Functional validation of somatic variability in TP53 and KRAS for prediction of platinum sensitivity and prognosis in epithelial ovarian carcinoma patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40785058
PubMed Central
PMC12341051
DOI
10.1080/15384047.2025.2543105
Knihovny.cz E-zdroje
- Klíčová slova
- Epithelial ovarian carcinoma, KRAS, TP53, platinum sensitivity, transcript expression, variant,
- MeSH
- chemorezistence genetika MeSH
- dospělí MeSH
- epiteliální ovariální karcinom * genetika farmakoterapie patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorový supresorový protein p53 * genetika metabolismus MeSH
- nádory vaječníků * genetika farmakoterapie patologie mortalita MeSH
- platina * terapeutické užití farmakologie MeSH
- prognóza MeSH
- protoonkogenní proteiny p21(ras) * genetika metabolismus MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- KRAS protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 * MeSH
- platina * MeSH
- protoonkogenní proteiny p21(ras) * MeSH
- TP53 protein, human MeSH Prohlížeč
Concerning the dismal prognosis of chemoresistant patients with epithelial ovarian carcinoma (EOC), we aimed to follow up the findings of a previous whole-exome sequencing study using an orthogonal Sanger sequencing on the same patients and a separate set of 127 EOC patients (N = 177, all fresh frozen tumor samples). We focused on TP53 as a frequently mutated gene relevant for chemosensitivity, included KRAS as an additional therapeutically relevant target, complemented the study with transcript levels of both genes, and compared results with clinical parameters. All variants in TP53 and KRAS detected by exome sequencing were confirmed. KRAS mutated patients had significantly more frequent FIGO stages I or II (p = .002) and other than high-grade serous tumor subtypes (nonHGSCs) (p < .001), which was connected with lower KRAS transcript levels (p = .004). Patients with nonHGSC subtypes had less frequent TP53 mutations (p = .002). Carriers of TP53 variants disrupting the DNA binding loop had significantly longer platinum-free intervals than the rest (p = .037). Tumors bearing nonsense, frameshift, or splice site TP53 variants had a significantly lower TP53 transcript level, while those with missense variants had significantly higher levels than wild types (p < .001). The normalized intratumoral TP53 and KRAS transcript levels were correlated, and patients with co-mutated genes had poorer overall survival than others (p = .015). Protein levels of both genes significantly correlated with their respective transcripts (p = .028 and p = .001, respectively). Our study points to KRAS as a target for future therapy of nonHGSCs and reveals the prognostic value of TP53 variants in the DNA binding loop.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Cabasag CJ, Fagan PJ, Ferlay J, Vignat J, Laversanne M, Liu L, van der Aa MA, Bray F, Soerjomataram I.. Ovarian cancer today and tomorrow: a global assessment by world region and human development index using GLOBOCAN 2020. Intl J Cancer. 2022;151(9):1535–16. doi: 10.1002/ijc.34002. PubMed DOI
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2(1):16061. doi: 10.1038/nrdp.2016.61. PubMed DOI PMC
Matz M, Coleman MP, Carreira H, Salmerón D, Chirlaque MD, Allemani C, Bouzbid S, Hamdi-Chérif M, Zaidi Z, Bah E, et al. Worldwide comparison of ovarian cancer survival: histological group and stage at diagnosis (CONCORD-2). Gynecologic Oncol. 2017;144(2):396–404. doi: 10.1016/j.ygyno.2016.11.019. PubMed DOI PMC
Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res. 2012;31(1):14. doi: 10.1186/1756-9966-31-14. PubMed DOI PMC
Ovarian cancer survival rates | Ovarian cancer prognosis. [Accessed 2024 Feb 15]. https://www.cancer.org/cancer/types/ovarian-cancer/detection-diagnosis-staging/survival-rates.html.
Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393(10177):1240–1253. doi: 10.1016/S0140-6736(18)32552-2. PubMed DOI
Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. IJMS. 2019;20(4):952. doi: 10.3390/ijms20040952. PubMed DOI PMC
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol. 2018;81(1):17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC
O’Sullivan Coyne G, Chen AP, Meehan R, Doroshow JH. Parp inhibitors in reproductive system cancers: current use and developments. Drugs. 2017;77(2):113–130. doi: 10.1007/s40265-016-0688-7. PubMed DOI PMC
Banerjee S, Gonzalez-Martin A, Harter P, Lorusso D, Moore KN, Oaknin A, Ray-Coquard I. First-line PARP inhibitors in ovarian cancer: summary of an ESMO open - cancer horizons round-table discussion. ESMO Open. 2020;5(6):e001110. doi: 10.1136/esmoopen-2020-001110. PubMed DOI PMC
Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev In Oncol/Hematol. 2019;133:58–73. doi: 10.1016/j.critrevonc.2018.10.012. PubMed DOI
Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. IJMS. 2016;17(12):2113. doi: 10.3390/ijms17122113. PubMed DOI PMC
Goyal G, Fan T, Silberstein PT. Hereditary cancer syndromes: utilizing DNA repair deficiency as therapeutic target. Fam Cancer. 2016;15(3):359–366. doi: 10.1007/s10689-016-9883-7. PubMed DOI PMC
Hlaváč V, Holý P, Václavíková R, Rob L, Hruda M, Mrhalová M, Černaj P, Bouda J, Souček P. Whole-exome sequencing of epithelial ovarian carcinomas differing in resistance to platinum therapy. Life Sci Alliance. 2022;5(12):e202201551. doi: 10.26508/lsa.202201551. PubMed DOI PMC
Norquist BM, Brady MF, Harrell MI, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Burger RA, Tewari KS, et al. Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: an NRG oncology/gynecologic oncology group study. Clin Cancer Res. 2018;24(4):777–783. doi: 10.1158/1078-0432.CCR-17-1327. PubMed DOI PMC
Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou J-Y, Petyuk VA, Chen L, Ray D, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166(3):755–765. doi: 10.1016/j.cell.2016.05.069. PubMed DOI PMC
Li C, Bonazzoli E, Bellone S, Choi J, Dong W, Menderes G, Altwerger G, Han C, Manzano A, Bianchi A, et al. Mutational landscape of primary, metastatic, and recurrent ovarian cancer reveals c-MYC gains as potential target for BET inhibitors. Proc Natl Acad Sci USA. 2019;116(2):619–624. doi: 10.1073/pnas.1814027116. PubMed DOI PMC
de Witte CJ, Kutzera J, van Hoeck A, Nguyen L, Boere IA, Jalving M, Ottevanger PB, van Schaik-van de Mheen C, Stevense M, Kloosterman WP, et al. Distinct genomic profiles are associated with treatment response and survival in ovarian cancer. Cancers (Basel). 2022;14(6):1511. doi: 10.3390/cancers14061511. PubMed DOI PMC
Pejovic T, Fitch K, Mills G. Ovarian cancer recurrence: “Is the definition of platinum resistance modified by PARP inhibitors and other intervening treatments?” Cancer Drug Resist. 2022;5:451–458. doi: 10.20517/cdr.2021.138. PubMed DOI PMC
Nasioudis D, Fernandez ML, Wong N, Powell DJ Jr, Mills GB, Westin S, Fader AN, Carey MS, Simpkins F. The spectrum of MAPK-ERK pathway genomic alterations in gynecologic malignancies: opportunities for novel therapeutic approaches. Gynecologic Oncol. 2023;177:86–94. doi: 10.1016/j.ygyno.2023.08.007. PubMed DOI
Therachiyil L, Anand A, Azmi A, Bhat A, Korashy HM, Uddin S. Role of RAS signaling in ovarian cancer. F1000Res. 2022;11:1253. doi: 10.12688/f1000research.126337.1. PubMed DOI PMC
Peres LC, Cushing-Haugen KL, Köbel M, Harris HR, Berchuck A, Rossing MA, Schildkraut JM, Doherty JA. Invasive epithelial ovarian cancer survival by histotype and disease stage. JNCI: j Natl Cancer Inst. 2019;111(1):60–68. doi: 10.1093/jnci/djy071. PubMed DOI PMC
Stewart J, Cunningham N, Banerjee S. New therapies for clear cell ovarian carcinoma. Int J Gynecological Cancer. 2023;33(3):385–393. doi: 10.1136/ijgc-2022-003704. PubMed DOI
Tang D, Kang R. Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene Ther. 2023;30:391–393. doi: 10.1038/s41417-022-00561-3. PubMed DOI
Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, Vides A, Ayala-Santos CI, Pourfarjam Y, Cuevas-Navarro A, Xue JY, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature. 2023;619(7968):160–166. doi: 10.1038/s41586-023-06123-3. PubMed DOI PMC
Nakajima EC, Drezner N, Li X, Mishra-Kalyani PS, Liu Y, Zhao H, Bi Y, Liu J, Rahman A, Wearne E, et al. Fda approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin Cancer Res. 2022;28(8):1482–1486. doi: 10.1158/1078-0432.CCR-21-3074. PubMed DOI PMC
Dhillon S. Adagrasib: first approval. Drugs. 2023;83(3):275–285. doi: 10.1007/s40265-023-01839-y. PubMed DOI
Brachova P, Mueting SR, Carlson MJ, Goodheart MJ, Button AM, Mott SL, Dai D, Thiel KW, Devor EJ, Leslie KK. Tp53 oncomorphic mutations predict resistance to platinum- and taxane-based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol. 2015;46(2):607–618. doi: 10.3892/ijo.2014.2747. PubMed DOI PMC
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24(3):192–215. doi: 10.1038/s41568-023-00658-3. PubMed DOI
Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu H-Y, Chen H-J, Sun Y-L, Zhou Q, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–3024. doi: 10.1158/1078-0432.CCR-16-2554. PubMed DOI
Gu M, Xu T, Chang P. Kras/lkb1 and KRAS/TP53 co-mutations create divergent immune signatures in lung adenocarcinomas. Ther Adv Med Oncol. 2021;13:17588359211006950. doi: 10.1177/17588359211006950. PubMed DOI PMC
Datta J, Bianchi A, De Castro Silva I, Deshpande NU, Cao LL, Mehra S, Singh S, Rafie C, Sun X, Chen X, et al. Distinct mechanisms of innate and adaptive immune regulation underlie poor oncologic outcomes associated with KRAS-TP53 co-alteration in pancreatic cancer. Oncogene. 2022;41(28):3640–3654. doi: 10.1038/s41388-022-02368-w. PubMed DOI
André F, Arnedos M, Baras AS, Baselga J, Bedard PL, Berger MF, Bierkens M, Calvo F, Cerami E, Chakravarty D, et al. Aacr project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–831. doi: 10.1158/2159-8290.CD-17-0151. PubMed DOI PMC
Rechsteiner M, Zimmermann AK, Wild PJ, Caduff R, von Teichman A, Fink D, Moch H, Noske A. Tp53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp And Mol Pathol. 2013;95(2):235–241. doi: 10.1016/j.yexmp.2013.08.004. PubMed DOI
Soberanis Pina P, Lheureux S. Overcoming PARP inhibitor resistance in ovarian cancer. Int J Gynecological Cancer. 2023;33(3):364–376. doi: 10.1136/ijgc-2022-003698. PubMed DOI
Coelho R, Tozzi A, Disler M, Lombardo F, Fedier A, López MN, Freuler F, Jacob F, Heinzelmann-Schwarz V. Overlapping gene dependencies for PARP inhibitors and carboplatin response identified by functional CRISPR-Cas9 screening in ovarian cancer. Cell Death Dis. 2022;13(10):909. doi: 10.1038/s41419-022-05347-x. PubMed DOI PMC
McMullen M, Karakasis K, Madariaga A, Oza AM. Overcoming platinum and PARP-inhibitor resistance in ovarian cancer. Cancers. 2020;12(6):1607. doi: 10.3390/cancers12061607. PubMed DOI PMC
Friedlander M, Trimble E, Tinker A, Alberts D, Avall-Lundqvist E, Brady M, Harter P, Pignata S, Pujade-Lauraine E, Sehouli J, et al. Clinical trials in recurrent ovarian cancer. Int J Gynecological Cancer. 2011;21(4):771–775. doi: 10.1097/IGC.0b013e31821bb8aa. PubMed DOI
Soucek P, Anzenbacher P, Skoumalova I, Dvorak M. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2005;23(9):1417–1422. doi: 10.1634/stemcells.2005-0066. PubMed DOI
Elsnerova K, Mohelnikova-Duchonova B, Cerovska E, Ehrlichova M, Gut I, Rob L, Skapa P, Hruda M, Bartakova A, Bouda J, et al. Gene expression of membrane transporters: importance for prognosis and progression of ovarian carcinoma. Oncol Rep. 2016;35(4):2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115–e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Mohammad AI, Obeed Allah M, Ali E, Krus I, Šůsová S, Tesařová T, Rob L, Hruda M, Bouda J, Bartáková A, Mrhalová M, et al. Functional validation of somatic variability in TP53 and KRAS for prediction of platinum sensitivity and prognosis in epithelial ovarian carcinoma patients. Int J Cancer. 2024, PREPRINT (Version 1) available at Research Square]. Oct 22. 155(1):104–116. doi: 10.1002/ijc.34908. PubMed DOI