• This record comes from PubMed

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.

See more in PubMed

Lukeš J, Leander BS, Keeling PJ. 2009. Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc. Natl Acad. Sci. USA 106, 9963-9970. ( 10.1073/pnas.0901004106) PubMed DOI PMC

Leander BS, Lax G, Karnkowska A, Simpson AGB. 2017. Euglenida. In Handbook of the protists (ed. Archibald JM), pp. 1-42. Cham, Switzerland: Springer International Publishing.

Adl SM, et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119. ( 10.1111/jeu.12691) PubMed DOI PMC

Goldstein B, King N. 2016. The future of cell biology: emerging model organisms. Trends Cell Biol. 26, 818-824. ( 10.1016/j.tcb.2016.08.005.) PubMed DOI PMC

Pawlowski J, et al. 2012. CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419. ( 10.1371/journal.pbio.1001419) PubMed DOI PMC

Butenko A, et al. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 18, 23. ( 10.1186/s12915-020-0754-1) PubMed DOI PMC

Yubuki N, Leander BS. 2018. Diversity and evolutionary history of the Symbiontida (Euglenozoa). Front. Ecol. Evol. 6, 100. ( 10.3389/fevo.2018.00100) DOI

Lax G, et al. 2021. Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. ( 10.1016/j.ympev.2021.107088) PubMed DOI

Gibson W. 2017. Kinetoplastea. In Handbook of the protists (eds Archibald JM, Simpson AGB, Slamovits CH), pp. 1089-1138. Cham, Switzerland: Springer International Publishing.

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1-27. ( 10.1017/S0031182018000951) PubMed DOI

Gawryluk RMR, del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2016. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 26, 3053-3059. ( 10.1016/j.cub.2016.09.013) PubMed DOI

Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060-3065. ( 10.1016/j.cub.2016.09.031) PubMed DOI

Ebenezer TE, et al. 2019. Transcriptome, proteome and draft genome of PubMed DOI PMC

Clayton CE. 2016. Gene expression in Kinetoplastids. Curr. Opin. Microbiol. 32, 46-51. ( 10.1016/j.mib.2016.04.018) PubMed DOI

Campbell DA, Thomas S, Sturm NR. 2003. Transcription in kinetoplastid protozoa: why be normal? Microb. Infect. 5, 1231-1240. ( 10.1016/j.micinf.2003.09.005) PubMed DOI

Portman N, Gull K. 2010. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int. J. Parasitol. 40, 135-148. ( 10.1016/j.ijpara.2009.10.005) PubMed DOI PMC

Sunter J, Gull K. 2017. Shape, form, function and PubMed DOI PMC

Wheeler RJ. 2017. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput. Biol. 13, e1005353. ( 10.1371/journal.pcbi.1005353) PubMed DOI PMC

Horáková E, Changmai P, Vancová M, Sobotka R, van den Abbeele J, Vanhollebeke B, Lukeš J. 2017. The PubMed DOI PMC

Liang XH, Haritan A, Uliel S, Michaeli S. 2003. PubMed DOI PMC

Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. 2016. Intermediate introns in nuclear genes of euglenids—are they a distinct type? BMC Evol. Biol. 16, 49. ( 10.1186/s12862-016-0620-5) PubMed DOI PMC

del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I. 2014. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252-259. ( 10.1016/j.tree.2014.03.006) PubMed DOI PMC

Jensen RE, Englund PT. 2012. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473-491. ( 10.1146/annurev-micro-092611-150057) PubMed DOI

Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. 2020. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen PubMed DOI PMC

Burger G, Valach M. 2018. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life 70, 1197-1206. ( 10.1002/iub.1927) PubMed DOI

Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. 2018. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 70, 1267-1274. ( 10.1002/iub.1894) PubMed DOI PMC

Dobáková E, Flegontov P, Skalický T, Lukeš J. 2015. Unexpectedly streamlined mitochondrial genome of the euglenozoan PubMed DOI PMC

Novák Vanclová AMG, et al. 2020. Metabolic quirks and the colourful history of the PubMed DOI

Jackson AP, et al. 2016. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr. Biol. 26, 161-172. ( 10.1016/j.cub.2015.11.055) PubMed DOI PMC

Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. 2021. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 37, 100-116. ( 10.1016/j.pt.2020.10.001) PubMed DOI

Matthews KR. 2015. 25 years of African trypanosome research: from description to molecular dissection and new drug discovery. Mol. Biochem. Parasitol. 200, 30-40. ( 10.1016/j.molbiopara.2015.01.006) PubMed DOI PMC

Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. 2018. Transformation of PubMed DOI

Nomura T, Inoue K, Uehara-Yamaguchi Y, Yamada K, Iwata O, Suzuki K, Mochida K. 2019. Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalga PubMed DOI PMC

Faktorová D, et al. 2020. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat. Methods 17, 481-494. ( 10.1038/s41592-020-0796-x) PubMed DOI PMC

Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables PubMed DOI

Gomaa F, Garcia PA, Delaney J, Girguis PR, Buie CR, Edgcomb VP. 2017. Toward establishing model organisms for marine protists: successful transfection protocols for PubMed DOI

Vickerman K. 1991. Organization of the bodonid flagellates. In The biology of free-living heterotrophic flagellates. The systematics association special volume (eds Patterson DJ, Larsen J), pp. 159-176. Oxford, UK: Clarendon Press.

Patterson DJ, Simpson AGB. 1996. Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol.y 32, 423-448. ( 10.1016/S0932-4739(96)80003-4) DOI

Arndt H, Dietrich D, Auer B, Cleven E-J, Gräfenhan T, Weitere M, Mylnikov AP. 2000. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The flagellates (eds Leadbeater BSC, Green JC), pp. 240-268. London, UK: Taylor & Francis Ltd.

Ekelund F. 2002. Tolerance of soil flagellates to increased NaCl levels. J. Eukaryot. Microbiol. 49, 324-328. ( 10.1111/j.1550-7408.2002.tb00378.x) PubMed DOI

Edgcomb VP, Breglia SA, Yubuki N, Beaudoin D, Patterson DJ, Leander BS, Bernhard JM. 2011. Identity of epibiotic bacteria on symbiontid euglenozoans in O PubMed DOI PMC

Boenigk J, Arndt H. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 81, 465-480. ( 10.1023/A:1020509305868) PubMed DOI

Patterson DJ, Nygaard K, Steinberg G, Turley CM. 1993. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67-95. ( 10.1017/S0025315400032653) DOI

Vørs N, Buck KR, Chavez FP, Eikrem W, Hansen LE, Østergaard JB, Thomsen HA. 1995. Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep-Sea Res. Part II Top. Stud. Oceanogr. 42, 585-602. ( 10.1016/0967-0645(95)00018-L) DOI

Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. 2018. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 20, 878-889. ( 10.1111/1462-2920.14034) PubMed DOI

Salani FS, Arndt H, Hausmann K, Nitsche F, Scheckenbach F. 2012. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales. ISME J. 6, 713-723. ( 10.1038/ismej.2011.138) PubMed DOI PMC

Mukherjee I, Hodoki Y, Nakano S-I. 2015. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91, fiv083. ( 10.1093/femsec/fiv083) PubMed DOI

Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol. 22, 4014-4031. ( 10.1111/1462-2920.15190) PubMed DOI

Ekelund F, Patterson DJ. 1997. Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch. Protistenk. 148, 461-478. ( 10.1016/S0003-9365(97)80022-X) DOI

von der Heyden S, Cavalier-Smith T. 2005. Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major clade within ancestrally freshwater PubMed DOI

Hassall AH. 1859. On the development and signification of DOI

Vickerman K. 1978. The free-living trypanoplasms: descriptions of three species of the genus PubMed DOI

Vandersea MW, Birkenheuer AJ, Litaker RW, Vaden SL, Renschler JS, Gookin JL. 2015. Identification of PubMed DOI

Kaczmarek A, Śledź A, Cielecka D, Sałamatin R. 2019. Diagnostic traps:

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115-122. ( 10.1016/j.molbiopara.2014.05.007) PubMed DOI

Isaksen TE, Karlsbakk E, Watanabe K, Nylund A. 2011. PubMed DOI PMC

Woo PTK. 1994. Flagellate parasites of fish. In Parasitic protozoa, vol. 8 (ed. Kreier JP), pp. 1-80. London, UK: Academic Press.

