603-607. (10.1038/35054537) PubMed DOI
Morgan-Smith D, Clouse MA, Herndl GJ, Bochdansky AB. 2013. Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Res. Part I 78, 58-69. (10.1016/j.dsr.2013.04.010) DOI
Massana R, et al. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035-4049. (10.1111/1462-2920.12955) PubMed DOI
Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, Gasol JM, Massana R. 2016. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. ISME J. 10, 945-958. (10.1038/ismej.2015.170) PubMed DOI PMC
Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH. 2011. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 3, 449-458. (10.1111/j.1758-2229.2010.00223.x) PubMed DOI
Okamoto N, Gawryluk RMR, del Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2019. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J. Eukaryot. Microbiol. 66, 519-524. (10.1111/jeu.12679) PubMed DOI
Tashyreva D, et al. 2018. Phylogeny and morphology of new diplonemids from Japan. Protist 169, 158-179. (10.1016/j.protis.2018.02.001) PubMed DOI
Takishita K, Kakizoe N, Yoshida T, Maruyama T. 2010. Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J. Eukaryot. Microbiol. 57, 76-86. (10.1111/j.1550-7408.2009.00457.x) PubMed DOI
Al-Qassab S, Lee WJ, Murray S, Simpson AGB, Patterson DJ. 2002. Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41, 91-144.
Schnepf E. 1994. Light and electron microscopical observations in Rhynchopus coscinodiscivorus spec. nov., a colorless, phagotrophic euglenozoon with concealed flagella. Arch. Protistenk. 144, 63-74. (10.1016/S0003-9365(11)80225-3) DOI
Griessmann K. 1914. Über marine Flagellaten. Arch. Protistenk. 32, 1-78.
Porter D. 1973. Isonema papillatum sp. n., a new colorless marine flagellate: a light- and electron microscopic study. J. Protozool. 20, 351-356. (10.1111/j.1550-7408.1973.tb00895.x) DOI
Schuster FL, Goldstein S, Hershenov B. 1968. Ultrastructure of a flagellate, Isonema nigricans nov. gen. nov. sp., from a polluted marine habitat. Protistologica 4, 141-149.
Skuja H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb. Bot. Ups. 9, 1-399.
Triemer RE, Ott DW. 1990. Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur. J. Protistol 25, 316-320. (10.1016/S0932-4739(11)80123-9) PubMed DOI
Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. 2017. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, fix073. (10.1093/femsec/fix073) PubMed DOI
Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. 2019. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front. Microbiol. 10, 2375. (10.3389/fmicb.2019.02375) PubMed DOI PMC
Mukherjee I, et al. 2020. A freshwater radiation of diplonemids. Environ. Microbiol. 22, 4658-4668. (10.1111/1462-2920.15209) PubMed DOI
Elbrächter M, Schnepf E, Balzer I. 1996. Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch. Protistenk. 147, 125-136. (10.1016/s0003-9365(96)80028-5) DOI
Yabuki A, Tame A. 2015. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J. Eukaryot. Microbiol. 62, 426-429. (10.1111/jeu.12191) PubMed DOI
Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. 2019. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist 170, 259-282. (10.1016/j.protis.2019.04.001) PubMed DOI
Kent ML, Elston RA, Nerad TA, Sawyer TK. 1987. An Isonema-like flagellate (Protozoa: Mastigophora) infection in larval geoduck clams, Panope abrupta. J. Invertebr. Pathol. 50, 221-229. (10.1016/0022-2011(87)90086-3) PubMed DOI
Bodammer JE, Sawyer TK. 1981. Aufwuchs protozoa and bacteria on the gills of the rock crab, Cancer irroratus Say: a survey by light and electron microscopy. J. Protozool. 28, 35-46. (10.1111/j.1550-7408.1981.tb02801.x) DOI
Roy J, Faktorová D, Benada O, Lukeš J, Burger G. 2007. Description of Rhynchopus euleeides n. sp. (Diplonemea), a free-living marine euglenozoan. J. Eukaryot. Microbiol. 54, 137-145. (10.1111/j.1550-7408.2007.00244.x) PubMed DOI
