Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
EMBO Installation Grant
European Molecular Biology Organization - International
P506/11/1320
Grantová Agentura České Republiky - International
CZ.02.1.01/0.0/ 0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.1.05/1.1.00/02.0109
Ministerstvo Školství, Mládeže a Tělovýchovy - International
2016/21/D/NZ8/01288
Narodowe Centrum Nauki - International
PubMed
31845515
DOI
10.1111/1758-2229.12817
Knihovny.cz E-zdroje
- MeSH
- Chlorophyta klasifikace genetika MeSH
- DNA rostlinná genetika MeSH
- Euglenida klasifikace genetika MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- genom chloroplastový * MeSH
- genom rostlinný MeSH
- polymerázová řetězová reakce MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
Euglenophyceae are unicellular algae with the majority of their diversity known from small freshwater reservoirs. Only two dozen species have been described to occur in marine habitats, but their abundance and diversity remain unexplored. Phylogenetic studies revealed marine prasinophyte green alga, Pyramimonas parkeae, as the closest extant relative of the euglenophytes' plastid, but similarly to euglenophytes, our knowledge about the diversity of Pyramimonadales is limited. Here we explored Euglenophyceae and Pyramimonadales phylogenetic diversity in marine environmental samples. We yielded 18S rDNA and plastid 16S rDNA sequences deposited in public repositories and reconstructed Euglenophyceae reference trees. We searched high-throughput environmental sequences from the TARA Oceans expedition and Ocean Sampling Day initiative for 18S rDNA and 16S rDNA, placed them in the phylogenetic context and estimated their relative abundances. To avoid polymerase chain reaction (PCR) bias, we also exploited metagenomic data from the TARA Oceans expedition for the presence of rRNA sequences from these groups. Finally, we targeted these protists in coastal samples by specific PCR amplification of two parts of the plastid genome uniquely shared between euglenids and Pyramimonadales. All approaches revealed previously undetected, but relatively low-abundant lineages of marine Euglenophyceae. Surprisingly, some of those lineages are branching within the freshwater or brackish genera.
Zobrazit více v PubMed
Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A., et al. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66: 4-119.
Bennett, M.S., and Triemer, R.E. (2012) A new method for obtaining nuclear gene sequences from field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (Phacus) horridus (Euglenophyta). J Phycol 48: 254-260.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37: 852-857.
Brown, P.J.P., Leander, B.S., and Farmer, M.A. (2002) Redescription of Euglena rustica (Euglenophyceae), a rare euglenophyte from the intertidal zone. Phycologia 41: 445-452.
Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinforma Appl Note 25: 1972-197310.
Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R. (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266-267.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., et al. (2015) Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605.
del Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L.F., Nenarokov, S., Massana, R., et al. (2018) EukRef: phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol 16: e2005849.
Dos Santos, A.L., Gourvil, P., Tragin, M., Noël, M.H., Decelle, J., Romac, S., and Vaulot, D. (2017) Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J 11: 512-528.
Esson, H.J., and Leander, B.S. (2008) Novel pellicle surface paterns on Euglena obtusa (Euglenophyta) from the marine benthic environment: implications for pellicle development and evolution. J Phycol 44: 132-141.
Flegontova, O., Flegontov, P., Malviya, S., Bowler, C., and Lukeš, J. (2016) Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol 26: 3060-3065.
Gibbs, S.P. (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193-208.
Gimmler, A., Korn, R., De Vargas, C., Audic, S., and Stoeck, T. (2016) The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci Rep 6: 33555.
Guillou, L., Eikrem, W., Chrétiennot-Dinet, M.-J., Le Gall, F., Massana, R., Romari, K., et al. (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155: 193-214.
Harðardóttir, S., Lundholm, N., Moestrup, Ø., and Nielsen, T.G. (2014) Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter-spring transition. Polar Biol 37: 1479-1494.
Hrdá, Š., Fousek, J., Szabová, J., Hampl, V., and Vlček, Č. (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7: e33746.
Hutchings, L., van der Lingen, C.D., Shannon, L.J., Crawford, R.J.M., Verheye, H.M.S., Bartholomae, C.H., et al. (2009) The Benguela Current: an ecosystem of four components. Prog Oceanogr 83: 15-32.
Jackson, C., Knoll, A.H., Chan, C.X., and Verbruggen, H. (2018) Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 8: 1523.
Karnkowska, A., Bennett, M.S., Watza, D., Kim, J.I., Zakryś, B., and Triemer, R.E. (2015) Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62: 362-373.
Karnkowska-Ishikawa, A., Milanowski, R., Triemer, R.E., and Zakryś, B. (2013) A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea, E. sociabilis, and E. splendens. J Phycol 49: 616-626.
Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772-780.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
Kim, J.I., Linton, E.W., and Shin, W. (2015) Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front Ecol Evol 3: 1-11.
Kopf, A., Bicak, M., Kottmann, R., Schnetzer, J., Kostadinov, I., Lehmann, K., et al. (2015) The ocean sampling day consortium. Gigascience 4: 27.
Lemieux, C., Otis, C., and Turmel, M. (2014) Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics 15: 857.
Lindholm, T. (1995) Green water caused by Eutreptiella gymnastica (Euglenophyceae) in a stratified Baltic Sea inlet. In Harmful Marine Algal Blooms. Lassus, P., Arzul, G., Erard-Le Denn, E., Gentien, P., and Marcaillou-Le Baut, C. (eds). Paris: Lavoisier, pp. 181-186.
Łukomska-Kowalczyk, M., Karnkowska, A., Milanowski, R., Łach, L., Zakryś, B., Łach, Ł., and Zakryś, B. (2015) Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses. J Phycol 51: 1147-1157.
Łukomska-Kowalczyk, M., Karnkowska, A., Krupska, M., Milanowski, R., and Zakryś, B. (2016) DNA barcoding in autotrophic euglenids: evaluation of COI and 18s rDNA. J Phycol 52: 951-960.
Marin, B. (2004) Origin and fate of chloroplasts in the Euglenoida. Protist 155: 13-14.
Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., et al. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251.
Monier, A., Worden, A.Z., and Richards, T.A. (2016) Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep 8: 461-469.
Nakayama, T., Suda, S., Kawachi, M., and Inouye, I. (2007) Phylogeny and ultrastructure of Nephroselmis and Pseudoscourfieldia (Chlorophyta), including the description of Nephroselmis anterostigmatica sp. nov. and a proposal for the Nephroselmidales ord. nov. Phycologia 46: 680-697.
Olli, K., Heiskanen, A., and Seppals, J. (1996) Development and fate of Eutreptiella gymnastica bloom in nutrient-enriched enclosures in the coastal Baltic Sea. J Plankton Res 18: 1587-1604.
Pan, J., del Campo, J., and Keeling, P.J. (2017) Reference tree and environmental sequence diversity of Labyrinthulomycetes. J Eukaryot Microbiol 64: 88-96.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539-542.
Shalchian-Tabrizi, K., Bråte, J., Logares, R., Klaveness, D., Berney, C., and Jakobsen, K.S. (2008) Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ Microbiol 10: 2635-2644.
Shalchian-Tabrizi, K., Reier-Røberg, K., Ree, D.K., Klaveness, D., and Bråte, J. (2011) Marine-freshwater colonizations of haptophytes inferred from phylogeny of environmental 18S rDNA sequences. J Eukaryot Microbiol 58: 315-318.
Shi, X.L., Marie, D., Jardillier, L., Scanlan, D.J., and Vaulot, D. (2009) Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS One 4: e7657.
Simon, M., López-García, P., Deschamps, P., Moreira, D., Restoux, G., Bertolino, P., and Jardillier, L. (2015) Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J 9: 1941-1953.
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
Starmach, K. (1983) Euglenophyta - Eugleniny. Flora słodkowodna Polski, 3rd ed. Warszawa, Kraków: Państwowe Wydawnictwo Naukowe.
Stonik, I.V. (2007) Species of the genus Eutreptiella (Euglenophyceae) from Russian waters of East/Japan Sea. Ocean Sci J 42: 81-88.
Suda, S. (2004) Taxonomic characterization of Pyramimonas aurea sp. nov. (Prasinophyceae, Chlorophyta). Phycologia 43: 682-692.
Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., et al. (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348: 1261359.
Takahashi, F., Okabe, Y., Nakada, T., Sekimoto, H., Ito, M., Kataoka, H., and Nozaki, H. (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO 1. J Phycol 43: 1302-1309.
Tragin, M., and Vaulot, D. (2018) Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci Rep 8: 14020.
Turmel, M., Gagnon, M.-C., O'Kelly, C.J., Otis, C., and Lemieux, C. (2009) The chloroplast genomes of the Green Algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of Euglenids. Mol Biol Evol 26: 631-648.
Viprey, M., Guillou, L., Ferréol, M., and Vaulot, D. (2008) Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 10: 1804-1822.
Yamaguchi, A., Yubuki, N., and Leander, B.S. (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12: 29.
Yamaguchi, H., Suda, S., Nakayama, T., Pienaar, R.N., Chihara, M., and Inouye, I. (2011) Taxonomy of Nephroselmis viridis sp. nov. (Nephroselmidophyceae, Chlorophyta), a sister marine species to freshwater N. olivacea. J Plant Res 124: 49-62.