Dyková I, Fiala I, Lom J, Lukeš J. 2003. DOI

Tanifuji G, et al. 2017. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci. Rep. 7, 11688. ( 10.1038/s41598-017-11866-x) PubMed DOI PMC

Williams JB. 1999. Description of a new flagellate protist

Hitchen ET. 1974. The fine structure of the colonial kinetoplastid flagellate PubMed DOI

Hirose E, Nozawa A, Kumagai A, Kitamura SI. 2012. PubMed DOI

Nam KW, Shin YK, Park KI. 2015. Seasonal variation in PubMed DOI PMC

Nawata A, Hirose E, Kitamura SI, Kumagai A. 2015. Encystment and excystment of kinetoplastid PubMed DOI

Goodwin JD, Lee TF, Kugrens P, Simpson AGB. 2018. PubMed DOI

Lom J. 1979. Biology of the trypanosomes and trypanoplasms of fish. In Biology of the kinetoplastida, vol. 2 (eds Lumsden WHR, Evans DA), pp. 269-337. London, UK: Academic Press London.

Kruse P, Steinhagen D, Körting W. 1989. Development of PubMed DOI

Losev A, Grybchuk-Ieremenko A, Kostygov AY, Lukeš J, Yurchenko V. 2015. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol. Res. 114, 1071-1078. ( 10.1007/s00436-014-4277-y) PubMed DOI

Steinhagen D, Kruse P, Körting W. 1990. Some haematological observations on carp, DOI

Saeij JPJ, Stet RJM, de Vries BJ, van Muiswinkel WB, Wiegertjes GF. 2003. Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev. Comp. Immunol. 27, 29-41. ( 10.1016/S0145-305X(02)00064-2) PubMed DOI

Rankin JS. 1937. An ecological study of parasites of some North Carolina salamanders. Ecol. Monogr. 7, 169-269. ( 10.2307/1943289) DOI

Woo PTK. 1987. PubMed DOI

Vickerman K. 1976. The diversity of the kinetoplastid flagellates. In Biology of the kinetoplastida, vol. 1 (eds Lumsden WHR, Evans DA), pp. 1-34. London, UK: Academic Press.

Bradbury PC. 1994. Parasitic protozoa of molluscs and crustacea. In Parasitic protozoa, Vol. 8 (ed. Kreier JP), pp. 139-264. Amsterdam, The Netherlands: Elsevier.

Kozloff EN. 2004. Redescription of

Lukeš J, Jirků M, Avliyakulov N, Benada O. 1998. Pankinetoplast DNA structure in a primitive bodonid flagellate, PubMed DOI PMC

Hesse E. 1910.

Frolov AO, Kornakova EE. 2001. [ PubMed

Fantham HB, Porter A. 1910. On a new trypanoplasm,

Hovasse R. 1924.

Vickerman K. 1977. DNA throughout the single mitochondrion of a kinetoplastid flagellate: observations on the ultrastructure of DOI

Walker EL. 1910. PubMed PMC

Bovee EC, Telford SR. 1962. Protozoan inquilines from Florida reptiles. III.

Nohýnková E. 1984. A new pathogenic

Dyková I, Lom J. 1985. Histopathological changes due to infections with DOI

Yanong RPE, Curtis E, Russo R, Francis-Floyd R, Klinger RE, Berzins I, Kelley K, Poynton SL. 2004. PubMed DOI

Poynton SL, Whitaker B, Heinrich A. 2001. A novel trypanoplasm-like flagellate PubMed DOI

d'Avila-Levy CM, et al. 2015. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem. Inst. Oswaldo Cruz 110, 956-965. ( 10.1590/0074-02760150253) PubMed DOI PMC

Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466-480. ( 10.1016/j.pt.2018.03.002) PubMed DOI

Podlipaev S. 2001. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int. J. Parasitol. 31, 648-652. ( 10.1016/S0020-7519(01)00139-4) PubMed DOI

Podlipaev SA. 1990. Catalogue of world fauna of Trypanosomatidae (Protozoa)

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 29, 43-52. ( 10.1016/j.pt.2012.11.001) PubMed DOI

Kaufer A, Ellis J, Stark D, Barratt J. 2017. The evolution of trypanosomatid taxonomy. Parasit. Vectors 10, 287-303. ( 10.1186/s13071-017-2204-7) PubMed DOI PMC

Wallace FG. 1966. The trypanosomatid parasites of insects and arachnids. Exp. Parasitol. 18, 124-193. ( 10.1016/0014-4894(66)90015-4) PubMed DOI

Kraeva N, et al. 2015. PubMed DOI PMC

Camargo EP. 1999. PubMed DOI

Nicoli RM, Penaud A. 1971. Sur la definition du genre

Wallace FG. 1976. Biology of the Kinetoplastida of arthropods. In Biology of the Kinetoplastida, vol. 2 (eds Lumsden WHR, Evans DA), pp. 213-240. London, UK: Academic Press.

Králová J, Grybchuk-Ieremenko A, Votýpka J, Novotný V, Kment P, Lukeš J, Yurchenko V, Kostygov AY. 2019. Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int. J. Parasitol. 49, 1075-1086. ( 10.1016/j.ijpara.2019.09.004) PubMed DOI

Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. 2018. Obligate development of PubMed DOI PMC

Smirnoff WA, Lipa JJ. 1970. DOI

Frolov AO, Skarlato SO. 1987. [Light and electron microscopy studies of

Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Yurchenko V, Kostygov AY. 2019. Development of PubMed DOI PMC

Wille JJ, Weidner EJ, Steffens WL. 1981. Intranuclear parasitism of the ciliate DOI

Görtz HD, Dieckmann J. 1987. DOI

Fokin SI, Schrallhammer M, Chiellini C, Verni F, Petroni G. 2014. Free-living ciliates as potential reservoirs for eukaryotic parasites: occurrence of a trypanosomatid in the macronucleus of PubMed DOI PMC

Gillies C, Hanson ED. 1963. A new species of PubMed DOI

Schaub GA. 1994. Pathogenicity of trypanosomatids on insects. Parasitol. Today 10, 463-468. ( 10.1016/0169-4758(94)90155-4) PubMed DOI

Gómez-Moracho T, et al. 2020. Experimental evidence of harmful effects of PubMed DOI

Bailey CH, Brooks WM. 1972. Effects of PubMed DOI

Arnqvist G, Mäki M. 1990. Infection rates and pathogenicity of trypanosomatid gut parasites in the water strider PubMed DOI

Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, Lemaitre B, Perlman SJ. 2015. Infection dynamics and immune response in a newly described PubMed DOI PMC

Shykoff JA, Schmid-Hempel P. 1991. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22, 117-125. ( 10.1051/apido:19910204) DOI

Brown MJF, Schmid-Hempel R, Schmid-Hempel P. 2003. Strong context-dependent virulence in a host-parasite system: reconciling genetic evidence with theory. J. Animal Ecol. 72, 994-1002. ( 10.1046/j.1365-2656.2003.00770.x) DOI

Gegear RJ, Otterstatter MC, Thomson JD. 2006. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073-1078. ( 10.1098/rspb.2005.3423) PubMed DOI PMC

Otterstatter MC, Gegear RJ, Colla SR, Thomson JD. 2005. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58, 383-389. ( 10.1007/s00265-005-0945-3) DOI

Schaub GA. 2009. Interactions of trypanosomatids and triatomines. Adv. Insect Physiol. 37, 177-242. ( 10.1016/S0065-2806(09)37004-6) DOI

Klingenberg CP, Barrington Leigh RH, Keddie BA, Spence JR. 1997. Influence of gut parasites on growth performance in the water strider DOI

Jaskowska E, Butler C, Preston G, Kelly S. 2015. PubMed DOI PMC

Schwelm A, et al. 2018. Not in your usual Top 10: protists that infect plants and algae. Mol. Plant Pathol. 19, 1029-1044. ( 10.1111/mpp.12580) PubMed DOI PMC

Jankevicius JV, Jankevicius SI, Campaner M, Conchon I, Maeda LA, Teixeira MMG, Freymüller E, Camargo EP. 1989. Life cycle and culturing of DOI

Freymüller E, Milder R, Jankevicius JV, Jankevicius SI, Camargo EP. 1990. Ultrastructural studies on the trypanosomatid DOI

Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. 2017. Description of PubMed DOI

Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. 2016. Back to monoxeny: PubMed DOI

Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. 2018. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as PubMed DOI

Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, Rose K, Walton SF. 2011. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of PubMed DOI

Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. 2016. A historical overview of the classification, evolution, and dispersion of PubMed DOI PMC

Butenko A, et al. 2019. Comparative genomics of PubMed DOI PMC

Dostálová A, Volf P. 2012. PubMed DOI PMC

Bates PA. 2007. Transmission of PubMed DOI PMC

Antoine JC, Prina E, Courret N, Lang T. 2004. PubMed DOI

WHO. 2020. Leishmaniasis. See https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 2 March 2020).