Breglia SA, Yubuki N, Hoppenrath M, Leander BS. 2010. Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiol. 10, 145. (10.1186/1471-2180-10-145) PubMed DOI PMC
Lax G, Simpson AGB. 2013. Combining molecular data with classical morphology for uncultured phagotrophic euglenids (Excavata): a single-cell approach. J. Eukaryot. Microbiol. 60, 615-625. (10.1111/jeu.12068) PubMed DOI
Lee WJ, Simpson AGB. 2014. Ultrastructure and molecular phylogenetic position of Neometanema parovale sp. nov. (Neometanema gen. nov.), a marine phagotrophic euglenid with skidding motility. Protist 165, 452-472. (10.1016/j.protis.2014.05.001) PubMed DOI
Dietrich D, Arndt H. 2000. Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol. 136, 309-322. (10.1007/s002270050689) DOI
Lee WJ, Patterson DJ. 2000. Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. J. Nat. Hist. 34, 483-562. (10.1080/002229300299435) DOI
Schoenle A, Živaljić S, Prausse D, Voß J, Jakobsen K, Arndt H. 2019. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol 69, 102-116. (10.1016/j.ejop.2019.02.007) PubMed DOI
Zimba PV, Rowan M, Triemer RE. 2004. Identification of euglenoid algae that produce ichthyotoxin(s). J. Fish Dis. 27, 115-117. (10.1046/j.1365-2761.2003.00512.x) PubMed DOI
Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE. 2010. Identification of euglenophycin—a toxin found in certain euglenoids. Toxicon 55, 100-104. (10.1016/j.toxicon.2009.07.004) PubMed DOI
Valadez F, Rosiles-González G, Carmona J. 2010. Euglenophytes from Lake Chignahuapan, Mexico. Cryptogamie, Algologie 31, 305-319.
Rahman MS, Shahjahan M, Haque MM, Khan S. 2012. Control of euglenophyte bloom and fish production enhancement using duckweed and lime. Iran. J. Fish. Sci. 11, 602-617.
Lukešová S, Karlicki M, Tomečková Hadariová L, Szabová J, Karnkowska A, Hampl V. 2020. Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments. Environ. Microbiol. Rep. 12, 78-91. (10.1111/1758-2229.12817) PubMed DOI
Brown PJP, Leander BS, Farmer MA. 2002. Redescription of Euglena rustica (Euglenophyceae), a rare euglenophyte from the intertidal zone. Phycologia 41, 445-452. (10.2216/i0031-8884-41-5-445.1) DOI
Lindholm T. 1995. Green water caused by Eutreptiella gymnastica (Euglenophyceae) in a stratified Baltic Sea inlet. In Harmful marine algal blooms (ed. Lassus P), pp. 181-186. Lavoisier: Intercept.
Stonik IV. 2007. Species of the genus Eutreptiella (Euglenophyceae) from Russian waters of East/Japan Sea. Ocean Sci. J. 42, 81-88. (10.1007/BF03020876) DOI
Buck KR, Barry JP, Simpson AGB. 2000. Monterey Bay cold seep biota: Euglenozoa with chemoautotrophic bacterial epibionts. Eur. J. Protistol 36, 117-126. (10.1016/S0932-4739(00)80029-2) DOI
Rocchetta I, Ruiz LB, Magaz G, Conforti VTD. 2003. Effects of hexavalent chromium in two strains of Euglena gracilis. Bull. Environ. Contam. Toxicol. 70, 1045-1051. (10.1007/s00128-003-0088-z) PubMed DOI
Rehman A, Shakoori FR, Shakoori AR. 2007. Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J. Microbiol. Biotechnol. 23, 753-758. (10.1007/s11274-006-9291-5) DOI
Kamika I, Momba MNB. 2013. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol. 13, 28. (10.1186/1471-2180-13-28) PubMed DOI PMC
Dennington VN, George JJ, Wyborn CHE. 1975. The effects of oils on growth of freshwater phytoplankton. Environ. Pollut 8, 233-237. (10.1016/0013-9327(75)90105-6) DOI
Werner D, Pawlitz H. 1978. Differential elimination of phenol by diatoms and other unicellular algae from low concentrations. Bull. Environ. Contam. Toxicol. 20, 303-312. (10.1007/BF01683525) PubMed DOI
Poorman AE. 1973. Effects of pesticides on Euglena gracilis. I. Growth studies. Bull. Environ. Contam. Toxicol. 10, 25-28. (10.1007/BF01684750) DOI
Butler GL. 1977. Algae and pesticides. In Residue reviews, vol. 66 (ed. Gunther FA), pp. 19-62. New York, NY: Springer.
