Targeted DNA sequencing of high-grade serous ovarian carcinoma reveals association of TP53 mutations with platinum resistance when combined with gene expression

. 2024 Jul 01 ; 155 (1) : 104-116. [epub] 20240306

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38447012

Grantová podpora
NU20-09-00174 Czech Health Research Council

High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%). Somatically, the most mutated gene was TP53 (98%), followed by CSMD1/2/3 (19/19/36%), and CFTR (23%). Results were compared with those from whole exome sequencing of a similar set of 35 HGSC patients. Somatic variants in TP53 were also validated using GENIE data of 1287 HGSC samples. Our approach showed increased prevalence of high impact somatic and germline mutations, especially those affecting splice sites of TP53, compared to validation datasets. Furthermore, nonsense TP53 somatic mutations were negatively associated with patient survival. Elevated TP53 transcript levels were associated with platinum resistance and presence of TP53 missense mutations, while decreased TP53 levels were found in tumors carrying mutations with predicted high impact, which was confirmed in The Cancer Genome Atlas data (n = 260). Targeted DNA sequencing of TP53 combined with transcript quantification may contribute to the concept of precision oncology of HGSC. Future studies should explore targeting the p53 pathway based on specific mutation types and co-analyze the expression and mutational profiles of other key cancer genes.

Zobrazit více v PubMed

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209‐249.

Matz M, Coleman MP, Carreira H, et al. Worldwide comparison of ovarian cancer survival: histological group and stage at diagnosis (CONCORD‐2). Gynecol Oncol. 2017;144:396‐404. Accessed June 6, 2023 https://www.sciencedirect.com/science/article/pii/S009082581631575X

Ovarian Cancer Survival Rates. Ovarian Cancer Prognosis. Accessed June 6, 2023. https://www.cancer.org/cancer/types/ovarian-cancer/detection-diagnosis-staging/survival-rates.html

Richardson DL, Eskander RN, O'Malley DM. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance: a narrative review. JAMA Oncol. 2023;9:851‐859. doi:10.1001/jamaoncol.2023.0197

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061.

Rojas V, Hirshfield KM, Ganesan S, Rodriguez‐Rodriguez L. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. Int J Mol Sci. 2016;17:2113.

Harbin LM, Gallion HH, Allison DB, Kolesar JM. Next generation sequencing and molecular biomarkers in ovarian cancer—an opportunity for targeted therapy. Diagnostics (Basel). 2022;12:842.

Felicio PS, Grasel RS, Campacci N, et al. Whole‐exome sequencing of non‐BRCA1/BRCA2 mutation carrier cases at high‐risk for hereditary breast/ovarian cancer. Hum Mutat. 2021;42:290‐299.

Stafford JL, Dyson G, Levin NK, et al. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS One. 2017;12:e0178450. doi:10.1371/journal.pone.0178450

Colombo N, Ledermann JA. Newly Diagnosed and Relapsed Epithelial Ovarian Carcinoma. ESMO Guidelines; 2021. Accessed June 6, 2023. https://www.esmo.org/guidelines/guidelines‐by‐topic/gynaecological‐cancers/newly‐diagnosed‐and‐relapsed‐epithelial‐ovarian‐carcinoma/eupdate‐newly‐diagnosed‐epithelial‐ovarian‐carcinoma‐treatment‐recommendations

Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol. 2018;81:17‐38.

Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res. 2012;31:14.

Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22:6532.

Li Y, Zhang X, Gao Y, et al. Development of a genomic signatures‐based predictor of initial platinum‐resistance in advanced high‐grade serous ovarian cancer patients. Front Oncol. 2021;10. doi:10.3389/fonc.2020.625866

Ceccaldi R, O'Connor KW, Mouw KW, et al. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 2015;75:628‐634. doi:10.1158/0008‐5472.CAN‐14‐2593

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609‐615.

Hlaváč V, Holý P, Václavíková R, et al. Whole‐exome sequencing of epithelial ovarian carcinomas differing in resistance to platinum therapy. Life Sci Alliance. 2022;5. Accessed October 25, 2022. https://www.life-science-alliance.org/content/5/12/e202201551

Patch A‐M, Christie EL, Etemadmoghadam D, et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489. Accessed April 4, 2023. https://www.nature.com/articles/nature14410‐494.

Ye X. Confluence analysis of multiple omics on platinum resistance of ovarian cancer. Eur J Gynaecol Oncol. 2015;36:514‐519.

Brynychova V, Ehrlichova M, Hlavac V, et al. Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomed Pharmacother. 2016;83:857‐864. Available from: WOS:000390433400104.

Elsnerova K, Mohelnikova‐Duchonova B, Cerovska E, et al. Gene expression of membrane transporters: importance for prognosis and progression of ovarian carcinoma. Oncol Rep. 2016;35:2159‐2170.