Symmers WS. 1960. Leishmaniasis acquired by contagion: a case of marital infection in Britain. Lancet 275, 127-132. ( 10.1016/S0140-6736(60)90052-0) PubMed DOI

Pagliano P, Carannante N, Rossi M, Gramiccia M, Gradoni L, Faella FS, Gaeta GB. 2005. Visceral leishmaniasis in pregnancy: a case series and a systematic review of the literature. J. Antimicrob. Chemother. 55, 229-233. ( 10.1093/jac/dkh538) PubMed DOI

Boehme CC, Hain U, Novosel A, Eichenlaub S, Fleischmann E, Löscher T. 2006. Congenital visceral leishmaniasis. Emerg. Infect. Dis. 12, 359. ( 10.3201/eid1202.050449) PubMed DOI PMC

Zinchuk A, Nadraga A. 2010. Congenital visceral leishmaniasis in Ukraine: case report. Ann. Trop. Paediatr. 30, 161-164. ( 10.1179/146532810X12703902516400) PubMed DOI

Ribeiro RR, Michalick MSM, da Silva ME, dos Santos CCP, Frézard FJG, da Silva SM. 2018. Canine leishmaniasis: an overview of the current status and strategies for control. BioMed Res. Int. 2018, 3296893. ( 10.1155/2018/3296893) PubMed DOI PMC

Lobsiger L, Müller N, Schweizer T, Frey CF, Wiederkehr D, Zumkehr B, Gottstein B. 2010. An autochthonous case of cutaneous bovine leishmaniasis in Switzerland. Vet. Parasitol. 169, 408-414. ( 10.1016/j.vetpar.2010.01.022) PubMed DOI

Müller N, et al. 2009. Occurrence of PubMed DOI

Kreutzer RD, et al. 1991. Characterization of PubMed DOI

Rodriguez-Bonfante C, Bonfante-Garrido R, Grimaldi G, Momen H, Cupolillo E. 2003. Genotypically distinct PubMed DOI

Hoare CA. 1972. The trypanosomes of mammals. A zoological monograph. Oxford, UK: Blackwell Scientific Publications.

Stevens JR, Teixeira MM, Bingle LE, Gibson WC. 1999. The taxonomic position and evolutionary relationships of PubMed DOI

Galen SC, Borner J, Perkins SL, Weckstein JD. 2020. Phylogenomics from transcriptomic ‘bycatch’ clarify the origins and diversity of avian trypanosomes in North America. PLoS ONE 15, e0240062. ( 10.1371/journal.pone.0240062) PubMed DOI PMC

Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. 2008. Adaptations of PubMed DOI PMC

Brun R, Hecker H, Lun ZR. 1998. PubMed DOI

Deane MP, Lenzi HL, Jansen A. 1984. PubMed DOI

Rocha G, Martins A, Gama G, Brandão F, Atouguia J. 2004. Possible cases of sexual and congenital transmission of sleeping sickness. Lancet 363, 247. ( 10.1016/S0140-6736(03)15345-7) PubMed DOI

Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. 2014. Frequency of the congenital transmission of PubMed DOI PMC

Gomes C, Almeida AB, Rosa AC, Araujo PF, Teixeira ARL. 2019. American trypanosomiasis and Chagas disease: sexual transmission. Int. J. Infect. Dis. 81, 81-84. ( 10.1016/j.ijid.2019.01.021) PubMed DOI

Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R. 2008. Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301-1310. ( 10.1172/JCI33945) PubMed DOI PMC

Trindade S, et al. 2016. PubMed DOI PMC

Kennedy PGE. 2013. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol. 12, 186-194. ( 10.1016/S1474-4422(12)70296-X) PubMed DOI

Barrett MP. 2018. The elimination of human African trypanosomiasis is in sight: report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl. Trop. Dis. 12, e0006925. ( 10.1371/journal.pntd.0006925) PubMed DOI PMC

Pérez-Molina JA, Molina I. 2018. Chagas disease. Lancet 391, 82-94. ( 10.1016/S0140-6736(17)31612-4) PubMed DOI

Kirchhoff LV. 2011. Epidemiology of American trypanosomiasis (Chagas disease). Adv. Parasitol. 75, 1-18. ( 10.1016/B978-0-12-385863-4.00001-0) PubMed DOI

Guhl F, Vallejo GA. 2003. PubMed DOI

Yaro M, Munyard KA, Stear MJ, Groth DM. 2016. Combatting African Animal Trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet. Parasitol. 225, 43-52. ( 10.1016/j.vetpar.2016.05.003) PubMed DOI

Becker CD. 1977. Flagellate parasites of fish. In Parasitic protozoa Vol. 8. Taxonomy, kinetoplastids, and flagellates of fish (ed. Kreier JP), pp. 357-416. New York, NY: Academic Press.

Dyková I, Lom J. 1979. Histopathological changes in DOI

Khan RA. 1985. Pathogenesis of DOI

Islam A, Woo P. 1991. Anemia and its mechanism in goldfish DOI

Ahmed MS, Shafiq K, Ali H, Ollevier F. 2011. Pathogenic effects associated with

Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. 2002. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1, 495-502. ( 10.1128/EC.1.4.495-502.2002) PubMed DOI PMC

Moreira D, López-García P, Vickerman K. 2004. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int. J. Syst. Evol. Microbiol. 54, 1861-1875. ( 10.1099/ijs.0.63081-0) PubMed DOI

Kolisko M, et al. 2020. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080. ( 10.1093/database/baaa080) PubMed DOI PMC

Isaksen TE, Karlsbakk E, Nylund A. 2007. PubMed DOI

Dyková I, Fiala I, Pecková H. 2008. PubMed DOI

Sibbald SJ, Cenci U, Colp M, Eglit Y, O'Kelly CJ, Archibald JM. 2017. Diversity and evolution of PubMed DOI

Cavalier-Smith T. 2016. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol. 56, 250-276. ( 10.1016/j.ejop.2016.09.003) PubMed DOI

Stoeck T, Schwarz MVJ, Boenigk J, Schweikert M, von der Heyden S, Behnke A. 2005. Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus PubMed DOI

Zíková A, Vancová M, Jirků M, Lukeš J. 2003. PubMed DOI

Frolov AO, Malysheva MN. 2002. [Ultrastructure of the flagellate PubMed

Faria J, da Cunha AM, Pinto C. 1922. Estudos sobre Protozoarios do mar. Mem. Inst. Oswaldo Cruz 15, 186-208. ( 10.1590/S0074-02761922000200013) DOI

Novarino G. 1996. Notes on flagellate nomenclature. I.

Perty M. 1852. Zur Kenntniss Kleinster Lebensformen: Nach Bau, Funktionen, Systematik, mit Specialverzeichniss der in der Schweiz beobachteten. Bern, Switzerland: Verlag von Jent & Reinert.

Tate R. 1869. Contributions to Jurassic palaeontology. I. DOI

Cameron P. 1906. Descriptions of new species of parasitic Hymenoptera chiefly in the collection of the South African Museum, Cape Town. Ann. South Afr. Mus. 5, 17-186.