Lackey JB. 1968. Ecology of Euglena. In The biology of Euglena, vol. 1 (ed. Buetow DE), pp. 27-244. New York, NY: Academic Press.
Jones DT. 1944. Two protozoans from Great Salt Lake. Bull. Univ. Utah, Biol. Ser. 35, 1-10.
Lane AE, Burris JE. 1981. Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol. 68, 439-442. (10.1104/pp.68.2.439) PubMed DOI PMC
Sittenfeld A, et al. 2002. Characterization of a photosynthetic Euglena strain isolated from an acidic hot mud pool of a volcanic area of Costa Rica. FEMS Microbiol. Ecol. 42, 151-161. (10.1111/j.1574-6941.2002.tb01004.x) PubMed DOI
Yamaguchi A, Yubuki N, Leander BS. 2012. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol. Biol. 12, 29. (10.1186/1471-2148-12-29) PubMed DOI PMC
Michajłow W. 1972. Euglenoidina parasitic in Copepoda: an outline monograph. Warsaw: PWN—Polish Scientific Publishers.
Wenrich DH. 1924. Studies on Euglenamorpha hegneri n. g., n. sp., a euglenoid flagellate found in tadpoles. Biol. Bull. (Woods Hole) 47, 149-175. (10.2307/1536494) DOI
Kisielewska G, Kolicka M, Zawierucha K. 2015. Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. Eur. J. Protistol 51, 138-141. (10.1016/j.ejop.2014.12.003) PubMed DOI
Hall SR. 1931. Observations on Euglena leucops, sp. nov., a parasite of Stenostomum, with special reference to nuclear division. Biol. Bull. 60, 327-344. (10.2307/1536878) DOI
Michajłow W. 1978. Dinema antarcticum sp. n., Dinema pseudoboeckellae sp. n. and other Euglenoidina-parasites of Pseudoboeckella silvestri (Calanoida) from the Antarctica. Bull. Acad. Pol. Sci., Ser. Sci. Biol. 26, 51-54.
Wita I, Sukhanova KM. 1986. Seasonal modifications in the life cycle of Parastasia fennica (Michajłow, 1966). Acta Protozool. 25, 365-374.
Al-Dhaheri RS, Willey RL. 1996. Colonization and reproduction of the epibiotic flagellate Colacium vesiculosum (Euglenophyceae) on Daphnia pulex. J. Phycol. 32, 770-774. (10.1111/j.0022-3646.1996.00770.x) DOI
Zalocar Y, Frutos SM, Casco SL, Forastier ME, Vallejos SV. 2011. Prevalence of Colacium vesiculosum (Colaciales: Euglenophyceae) on planktonic crustaceans in a subtropical shallow lake of Argentina. Rev. Biol. Trop. 59, 1295-1306. (10.15517/rbt.v0i0.3400) PubMed DOI
Płachno BJ, Wołowski K. 2008. Algae commensal community in Genlisea traps. Acta Soc. Bot. Pol. 77, 77-86. (10.5586/asbp.2008.011) DOI
Gordon E, Pacheco S. 2007. Prey composition in the carnivorous plants Utricularia inflata and U. gibba (Lentibulariaceae) from Paria Peninsula, Venezuela. Rev. Biol. Trop. 55, 795-803. (10.15517/rbt.v55i3-4.5956) PubMed DOI
Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P. 2014. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ. Microbiol. 17, 3610-3627. (10.1111/1462-2920.12591) PubMed DOI PMC
Forster D, et al. 2016. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120. (10.1093/femsec/fiw120) PubMed DOI
Geisen S, Vaulot D, Mahé F, Lara E, de Vargas C, Bass D. 2019. A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses. bioRxiv, 850610. (10.1101/850610) DOI
Busse I, Preisfeld A. 2002. Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J. Mol. Evol. 55, 757-767. (10.1007/s00239-002-2371-8) PubMed DOI
Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B. 2013. A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea, E. sociabilis, and E. splendens. J. Phycol. 49, 616-626. (10.1111/jpy.12072) PubMed DOI
Łukomska-Kowalczyk M, Karnkowska A, Krupska M, Milanowski R, Zakryś B. 2016. DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J. Phycol. 52, 951-960. (10.1111/jpy.12439) PubMed DOI
Hutchings L, et al. 2009. The Benguela Current: an ecosystem of four components. Prog. Oceanogr. 83, 15-32. (10.1016/j.pocean.2009.07.046) DOI