Seborova K, Hlavac V, Holy P, et al. Complex molecular profile of DNA repair genes in epithelial ovarian carcinoma patients with different sensitivity to platinum‐based therapy. Front Oncol. 2022;12. doi:10.3389/fonc.2022.1016958

Pujade‐Lauraine E, Combe P. Recurrent ovarian cancer. Ann Oncol. 2016;27(Suppl 1):i63‐i65.

Topić E, Gluhak J. Isolation of restrictible DNA. Eur J Clin Chem Clin Biochem. 1991;29:327‐330.

Ehrlichova M, Mohelnikova‐Duchonova B, Hrdy J, et al. The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics. 2013;102:96‐101.

Holý P, Hlaváč V, Ostašov P, et al. Germline and somatic genetic variability of oxysterol‐related genes in breast cancer patients with early disease of the luminal subtype. Biochimie. 2022;199:158. Accessed July 12, 2022. https://www.sciencedirect.com/science/article/pii/S0300908422001109‐169.

Soucek P, Anzenbacher P, Skoumalová I, Dvorák M. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2005;23:1417‐1422.

Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real‐time PCR experiments. Clin Chem. 2009;55:611‐622.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402‐408.

AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7:818‐831.

Wang S, Pitt JJ, Zheng Y, et al. Germline variants and somatic mutation signatures of breast cancer across populations of African and European ancestry in the US and Nigeria. Int J Cancer. 2019;145:3321‐3333.

Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221:49‐56. doi:10.1002/path.2696

Saleh A, Perets R. Mutated p53 in HGSC‐from a common mutation to a target for therapy. Cancers (Basel). 2021;13:3465.

Leijen S, van Geel RMJM, Sonke GS, et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53‐mutated ovarian cancer refractory or resistant to first‐line therapy within 3 months. JCO. 2016;34:4354‐4361. doi:10.1200/JCO.2016.67.5942

Basu B, Gourley C, Gabra H, et al. 386P—PISARRO: a EUTROC phase 1b study of APR‐246 with carboplatin (C) and pegylated liposomal doxorubicin (PLD) in relapsed platinum‐sensitive high grade serous ovarian cancer (HGSOC). Ann Oncol. 2016;27:vi123. Accessed September 21, 2023. https://www.sciencedirect.com/science/article/pii/S0923753419440167

Zhang S, Carlsen L, Hernandez Borrero L, Seyhan AA, Tian X, El‐Deiry WS. Advanced strategies for therapeutic targeting of wild‐type and mutant p53 in cancer. Biomolecules. 2022;12:548. Accessed April 4, 2023. https://www.mdpi.com/2218-273X/12/4/548

Ghezelayagh TS, Pennington KP, Norquist BM, et al. Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations. Gynecol Oncol. 2021;160:786‐792.

Garziera M, Roncato R, Montico M, et al. New challenges in tumor mutation heterogeneity in advanced ovarian cancer by a targeted next‐generation sequencing (NGS) approach. Cells. 2019;8:584.

Brachova P, Mueting SR, Carlson MJ, et al. TP53 oncomorphic mutations predict resistance to platinum‐ and taxane‐based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol. 2015;46:607‐618. doi:10.3892/ijo.2014.2747

Kang HJ, Chun S‐M, Kim K‐R, Sohn I, Sung CO. Clinical relevance of gain‐of‐function mutations of p53 in high‐grade serous ovarian carcinoma. PLoS One. 2013;8:e72609.

Zheng H, Shu T, Zhu S, et al. Construction and validation of a platinum sensitivity predictive model with multiple genomic variations for epithelial ovarian cancer. Front Oncol. 2021;11:725264.

Cole AJ, Dwight T, Gill AJ, et al. Assessing mutant p53 in primary high‐grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep. 2016;6:26191.

Bischof K, Knappskog S, Hjelle SM, et al. Influence of p53 isoform expression on survival in high‐grade serous ovarian cancers. Sci Rep. 2019;9:5244.

Weberpals JI, Pugh TJ, Marco‐Casanova P, et al. Tumor genomic, transcriptomic, and immune profiling characterizes differential response to first‐line platinum chemotherapy in high grade serous ovarian cancer. Cancer Med. 2021;10:3045‐3058.

Lee J‐G, Ahn J‐H, Jin Kim T, Ho Lee J, Choi J‐H. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals. Sci Rep. 2015;5:12642.

Sørensen BH, Nielsen D, Thorsteinsdottir UA, Hoffmann EK, Lambert IH. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against cisplatin‐induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase‐9/‐3 activation. Am J Physiol Cell Physiol. 2016;310:C857‐C873.

Pennington KP, Walsh T, Harrell MI, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20:764‐775.

Hirasawa A, Imoto I, Naruto T, et al. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer. Oncotarget. 2017;8:112258‐112267.

Song H, Dicks E, Ramus SJ, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33:2901‐2907.

Padan E, Landau M. Sodium‐proton (Na(+)/H(+)) antiporters: properties and roles in health and disease. Met Ions Life Sci. 2016;16:391‐458.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...