Bernard C, Simpson AGB, Patterson DJ. 2000. Some free-living flagellates (protista) from anoxic habitats. Ophelia 52, 113-142. ( 10.1080/00785236.1999.10409422) DOI

von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. 2004. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J. Euk. Microbiol. 51, 402-416. ( 10.1111/j.1550-7408.2004.tb00387.x) PubMed DOI

Nikolaev SI, Mylnikov AP, Fahrni J, Petrov N, Pawlowski J. 2003. The taxonomic position of

Vørs N. 1992. Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988-1990. Ophelia 36, 1-109. ( 10.1080/00785326.1992.10429930) DOI

Lackey JB. 1940. Some new flagellates from the Woods Hole area. Am. Midland Natural. 23, 463-471. ( 10.2307/2420679) DOI

Breunig A, König H, Brugerolle G, Vickerman K, Hertel H. 1993. Isolation and ultrastructural features of a new strain of PubMed DOI

Frolov AO, Mylnikov AP, Malysheva MN. 1997. [Description and electron microscopical study of the free-living cryptobiid flagellate

Swale EMF. 1973. A study of the colourless flagellate DOI

Doležel D, Jirků M, Maslov DA, Lukeš J. 2000. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 50, 1943-1951. ( 10.1099/00207713-50-5-1943) PubMed DOI

Todal JA, Karlsbakk E, Isaksen TE, Plarre H, Urawa S, Mouton A, Hoel E, Koren CWR, Nylund A. 2004. PubMed DOI

Lom J, Dyková I. 1992. Protozoan parasites of fishes. Amsterdam, The Netherlands: Elsevier Science Publishers New York.

Freeman MA, Kristmundsson A. 2018. A closer look at

Brooker BE. 1971. Fine structure of

Mylnikov AP. 1986. [Ultrathin structure of the flagellar apparatus in the bacteriotrophic flagellate

Frolov AO, Karpov SA, Mylnikov AP. 2001. The ultrastructure of

Schneider A, Ochsenreiter T. 2018. Failure is not an option—mitochondrial genome segregation in trypanosomes. J. Cell Sci. 131, jcs221820. ( 10.1242/jcs.221820) PubMed DOI

Harmer J, Yurchenko V, Nenarokova A, Lukeš J, Ginger ML. 2018. Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 145, 1311-1323. ( 10.1017/S0031182018000781) PubMed DOI

Frolov AO, Karpov SA. 1995. Comparative morphology of kinetoplastids. Tsitologiia 37, 1072-1096. PubMed

Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. 2015. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 31, 460-469. ( 10.1016/j.pt.2015.06.015) PubMed DOI

Lukeš J, Jirků M, Doležel D, Kral'ová I, Hollar L, Maslov DA. 1997. Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J. Mol. Evol. 44, 521-527. ( 10.1007/PL00006176) PubMed DOI

Stevens JR, Noyes HA, Schofield CJ, Gibson W. 2001. The molecular evolution of Trypanosomatidae. Adv. Parasit. 48, 1-56. ( 10.1016/s0065-308x(01)48003-1) PubMed DOI

Hamilton PB, Gibson WC, Stevens JR. 2007. Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol. Phyl. Evol. 44, 15-25. ( 10.1016/j.ympev.2007.03.023) PubMed DOI

Fermino BR, et al. 2015. Field and experimental evidence of a new caiman trypanosome species closely phylogenetically related to fish trypanosomes and transmitted by leeches. Int. J. Parasitol. Parasit. Wildl. 4, 368-378. ( 10.1016/j.ijppaw.2015.10.005) PubMed DOI PMC

Dvořáková N, Čepička I, Qablan MA, Gibson W, Blažek R, Široký P. 2015. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of PubMed DOI

Bernal XE, Pinto CM. 2016. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. Int. J. Parasitol. Parasit. Wildl. 5, 40-47. ( 10.1016/j.ijppaw.2016.01.005) PubMed DOI PMC

Spodareva VV, Grybchuk-Ieremenko A, Losev A, Votýpka J, Lukeš J, Yurchenko V, Kostygov AY. 2018. Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasit. Vectors 11, 447. ( 10.1186/s13071-018-3023-1) PubMed DOI PMC

Doflein F. 1901. Die Protozoen als Parasiten und Krankheitserreger nach Biologischen Gesichtspunkten Dargestellt. Jena, Germany: Fischer

Woo PTK. 2006. Diplomonadida (Phylum Parabasalia) and Kinetoplastea (Phylum Euglenozoa). In Fish diseases and disorders, Vol. 1: protozoan and metazoan infections (ed. Woo PTK), pp. 46-114. Wallingford, UK: CABI.

Gibson WC, Lom J, Pecková H, Ferris VR, Hamilton PB. 2005. Phylogenetic analysis of freshwater fish trypanosomes from Europe using SSU rRNA gene sequences and random amplification of polymorphic DNA. Parasitology 130, 405-412. ( 10.1017/S0031182004006778) PubMed DOI

Lemos M, Fermino BR, Simas-Rodrigues C, Hoffmann L, Silva R, Camargo EP, Teixeira MMG, Souto-Padrón T. 2015. Phylogenetic and morphological characterization of trypanosomes from Brazilian armoured catfishes and leeches reveal high species diversity, mixed infections and a new fish trypanosome species. Parasit. Vectors 8, 573-589. ( 10.1186/s13071-015-1193-7) PubMed DOI PMC

Mayer AFJK. 1843. Spicilegium observationum anatomicarum de organo electrico in raiis anelectricis et de haematozois. Bonnae Caroli Georgii.

Gruby D. 1843. Recherches et observations sur une nouvelle espèce d'hématozoaire,

International Commission on Zoological Nomenclature. 1926. Opinion 95. Two generic names of Protozoa placed in the Official List of Generic Names. Smithsonian Misc. Collect. 73, 14-15.

Baker JR. 1963. Speculations on the evolution of the family Trypanosomatidae Doflein, 1901. Exp. Parasitol. 13, 219-233. ( 10.1016/0014-4894(63)90074-2) PubMed DOI

Hoare CA. 1967. Evolutionary trends in mammalian trypanosomes. Adv. Parasitol. 5, 47-91. ( 10.1016/S0065-308X(08)60375-9) PubMed DOI

Votýpka J, Lukeš J, Oborník M. 2004. Phylogenetic relationship of

Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. 2012. PubMed DOI

Zídková L, Čepička I, Szabová J, Svobodová M. 2012. Biodiversity of avian trypanosomes. Infect. Genet. Evol. 12, 102-112. ( 10.1016/j.meegid.2011.10.022) PubMed DOI

Šlapeta J, Morin-Adeline V, Thompson P, McDonell D, Shiels M, Gilchrist K, Votýpka J, Vogelnest L. 2016. Intercontinental distribution of a new trypanosome species from Australian endemic regent honeyeater ( PubMed DOI

Schaudinn F. 1904. Generations-und Wirtswechsel bei

Sehgal RNM, Valkiūnas G, Iezhova TA, Smith TB. 2006. Blood parasites of chickens in Uganda and Cameroon with molecular descriptions of PubMed DOI

Danilewsky B. 1885. Zur parasitologie des blutes. Biol. Z. 5, 529-537.

Laveran MA. 1903. Sur un trypanosome d'une chouette. C. R. Séances Mém. Soc. Biol. Filial 55, 528-530.

Baker JR. 1976. Biology of the trypanosomes of birds. In Biology of the Kinetoplastida, vol. 1 (eds Lumsden WHR, Evans DA), pp. 131-174. London, UK: Academic Press.