Zuendorf A, Bunge J, Behnke A, Barger KJA, Stoeck T. 2006. Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol. Ecol. 58, 476-491. (10.1111/j.1574-6941.2006.00171.x) PubMed DOI
Orsi W, Song YC, Hallam S, Edgcomb V. 2012. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586-1601. (10.1038/ismej.2012.7) PubMed DOI PMC
Orsi W, Edgcomb V, Jeon S, Leslin C, Bunge J, Taylor GT, Varela R, Epstein S. 2011. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME J. 5, 1357-1373. (10.1038/ismej.2011.7) PubMed DOI PMC
Wang Y, Zhang WP, Cao HL, Shek CS, Tian RM, Wong YH, Batang Z, Al-Suwailem A, Qian PY. 2014. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front. Microbiol. 5, 37. (10.3389/fmicb.2014.00037) PubMed DOI PMC
Lax G, Lee WJ, Eglit Y, Simpson A. 2019. Ploeotids represent much of the phylogenetic diversity of euglenids. Protist 170, 233-257. (10.1016/j.protis.2019.03.001) PubMed DOI
Lax G, Simpson AGB. 2020. The molecular diversity of phagotrophic euglenids examined using single-cell methods. Protist 171, 125757. (10.1016/j.protis.2020.125757) PubMed DOI
Busse I, Preisfeld A. 2003. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int. J. Syst. Evol. Microbiol. 53, 617-624. (10.1099/ijs.0.02295-0) PubMed DOI
Paerschke S, Vollmer AH, Preisfeld A. 2017. Ultrastructural and immunocytochemical investigation of paramylon combined with new 18S rDNA-based secondary structure analysis clarifies phylogenetic affiliation of Entosiphon sulcatum (Euglenida: Euglenozoa). Organ. Divers. Evol. 17, 509-520. (10.1007/s13127-017-0330-x) DOI
Marin B, Palm A, Klingberg M, Melkonian M. 2003. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154, 99-145. (10.1078/143446103764928521) PubMed DOI
Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE. 2015. Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J. Eukaryot. Microbiol. 62, 362-373. (10.1111/jeu.12192) PubMed DOI
Kim JI, Linton EW, Shin W. 2015. Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front. Ecol. Evol. 3, 98. (10.3389/fevo.2015.00098) DOI
Karnkowska A, Bennett MS, Triemer RE. 2018. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. Sci. Rep. 8, 16071. (10.1038/s41598-018-34457-w) PubMed DOI PMC
Rosowski JR, Willey RL. 1977. Development of mucilaginous surfaces in euglenoids. I. Stalk morphology of Colacium mucronatum. J. Phycol. 13, 16-21. (10.1111/j.1529-8817.1977.tb02880.x) DOI
Møhlenberg F, Kaas H. 1990. Colacium vesiculosum Ehrenberg (Euglenophyceae), infestation of planktonic copepods in the Western Baltic. Ophelia 31, 125-132. (10.1080/00785326.1990.10430856) DOI
Wiegert KE, Bennett MS, Triemer RE. 2013. Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J. Eukaryot. Microbiol. 60, 214-221. (10.1111/jeu.12025) PubMed DOI
Bennett MS, Wiegert KE, Triemer RE. 2014. Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53, 66-73. (10.2216/13-198.1) DOI
Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE. 2010. Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist 161, 603-619. (10.1016/j.protis.2010.02.002) PubMed DOI
Bennett MS, Triemer RE. 2015. Chloroplast genome evolution in the Euglenaceae. J. Eukaryot. Microbiol. 62, 773-785. (10.1111/jeu.12235) PubMed DOI
Kosmala S, Milanowski R, Brzóska K, Pe¸kala M, Kwiatowski J, Zakryś B. 2007. Phylogeny and systematics of the genus Monomorphina (Euglenaceae) based on morphological and molecular data. J. Phycol. 43, 171-185. (10.1111/j.1529-8817.2006.00298.x) PubMed DOI
Guiry MD, Guiry GM. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. See www.algaebase.org (accessed on 12 November 2020).
Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S. 2006. Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov. (Euglenophyta). J. Phycol. 42, 731-740. (10.1111/j.1529-8817.2006.00219.x) DOI
Łukomska-Kowalczyk M, Chaber K, Fells A, Milanowski R, Zakryś B. In press. Description of Flexiglena gen. nov. and new members of Discoplastis and Euglenaformis (Euglenida). J. Phycol. (10.1111/jpy.13107) PubMed DOI PMC
Dawson NS, Walne PL. 1991. Structural characterization of Eutreptia pertyi (Euglenophyta). I. General description. Phycologia 30, 287-302. (10.2216/i0031-8884-30-3-287.1) DOI
McLachlan JL, Seguel MR, Fritz L. 1994. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine euglenoid. J. Phycol. 30, 538-544. (10.1111/j.0022-3646.1994.00538.x) DOI
Kuo RC, Lin S. 2013. Ectobiotic and endobiotic bacteria associated with Eutreptiella sp. isolated from Long Island Sound. Protist 164, 60-74. (10.1016/j.protis.2012.08.004) PubMed DOI
Davis BM. 1894. Euglenopsis: a new alga-like organism. Ann. Bot. 8, 377-390. (10.1093/oxfordjournals.aob.a090716) DOI
Carter HJ. 1869. XXXIII. Notes on filigerous green Infusoria of the Island of Bombay. J. Nat. Hist. 3, 249-260. (10.1080/00222936908695939) DOI
Brumpt E, Lavier G. 1924. Un nouvel Euglénien polyflagellé parasite du têtard de Leptodactylus ocellatus au Brésil. Ann. Parasitol. Hum. Comp. 2, 248-252. (10.1051/parasite/1924023248) DOI
Rosowski JR. 2003. Photosynthetic euglenoids. In Freshwater algae of north america: ecology and classification (eds Wehr JD, Sheath RG), pp. 383-422. San Diego, CA: Academic Press.
Khondker M, Bhuiyan RA, Yeasmin J, Alam M, Sack RB, Huq A, Colwell RR. 2008. New records of phytoplankton for Bangladesh. 5. Euglena, Euglenocapsa. Bangladesh J. Plant Taxon. 15, 39-46. (10.3329/bjpt.v15i1.910) DOI
Triemer RE. 1985. Ultrastructural features of mitosis in Anisonema sp. (Euglenida). J. Protozool. 32, 683-690. (10.1111/j.1550-7408.1985.tb03102.x) DOI
Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG. 2001. Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Int. J. Syst. Evol. Microbiol. 51, 751-758. (10.1099/00207713-51-3-751) PubMed DOI
Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE. 2001. Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int. J. Syst. Evol. Microbiol. 51, 783-791. (10.1099/00207713-51-3-783) PubMed DOI
Pochmann A. 1955. Helikotropis okteres n. gen. n. spec. (Peranemataceae) und die Frage der Ätiologie der Kielbildungen bei farblosen Eugleninen. Österr. Bot. Z. 102, 1-17. (10.1007/BF01768757) DOI
Cann JP. 1986. Ultrastructural observations of taxonomic importance on the euglenoid genera Gyropaigne Skuja, Parmidium Christen, and Rhabdospira Pringsheim (Euglenida: Rhabdomonadina). Arch. Protistenk. 132, 395-401. (10.1016/S0003-9365(86)80032-X) DOI
Chen YT. 1950. Investigations of the biology of Peranema trichophorum (Euglenineae). Q. J. Microsc. Sci. 91, 279-308. PubMed
Saranak J, Foster KW. 2005. Photoreceptor for curling behavior in Peranema trichophorum and evolution of eukaryotic rhodopsins. Eukaryot. Cell 4, 1605-1612. (10.1128/EC.4.10.1605) PubMed DOI PMC
Lee WJ, Blackmore RB, Patterson DJ. 1999. Australian records of two lesser known genera of heterotrophic euglenids - Chasmostoma Massart, 1920 and Jenningsia Schaeffer, 1918. Protistology 1, 10-16.
Cavalier-Smith T, Chao EE, Vickerman K. 2016. New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing. Eur. J. Protistol 56, 147-170. (10.1016/j.ejop.2016.08.002) PubMed DOI
Farmer MA, Triemer RE. 1988. A redescription of the genus Ploeotia Duj. (Euglenophyceae). Taxon 37, 319-325. (10.2307/1222141) DOI
Triemer RE. 1986. Light and electron microscopic description of a colorless euglenoid, Serpenomonas costata n. g., n. sp. J. Protozool. 33, 412-415. (10.1111/j.1550-7408.1986.tb05632.x) DOI
Chan YF, Moestrup Ø, Chang J. 2013. On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). Eur. J. Protistol 49, 15-31. (10.1016/j.ejop.2012.04.003) PubMed DOI
Farmer MA, Triemer RE. 1994. An ultrastructural study of Lentomonas applanatum (Preisig) n. g. (Euglenida). J. Eukaryot. Microbiol. 41, 112-119. (10.1111/j.1550-7408.1994.tb01482.x) DOI
Leedale GF. 1967. Euglenoid flagellates, 1st edn. Englewood Cliffs, NJ: Prentice-Hall Press Inc.