Nandi NC, Bennett GF. 1994. Re-description of DOI

Valkiūnas G, Iezhova TA, Carlson JS, Sehgal RNM. 2011. Two new PubMed DOI

Sehgal RNM, Iezhova TA, Marzec T, Valkiūnas G. 2015. PubMed DOI

Lun ZR, et al. 2015. Resistance to normal human serum reveals PubMed DOI

Maia da Silva F, Marcili A, Ortiz PA, Epiphanio S, Campaner M, Catão-Dias JL, Shaw JJ, Camargo EP, Teixeira MMG. 2010. Phylogenetic, morphological and behavioural analyses support host switching of PubMed DOI

Ortiz PA, et al. 2018. Diagnosis and genetic analysis of the worldwide distributed PubMed DOI

Egan SL, Taylor CL, Austen JM, Banks PB, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. 2020. Molecular identification of the PubMed DOI

Mafie E, Saito-Ito A, Kasai M, Hatta M, Rivera PT, Ma XH, Chen ER, Sato H, Takada N. 2019. Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species. Parasitol. Res. 118, 97-109. ( 10.1007/s00436-018-6120-3) PubMed DOI

García HA, Blanco PA, Rodrigues AC, Rodrigues CMF, Takata CSA, Campaner M, Camargo EP, Teixeira MMG. 2020. Pan-American PubMed DOI PMC

Kingston N, Bobek B, Perzanowski K, Wita I, Maki L. 1992. Description of

Bruce D, Hamerton AE, Bateman HR, Mackie FP. 1909. DOI

Weinman D. 1972. PubMed DOI

Weinman D, White EA, Antipa GA. 1984. PubMed DOI

Stevens J, Noyes H, Gibson W. 1998. The evolution of trypanosomes infecting humans and primates. Mem. Inst. Oswaldo Cruz 93, 669-676. ( 10.1590/S0074-02761998000500019) PubMed DOI

Clément L, et al. 2020. Out of Africa: the origins of the protozoan blood parasites of the PubMed DOI

Hamilton PB, Stevens JR. 2017. Classification and phylogeny of

Espinosa-Álvarez O, et al. 2018. PubMed DOI

Telleria J, Tibayrenc M. 2017. American trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Amsterdam, The Netherlands: Elsevier.

Lima L, et al. 2015. Genetic diversity of PubMed DOI

Adams ER, Hamilton PB, Rodrigues AC, Malele II, Delespaux V, Teixeira MMG, Gibson W. 2010. New PubMed DOI

Votýpka J, et al. 2015. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of PubMed DOI

Rodrigues CMF, et al. 2020. Expanding our knowledge on African trypanosomes of the subgenus PubMed DOI

Austen JM, Jefferies R, Friend JA, Ryan U, Adams P, Reid SA. 2009. Morphological and molecular characterization of PubMed DOI

McInnes LM, Hanger J, Simmons G, Reid SA, Ryan UM. 2011. Novel trypanosome PubMed DOI

Thompson CK, Botero A, Wayne AF, Godfrey SS, Lymbery AJ, Thompson RCA. 2013. Morphological polymorphism of PubMed DOI PMC

Cooper C, Clode PL, Peacock C, Thompson RCA. 2017. Host–parasite relationships and life histories of trypanosomes in Australia. Adv. Parasitol. 97, 47-109. ( 10.1016/bs.apar.2016.06.001) PubMed DOI

Krige AS, Thompson RCA, Clode PL. 2019. ‘Hang on a Tick’—are ticks really the vectors for Australian trypanosomes? Trends Parasitol. 35, 596-606. ( 10.1016/j.pt.2019.05.008) PubMed DOI

Cooper C, Thompson RCA, Rigby P, Buckley A, Peacock C, Clode PL. 2018. The marsupial trypanosome PubMed DOI PMC

Novy FG. 1906. The trypanosomes of tsetse flies. J. Infect. Dis. 3, 394-411. ( 10.1093/infdis/3.3.394) DOI

Hoare CA. 1931. Studies on DOI

Hoare CA. 1929. Studies on DOI

Fermino BR, et al. 2013. The phylogeography of trypanosomes from South American alligatorids and African crocodilids is consistent with the geological history of South American river basins and the transoceanic dispersal of PubMed DOI PMC

Fermino BR, et al. 2019. Shared species of crocodilian trypanosomes carried by tabanid flies in Africa and South America, including the description of a new species from caimans, PubMed DOI PMC

Wenyon CM. 1908. Report of travelling pathologist and protozoologist. In Third report of the Wellcome Research Laboratories at the Gordon Memorial College, Khartoum (ed. Balfour A), pp. 121-168. London, UK: Bailliere, Tindall and Cox.

Sato H, Takano A, Kawabata H, Une Y, Watanabe H, Mukhtar MM. 2009. PubMed DOI

Viola LB, Attias M, Takata CSA, Campaner M, de Souza W, Camargo EP, Teixeira MMG. 2009. Phylogenetic analyses based on small subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase genes and ultrastructural characterization of two snake trypanosomes: PubMed DOI

Ayala SC. 1970. Two new trypanosomes from California toads and lizards. J. Protozool. 17, 370-373. ( 10.1111/j.1550-7408.1970.tb04696.x) DOI

Pessôa SB, de Biasi P. 1972. Trypanosoma cascavelli sp. n. parasita da cascavel:

Rodrigues MS, Lima L, Xavier SC das C, Herrera HM, Rocha FL, Roque ALR, Teixeira MMG, Jansen AM. 2019. Uncovering PubMed DOI PMC

Rêgo SFM, Magalhães AEA, Siqueira AF. 1957. Um novo tripanossomo do gambá,

Ferreira JIGS, da Costa AP, Nunes PH, Ramirez D, Fournier GFR, Saraiva D, Tonhosolo R, Marcili A. 2017. New PubMed DOI

Naiff RD, Barrett TV. 2013. PubMed DOI PMC

McInnes LM, Gillett A, Ryan UM, Austen J, Campbell RSF, Hanger J, Reid SA. 2009. PubMed DOI

Ortiz-Baez AS, et al. 2020. Meta-transcriptomic identification of PubMed DOI PMC

Peirce MA, Neal C. 1974. PubMed DOI

Ideozu EJ, Whiteoak AM, Tomlinson AJ, Robertson A, Delahay RJ, Hide G. 2015. High prevalence of trypanosomes in European badgers detected using ITS-PCR. Parasit. Vectors 8, 480-485. ( 10.1186/s13071-015-1088-7) PubMed DOI PMC

Dyachenko V, Steinmann M, Bangoura B, Selzer M, Munderloh U, Daugschies A, Barutzki D. 2017. Co-infection of PubMed DOI

Acosta IDCL, da Costa AP, Nunes PH, Gondim MFN, Gatti A, Rossi JLJ, Gennari SM, Marcili A. 2013. Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in PubMed DOI PMC

Kostygov AY, Yurchenko V. 2017. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 64, 020. ( 10.14411/fp.2017.020) PubMed DOI

Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. 2015. Characterization of two species of Trypanosomatidae from the honey bee PubMed DOI

Zídková L, Čepička I, Votýpka J, Svobodová M. 2010. PubMed DOI

Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. PubMed DOI

Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, Lukeš J, Yurchenko V. 2016. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 7, e01985-15. ( 10.1128/mBio.01985-15) PubMed DOI PMC

Klatt S, Simpson L, Maslov DA, Konthur Z. 2019. Leishmania tarentolae: taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl. Trop. Dis. 13, e0007424. ( 10.1371/journal.pntd.0007424) PubMed DOI PMC

Jariyapan N, et al. 2018. PubMed DOI PMC

Šeblová V, Sádlová J, Vojtková B, Votýpka J, Carpenter S, Bates PA, Volf P. 2015. The biting midge PubMed DOI PMC

Herrer A. 1971. PubMed DOI

Lainson R, Shaw JJ. 1977. Leishmanias of neotropical porcupines: DOI

Cupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi GJ. 2000. A revised classification for PubMed DOI

Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. 2016. Diversity of trypanosomatids in cockroaches and the description of PubMed DOI

Borghesan TC, Ferreira RC, Takata CSA, Campaner M, Borda CC, Paiva F, Milder RV, Teixeira MMG, Camargo EP. 2013. Molecular phylogenetic redefinition of PubMed DOI

Yoshida N, Freymüller E, Wallace FG. 1978. DOI

Teixeira MMG, et al. 2011. Phylogenetic validation of the genera PubMed DOI

Lukeš J, Tesařová M, Yurchenko V, Votýpka J. 2021. Characterization of a new cosmopolitan genus of trypanosomatid parasites, PubMed DOI

Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364-2369. ( 10.1016/j.cub.2016.06.064) PubMed DOI

Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, Lukeš J, Yurchenko V. 2013. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus PubMed DOI

Flegontov P, et al. 2013. PubMed DOI

Skalický T, et al. 2017. Extensive flagellar remodeling during the complex life cycle of PubMed DOI PMC

Kostygov AY, et al. 2020. PubMed DOI PMC

Svobodová M, Zídková L, Čepička I, Oborník M, Lukeš J, Votýpka J. 2007. PubMed DOI

Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus PubMed DOI

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. 2014. Molecular revision of the genus PubMed DOI

Roubaud E. 1911.

Nicoli RM, Penaud A, Timon-David P. 1971. Rechèrches systématiques sur les trypanosomides. II. Le genre

Nicoli RM, Penaud A, Timon-David P. 1971. Rechèrches systématiques sur les trypanosomides. I. Le genre

Page AM, Canning EU, Barker RJ, Nicholas JP. 1986. A new species of DOI

Cachon J, Cachon M, Charnier M. 1972. Ultrastructure du bodonidé

Larsen J, Patterson DJ. 1990. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801-937. ( 10.1080/00222939000770571) DOI

Patterson DJ, Vørs N, Simpson AGB, O'Kelly C. 2000. Residual free-living and predatory heterotrophic flagellates. In An illustrated guide to the protozoa (eds Lee JJ, Leedale GF, Bradbury P), pp. 1302-1328. Lawrence, KS: Society of Protozoologists/Allen Press.

Lara E, Moreira D, Vereshchaka A, López-García P. 2009. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ. Microbiol. 11, 47-55. ( 10.1111/j.1462-2920.2008.01737.x) PubMed DOI

de Vargas C, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. ( 10.1126/science.1261605) PubMed DOI

López-García P, Vereshchaka A, Moreira D. 2007. Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9, 546-554. ( 10.1111/j.1462-2920.2006.01158.x) PubMed DOI

López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603-607. ( 10.1038/35054537) PubMed DOI

Morgan-Smith D, Clouse MA, Herndl GJ, Bochdansky AB. 2013. Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Res. Part I 78, 58-69. ( 10.1016/j.dsr.2013.04.010) DOI

Massana R, et al. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035-4049. ( 10.1111/1462-2920.12955) PubMed DOI

Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, Gasol JM, Massana R. 2016. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. ISME J. 10, 945-958. ( 10.1038/ismej.2015.170) PubMed DOI PMC

Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH. 2011. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 3, 449-458. ( 10.1111/j.1758-2229.2010.00223.x) PubMed DOI

Okamoto N, Gawryluk RMR, del Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2019. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, PubMed DOI

Tashyreva D, et al. 2018. Phylogeny and morphology of new diplonemids from Japan. Protist 169, 158-179. ( 10.1016/j.protis.2018.02.001) PubMed DOI

Takishita K, Kakizoe N, Yoshida T, Maruyama T. 2010. Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J. Eukaryot. Microbiol. 57, 76-86. ( 10.1111/j.1550-7408.2009.00457.x) PubMed DOI

Al-Qassab S, Lee WJ, Murray S, Simpson AGB, Patterson DJ. 2002. Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41, 91-144.

Schnepf E. 1994. Light and electron microscopical observations in DOI

Griessmann K. 1914. Über marine Flagellaten. Arch. Protistenk. 32, 1-78.

Porter D. 1973. DOI

Schuster FL, Goldstein S, Hershenov B. 1968. Ultrastructure of a flagellate,

Skuja H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb. Bot. Ups. 9, 1-399.

Triemer RE, Ott DW. 1990. Ultrastructure of PubMed DOI

Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. 2017. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, fix073. ( 10.1093/femsec/fix073) PubMed DOI

Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. 2019. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front. Microbiol. 10, 2375. ( 10.3389/fmicb.2019.02375) PubMed DOI PMC

Mukherjee I, et al. 2020. A freshwater radiation of diplonemids. Environ. Microbiol. 22, 4658-4668. ( 10.1111/1462-2920.15209) PubMed DOI

Elbrächter M, Schnepf E, Balzer I. 1996. DOI

Yabuki A, Tame A. 2015. Phylogeny and reclassification of PubMed DOI

Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. 2019. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist 170, 259-282. ( 10.1016/j.protis.2019.04.001) PubMed DOI

Kent ML, Elston RA, Nerad TA, Sawyer TK. 1987. An PubMed DOI

Bodammer JE, Sawyer TK. 1981. Aufwuchs protozoa and bacteria on the gills of the rock crab, DOI

Roy J, Faktorová D, Benada O, Lukeš J, Burger G. 2007. Description of PubMed DOI

Breglia SA, Yubuki N, Hoppenrath M, Leander BS. 2010. Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: PubMed DOI PMC

Lax G, Simpson AGB. 2013. Combining molecular data with classical morphology for uncultured phagotrophic euglenids (Excavata): a single-cell approach. J. Eukaryot. Microbiol. 60, 615-625. ( 10.1111/jeu.12068) PubMed DOI

Lee WJ, Simpson AGB. 2014. Ultrastructure and molecular phylogenetic position of PubMed DOI

Dietrich D, Arndt H. 2000. Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol. 136, 309-322. ( 10.1007/s002270050689) DOI

Lee WJ, Patterson DJ. 2000. Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. J. Nat. Hist. 34, 483-562. ( 10.1080/002229300299435) DOI

Schoenle A, Živaljić S, Prausse D, Voß J, Jakobsen K, Arndt H. 2019. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean ( PubMed DOI

Zimba PV, Rowan M, Triemer RE. 2004. Identification of euglenoid algae that produce ichthyotoxin(s). J. Fish Dis. 27, 115-117. ( 10.1046/j.1365-2761.2003.00512.x) PubMed DOI

Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE. 2010. Identification of euglenophycin—a toxin found in certain euglenoids. Toxicon 55, 100-104. ( 10.1016/j.toxicon.2009.07.004) PubMed DOI

Valadez F, Rosiles-González G, Carmona J. 2010. Euglenophytes from Lake Chignahuapan, Mexico. Cryptogamie, Algologie 31, 305-319.

Rahman MS, Shahjahan M, Haque MM, Khan S. 2012. Control of euglenophyte bloom and fish production enhancement using duckweed and lime. Iran. J. Fish. Sci. 11, 602-617.

Lukešová S, Karlicki M, Tomečková Hadariová L, Szabová J, Karnkowska A, Hampl V. 2020. Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments. Environ. Microbiol. Rep. 12, 78-91. ( 10.1111/1758-2229.12817) PubMed DOI

Brown PJP, Leander BS, Farmer MA. 2002. Redescription of DOI

Lindholm T. 1995. Green water caused by

Stonik IV. 2007. Species of the genus DOI

Buck KR, Barry JP, Simpson AGB. 2000. Monterey Bay cold seep biota: Euglenozoa with chemoautotrophic bacterial epibionts. Eur. J. Protistol 36, 117-126. ( 10.1016/S0932-4739(00)80029-2) DOI

Rocchetta I, Ruiz LB, Magaz G, Conforti VTD. 2003. Effects of hexavalent chromium in two strains of PubMed DOI

Rehman A, Shakoori FR, Shakoori AR. 2007. Heavy metal resistant DOI

Kamika I, Momba MNB. 2013. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol. 13, 28. ( 10.1186/1471-2180-13-28) PubMed DOI PMC

Dennington VN, George JJ, Wyborn CHE. 1975. The effects of oils on growth of freshwater phytoplankton. Environ. Pollut 8, 233-237. ( 10.1016/0013-9327(75)90105-6) DOI

Werner D, Pawlitz H. 1978. Differential elimination of phenol by diatoms and other unicellular algae from low concentrations. Bull. Environ. Contam. Toxicol. 20, 303-312. ( 10.1007/BF01683525) PubMed DOI

Poorman AE. 1973. Effects of pesticides on DOI

Butler GL. 1977. Algae and pesticides. In Residue reviews, vol. 66 (ed. Gunther FA), pp. 19-62. New York, NY: Springer.

Lackey JB. 1968. Ecology of Euglena. In The biology of Euglena, vol. 1 (ed. Buetow DE), pp. 27-244. New York, NY: Academic Press.

Jones DT. 1944. Two protozoans from Great Salt Lake. Bull. Univ. Utah, Biol. Ser. 35, 1-10.

Lane AE, Burris JE. 1981. Effects of environmental pH on the internal pH of PubMed DOI PMC

Sittenfeld A, et al. 2002. Characterization of a photosynthetic PubMed DOI

Yamaguchi A, Yubuki N, Leander BS. 2012. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of PubMed DOI PMC

Michajłow W. 1972. Euglenoidina parasitic in Copepoda: an outline monograph. Warsaw: PWN—Polish Scientific Publishers.

Wenrich DH. 1924. Studies on DOI

Kisielewska G, Kolicka M, Zawierucha K. 2015. Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. Eur. J. Protistol 51, 138-141. ( 10.1016/j.ejop.2014.12.003) PubMed DOI

Hall SR. 1931. Observations on DOI

Michajłow W. 1978.

Wita I, Sukhanova KM. 1986. Seasonal modifications in the life cycle of

Al-Dhaheri RS, Willey RL. 1996. Colonization and reproduction of the epibiotic flagellate DOI

Zalocar Y, Frutos SM, Casco SL, Forastier ME, Vallejos SV. 2011. Prevalence of PubMed DOI

Płachno BJ, Wołowski K. 2008. Algae commensal community in DOI

Gordon E, Pacheco S. 2007. Prey composition in the carnivorous plants PubMed DOI

Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P. 2014. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ. Microbiol. 17, 3610-3627. ( 10.1111/1462-2920.12591) PubMed DOI PMC

Forster D, et al. 2016. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120. ( 10.1093/femsec/fiw120) PubMed DOI

Geisen S, Vaulot D, Mahé F, Lara E, de Vargas C, Bass D. 2019. A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses. DOI

Busse I, Preisfeld A. 2002. Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J. Mol. Evol. 55, 757-767. ( 10.1007/s00239-002-2371-8) PubMed DOI

Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B. 2013. A redescription of morphologically similar species from the genus PubMed DOI

Łukomska-Kowalczyk M, Karnkowska A, Krupska M, Milanowski R, Zakryś B. 2016. DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J. Phycol. 52, 951-960. ( 10.1111/jpy.12439) PubMed DOI

Hutchings L, et al. 2009. The Benguela Current: an ecosystem of four components. Prog. Oceanogr. 83, 15-32. ( 10.1016/j.pocean.2009.07.046) DOI

Zuendorf A, Bunge J, Behnke A, Barger KJA, Stoeck T. 2006. Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol. Ecol. 58, 476-491. ( 10.1111/j.1574-6941.2006.00171.x) PubMed DOI

Orsi W, Song YC, Hallam S, Edgcomb V. 2012. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586-1601. ( 10.1038/ismej.2012.7) PubMed DOI PMC

Orsi W, Edgcomb V, Jeon S, Leslin C, Bunge J, Taylor GT, Varela R, Epstein S. 2011. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME J. 5, 1357-1373. ( 10.1038/ismej.2011.7) PubMed DOI PMC

Wang Y, Zhang WP, Cao HL, Shek CS, Tian RM, Wong YH, Batang Z, Al-Suwailem A, Qian PY. 2014. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front. Microbiol. 5, 37. ( 10.3389/fmicb.2014.00037) PubMed DOI PMC

Lax G, Lee WJ, Eglit Y, Simpson A. 2019. Ploeotids represent much of the phylogenetic diversity of euglenids. Protist 170, 233-257. ( 10.1016/j.protis.2019.03.001) PubMed DOI

Lax G, Simpson AGB. 2020. The molecular diversity of phagotrophic euglenids examined using single-cell methods. Protist 171, 125757. ( 10.1016/j.protis.2020.125757) PubMed DOI

Busse I, Preisfeld A. 2003. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of PubMed DOI

Paerschke S, Vollmer AH, Preisfeld A. 2017. Ultrastructural and immunocytochemical investigation of paramylon combined with new 18S rDNA-based secondary structure analysis clarifies phylogenetic affiliation of DOI

Marin B, Palm A, Klingberg M, Melkonian M. 2003. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154, 99-145. ( 10.1078/143446103764928521) PubMed DOI

Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE. 2015. Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J. Eukaryot. Microbiol. 62, 362-373. ( 10.1111/jeu.12192) PubMed DOI

Kim JI, Linton EW, Shin W. 2015. Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front. Ecol. Evol. 3, 98. ( 10.3389/fevo.2015.00098) DOI

Karnkowska A, Bennett MS, Triemer RE. 2018. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. Sci. Rep. 8, 16071. ( 10.1038/s41598-018-34457-w) PubMed DOI PMC

Rosowski JR, Willey RL. 1977. Development of mucilaginous surfaces in euglenoids. I. Stalk morphology of DOI

Møhlenberg F, Kaas H. 1990. DOI

Wiegert KE, Bennett MS, Triemer RE. 2013. Tracing patterns of chloroplast evolution in euglenoids: contributions from PubMed DOI

Bennett MS, Wiegert KE, Triemer RE. 2014. Characterization of DOI

Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE. 2010. Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of PubMed DOI

Bennett MS, Triemer RE. 2015. Chloroplast genome evolution in the Euglenaceae. J. Eukaryot. Microbiol. 62, 773-785. ( 10.1111/jeu.12235) PubMed DOI

Kosmala S, Milanowski R, Brzóska K, Pe¸kala M, Kwiatowski J, Zakryś B. 2007. Phylogeny and systematics of the genus PubMed DOI

Guiry MD, Guiry GM. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. See www.algaebase.org (accessed on 12 November 2020).

Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S. 2006. Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of DOI

Łukomska-Kowalczyk M, Chaber K, Fells A, Milanowski R, Zakryś B. In press. Description of PubMed DOI PMC

Dawson NS, Walne PL. 1991. Structural characterization of DOI

McLachlan JL, Seguel MR, Fritz L. 1994. DOI

Kuo RC, Lin S. 2013. Ectobiotic and endobiotic bacteria associated with PubMed DOI

Davis BM. 1894. DOI

Carter HJ. 1869. XXXIII. Notes on filigerous green Infusoria of the Island of Bombay. J. Nat. Hist. 3, 249-260. ( 10.1080/00222936908695939) DOI

Brumpt E, Lavier G. 1924. Un nouvel Euglénien polyflagellé parasite du têtard de DOI

Rosowski JR. 2003. Photosynthetic euglenoids. In Freshwater algae of north america: ecology and classification (eds Wehr JD, Sheath RG), pp. 383-422. San Diego, CA: Academic Press.

Khondker M, Bhuiyan RA, Yeasmin J, Alam M, Sack RB, Huq A, Colwell RR. 2008. New records of phytoplankton for Bangladesh. 5. DOI

Triemer RE. 1985. Ultrastructural features of mitosis in DOI

Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG. 2001. Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Int. J. Syst. Evol. Microbiol. 51, 751-758. ( 10.1099/00207713-51-3-751) PubMed DOI

Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE. 2001. Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int. J. Syst. Evol. Microbiol. 51, 783-791. ( 10.1099/00207713-51-3-783) PubMed DOI

Pochmann A. 1955. DOI

Cann JP. 1986. Ultrastructural observations of taxonomic importance on the euglenoid genera DOI

Chen YT. 1950. Investigations of the biology of PubMed

Saranak J, Foster KW. 2005. Photoreceptor for curling behavior in PubMed DOI PMC

Lee WJ, Blackmore RB, Patterson DJ. 1999. Australian records of two lesser known genera of heterotrophic euglenids -

Cavalier-Smith T, Chao EE, Vickerman K. 2016. New phagotrophic euglenoid species (new genus PubMed DOI

Farmer MA, Triemer RE. 1988. A redescription of the genus DOI

Triemer RE. 1986. Light and electron microscopic description of a colorless euglenoid, DOI

Chan YF, Moestrup Ø, Chang J. 2013. On PubMed DOI

Farmer MA, Triemer RE. 1994. An ultrastructural study of DOI

Leedale GF. 1967. Euglenoid flagellates, 1st edn. Englewood Cliffs, NJ: Prentice-Hall Press Inc.

Cann JP, Pennick NC. 1986. Observations on DOI

Christen HR. 1959. New colorless Eugleninae. J. Protozool. 6, 292-303. ( 10.1111/j.1550-7408.1959.tb04371.x) DOI

Wołowski K. 1995. DOI

Kudo RR. 1966. Protozoology, 5th edn. Springfield, IL: Charles C Thomas Publisher.

Krell FT, Shabalin S. 2008. PubMed DOI

Dobell CC. 1908. The structure and life-history of

Yubuki N, Simpson AGB, Leander BS. 2013. Reconstruction of the feeding apparatus in PubMed DOI

Yubuki N, Edgcomb VP, Bernhard JM, Leander BS. 2009. Ultrastructure and molecular phylogeny of PubMed DOI PMC

Simpson AGB, van den Hoff J, Bernard C, Burton HR, Patterson DJ. 1997. The ultrastructure and systematic position of the euglenozoon DOI

Forterre P. 2010. Defining life: the virus viewpoint. Orig. Life Evol. Biospheres 40, 151-160. ( 10.1007/s11084-010-9194-1) PubMed DOI PMC

Suttle CA. 2005. Viruses in the sea. Nature 437, 356-361. ( 10.1038/nature04160) PubMed DOI

Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem. Inst. Oswaldo Cruz 113, e170487. ( 10.1590/0074-02760170487) PubMed DOI PMC

Deeg CM, Chow CET, Suttle CA. 2018. The kinetoplastid-infecting PubMed DOI PMC

Hingamp P, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678-1695. ( 10.1038/ismej.2013.59) PubMed DOI PMC

Tarr PI, Aline RF, Smiley BL, Scholler J, Keithly J, Stuart K. 1988. LR1: a candidate RNA virus of PubMed DOI PMC

Scheffter S, Widmer G, Patterson JL. 1994. Complete sequence of PubMed DOI

Ives A, et al. 2011. PubMed DOI PMC

Rossi M, et al. 2017. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc. Natl Acad. Sci. USA 114, 4987-4992. ( 10.1073/pnas.1621447114) PubMed DOI PMC

Brettmann EA, et al. 2016. Tilting the balance between RNA interference and replication eradicates PubMed DOI PMC

Kurt Ö, Mansur N, Çavuş I, Özcan O, Batir MB, Gündüz C, Sezerman U, Özbilgın A. 2019. First report and PubMed

Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Ponirovsky EN, Lukashev AN, Yurchenko V. 2019. Molecular characterization of PubMed DOI PMC

Widmer G, Dooley S. 1995. Phylogenetic analysis of PubMed DOI PMC

Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. 2018. RNA viruses in PubMed DOI PMC

Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 4, e00715-16. ( 10.1128/genomeA.00715-16) PubMed DOI PMC

Grybchuk D, et al. 2018. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite PubMed DOI PMC

Grybchuk D, et al. 2020. The first non-LRV RNA virus in PubMed DOI PMC

Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016. A Narnavirus in the trypanosomatid protist plant pathogen PubMed DOI PMC

Sukla S, Roy S, Sundar S, Biswas S. 2017. PubMed DOI

Alves JMP, et al. 2013. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 13, 190. ( 10.1186/1471-2148-13-190) PubMed DOI PMC

Burzell LA. 1975. Fine structure of PubMed DOI

Midha S, Rigden D, Siozios S, Hurst G, Jackson A. In press. The PubMed DOI PMC

Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV., Yurchenko V, Kostygov AY. 2020. A novel endosymbiont-containing trypanosomatid PubMed DOI

Muñoz-Gómez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, Roger AJ. 2019. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife 8, e42535. ( 10.7554/eLife.42535) PubMed DOI PMC

Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-e17. ( 10.1128/mBio.02447-17) PubMed DOI PMC

George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. 2020. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925-933. ( 10.1016/j.cub.2019.12.070) PubMed DOI

Monteil CL, et al. 2019. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088-1095. ( 10.1038/s41564-019-0432-7) PubMed DOI PMC

Leedale GF. 1969. Observations on endonuclear bacteria in euglenoid flagellates. Österr. Bot. Z. 116, 279-294. ( 10.1007/BF01379628) DOI

Surek B, Melkonian M. 1983. Intracellular bacteria in the Euglenophyceae: prolonged axenic culture of an alga-bacterial system. In Endocytobiology, vol. 2 (eds Schenk HEA, Schwemmler W), pp. 475-486. Berlin, Germany: de Gruyter.

Kim E, Park JS, Simpson AGB, Matsunaga S, Watanabe M, Murakami A, Sommerfeld K, Onodera NT, Archibald JM. 2010. Complex array of endobionts in PubMed DOI

Leander BS, Farmer MA. 2000. Epibiotic bacteria and a novel pattern of strip reduction on the pellicle of DOI

Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM. 1986. Magnetite and magnetotaxis in algae. Biophys. J. 50, 375-378. ( 10.1016/S0006-3495(86)83471-3) PubMed DOI PMC

Klinges JG, et al. 2019. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, PubMed DOI PMC

Tikhonenkov DV, et al. 2021. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci. Rep. 11, 2946. ( 10.1038/s41598-021-82369-z) PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

A literature review on the role of Culicoides in the transmission of avian blood parasites in Europe

. 2025 Aug 03 ; 18 (1) : 329. [epub] 20250803

Discovery of unique mitotic mechanisms in Paradiplonema papillatum

. 2025 Aug ; 15 (8) : 250096. [epub] 20250806

European Brown hare (Lepus europaeus) as an accidental host of Trypanosoma pestanai

. 2025 Aug ; 27 () : 101079. [epub] 20250507

Comparative genomic analysis of trypanosomatid protists illuminates an extensive change in the nuclear genetic code

. 2025 Jun 11 ; 16 (6) : e0088525. [epub] 20250428

Converting Blastocrithidia Nonstop, a Trypanosomatid With Non-Canonical Genetic Code, Into a Genetically-Tractable Model

. 2025 Jun ; 123 (6) : 586-592. [epub] 20250409

The genome sequences of the diplonemid protist Rhynchopus euleeides YPF1915 and its bacterial endosymbiont Candidatus Syngnamydia salmonis (Chlamydiota)

. 2025 ; 10 () : 233. [epub] 20250507

Comparative analysis of the mobilome yields new insights into its diversity, dynamics and evolution in parasites of the Trypanosomatidae family

. 2025 May ; 152 (6) : 602-617.

Trypanosoma tertium n. sp.: prevalences in natural hosts and development in the mosquito vector

. 2025 Apr ; 152 (5) : 487-496.

On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa

. 2024 Dec 11 ; 15 (12) : e0293624. [epub] 20241030

Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote

. 2024 Dec 03 ; 22 (1) : 281. [epub] 20241203

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae)

. 2024 ; 10 (1) : veae037. [epub] 20240504

Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment

. 2024 Apr 24 ; 52 (7) : 3870-3885.

Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids

. 2024 Mar 02 ; 16 (3) : .

In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code

. 2024 Feb 16 ; 25 (1) : 184. [epub] 20240216

Trypanosome diversity in small mammals in Uganda and the spread of Trypanosoma lewisi to native species

. 2023 Dec 16 ; 123 (1) : 54. [epub] 20231216

Parasites of firebugs in Austria with focus on the "micro"-diversity of the cosmopolitan trypanosomatid Leptomonas pyrrhocoris

. 2023 Dec 11 ; 123 (1) : 27. [epub] 20231211

Towards disentangling the classification of freshwater fish trypanosomes

. 2023 Nov ; 5 (4) : 551-563. [epub] 20231013

Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania

. 2023 Oct ; 122 (10) : 2279-2286. [epub] 20230725

First report of putative Leishmania RNA virus 2 (LRV2) in Leishmania infantum strains from canine and human visceral leishmaniasis cases in the southeast of Brazil

. 2023 ; 118 () : e230071. [epub] 20230918

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...