Cann JP, Pennick NC. 1986. Observations on Petalomonas cantuscygni, n. sp., a new halo-tolerant strain. Arch. Protistenk. 132, 63-71. (10.1016/S0003-9365(86)80008-2) DOI
Christen HR. 1959. New colorless Eugleninae. J. Protozool. 6, 292-303. (10.1111/j.1550-7408.1959.tb04371.x) DOI
Wołowski K. 1995. Dylakosoma pelophilum Skuja, a rare colourless euglenophyte found in Poland. Algol. Stud. 76, 75-78. (10.1127/algol_stud/76/1995/75) DOI
Kudo RR. 1966. Protozoology, 5th edn. Springfield, IL: Charles C Thomas Publisher.
Krell FT, Shabalin S. 2008. Michajlowastasia nom. nov. for the parasitic euglenoid genus Parastasia Michajłow, 1972 (Euglenozoa: Euglenoidina: Astasiidae). Syst. Parasitol. 71, 49-52. (10.1007/s11230-008-9143-9) PubMed DOI
Dobell CC. 1908. The structure and life-history of Copromonas subtilis, nov. gen. et nov. spec.: a contribution to our knowledge of the Flagellata. Q. J. Microsc. Sci. 52, 75-120.
Yubuki N, Simpson AGB, Leander BS. 2013. Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur. J. Protistol 49, 32-39. (10.1016/j.ejop.2012.07.001) PubMed DOI
Yubuki N, Edgcomb VP, Bernhard JM, Leander BS. 2009. Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol. 9, 16. (10.1186/1471-2180-9-16) PubMed DOI PMC
Simpson AGB, van den Hoff J, Bernard C, Burton HR, Patterson DJ. 1997. The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis, Fenchel et al. Arch. Protistenk. 147, 213-225. (10.1016/S0003-9365(97)80049-8) DOI
Forterre P. 2010. Defining life: the virus viewpoint. Orig. Life Evol. Biospheres 40, 151-160. (10.1007/s11084-010-9194-1) PubMed DOI PMC
Suttle CA. 2005. Viruses in the sea. Nature 437, 356-361. (10.1038/nature04160) PubMed DOI
Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem. Inst. Oswaldo Cruz 113, e170487. (10.1590/0074-02760170487) PubMed DOI PMC
Deeg CM, Chow CET, Suttle CA. 2018. The kinetoplastid-infecting Bodo saltans virus (Bsv), a window into the most abundant giant viruses in the sea. eLife 7, e33014. (10.7554/eLife.33014) PubMed DOI PMC
Hingamp P, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678-1695. (10.1038/ismej.2013.59) PubMed DOI PMC
Tarr PI, Aline RF, Smiley BL, Scholler J, Keithly J, Stuart K. 1988. LR1: a candidate RNA virus of Leishmania. Proc. Natl Acad. Sci. USA 85, 9572-9275. (10.1073/pnas.85.24.9572) PubMed DOI PMC
Scheffter S, Widmer G, Patterson JL. 1994. Complete sequence of Leishmania RNA virus 1–4 and identification of conserved sequences. Virology 199, 479-483. (10.1006/viro.1994.1149) PubMed DOI
Ives A, et al. 2011. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331, 775-778. (10.1126/science.1199326) PubMed DOI PMC
Rossi M, et al. 2017. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl Acad. Sci. USA 114, 4987-4992. (10.1073/pnas.1621447114) PubMed DOI PMC
Brettmann EA, et al. 2016. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc. Natl Acad. Sci. USA 113, 11 998-12 005. (10.1073/pnas.1615085113) PubMed DOI PMC
Kurt Ö, Mansur N, Çavuş I, Özcan O, Batir MB, Gündüz C, Sezerman U, Özbilgın A. 2019. First report and in silico analysis of Leishmania virus (LRV2) identified in an autochthonous Leishmania major isolate in Turkey. New Microbiol. 42, 64-67. PubMed
Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Ponirovsky EN, Lukashev AN, Yurchenko V. 2019. Molecular characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes 10, 830. (10.3390/genes10100830) PubMed DOI PMC
Widmer G, Dooley S. 1995. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 23, 2300-2304. (10.1093/nar/23.12.2300) PubMed DOI PMC
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. 2018. RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniavirus. mBio 9, e01932-18. (10.1128/mBio.01932-18) PubMed DOI PMC
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 4, e00715-16. (10.1128/genomeA.00715-16) PubMed DOI PMC
Grybchuk D, et al. 2018. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506-E515. (10.1073/pnas.1717806115) PubMed DOI PMC
Grybchuk D, et al. 2020. The first non-LRV RNA virus in Leishmania. Viruses 12, 168. (10.3390/v12020168) PubMed DOI PMC
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A Narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens. Genome Announc. 4, e00711-16. (10.1128/genomeA.00711-16) PubMed DOI PMC
Sukla S, Roy S, Sundar S, Biswas S. 2017. Leptomonas seymouri narna-like virus 1 and not leishmaniaviruses detected in kala-azar samples from India. Arch. Virol. 162, 3827-3835. (10.1007/s00705-017-3559-y) PubMed DOI
Alves JMP, et al. 2013. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 13, 190. (10.1186/1471-2148-13-190) PubMed DOI PMC
Burzell LA. 1975. Fine structure of Bodo curvifilus Griessmann (Kinetoplastida: Bodonidae). J. Protozool. 22, 35-39. (10.1111/j.1550-7408.1975.tb00942.x) PubMed DOI
Midha S, Rigden D, Siozios S, Hurst G, Jackson A. In press. The Paracaedibacter-like endosymbiont of Bodo saltans (Kinetoplastida) uses multiple putative toxin-antitoxin systems to maintain its host association. ISME J. (10.1038/S41396-020-00879-6) PubMed DOI PMC
Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV., Yurchenko V, Kostygov AY. 2020. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae). Folia Parasitol. 67, 004. (10.14411/FP.2020.004) PubMed DOI
Muñoz-Gómez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, Roger AJ. 2019. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife 8, e42535. (10.7554/eLife.42535) PubMed DOI PMC
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-e17. (10.1128/mBio.02447-17) PubMed DOI PMC
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. 2020. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925-933. (10.1016/j.cub.2019.12.070) PubMed DOI
Monteil CL, et al. 2019. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088-1095. (10.1038/s41564-019-0432-7) PubMed DOI PMC
Leedale GF. 1969. Observations on endonuclear bacteria in euglenoid flagellates. Österr. Bot. Z. 116, 279-294. (10.1007/BF01379628) DOI
Surek B, Melkonian M. 1983. Intracellular bacteria in the Euglenophyceae: prolonged axenic culture of an alga-bacterial system. In Endocytobiology, vol. 2 (eds Schenk HEA, Schwemmler W), pp. 475-486. Berlin, Germany: de Gruyter.
Kim E, Park JS, Simpson AGB, Matsunaga S, Watanabe M, Murakami A, Sommerfeld K, Onodera NT, Archibald JM. 2010. Complex array of endobionts in Petalomonas sphagnophila, a large heterotrophic euglenid protist from Sphagnum-dominated peatlands. ISME J. 4, 1108-1120. (10.1038/ismej.2010.40) PubMed DOI
Leander BS, Farmer MA. 2000. Epibiotic bacteria and a novel pattern of strip reduction on the pellicle of Euglena helicoideus (Bernard) Lemmermann. Eur. J. Protistol 36, 405-413. (10.1016/S0932-4739(00)80046-2) DOI
Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM. 1986. Magnetite and magnetotaxis in algae. Biophys. J. 50, 375-378. (10.1016/S0006-3495(86)83471-3) PubMed DOI PMC
Klinges JG, et al. 2019. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 13, 2938-2953. (10.1038/s41396-019-0482-0) PubMed DOI PMC
Tikhonenkov DV, et al. 2021. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci. Rep. 11, 2946. (10.1038/s41598-021-82369-z) PubMed DOI PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids
Towards disentangling the classification of freshwater fish trypanosomes
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Genomic analysis of Leishmania turanica strains from different regions of Central Asia
Massive Accumulation of Strontium and Barium in Diplonemid Protists
Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations