Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30943229
PubMed Central
PMC6447171
DOI
10.1371/journal.pone.0214484
PII: PONE-D-18-35271
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- Heteroptera parazitologie MeSH
- Kinetoplastida MeSH
- pravděpodobnostní funkce MeSH
- proteiny tepelného šoku genetika MeSH
- protozoální proteiny genetika MeSH
- RNA ribozomální 18S genetika MeSH
- slinné žlázy parazitologie MeSH
- stadia vývoje * MeSH
- střeva parazitologie MeSH
- Trypanosomatina klasifikace genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Hsp83 protein, protozoan MeSH Prohlížeč
- proteiny tepelného šoku MeSH
- protozoální proteiny MeSH
- RNA ribozomální 18S MeSH
Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock bug Coreus marginatus based on axenic culture and in vivo material. Using light and electron microscopy we characterized the development of this flagellate in the intestine, hemolymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas lipae do not divide and occur only in the anterior part of the midgut. From there they pass into hemolymph, increasing in size, and then to salivary glands, where they actively proliferate without attachment to the host's epithelium and form infective endomastigotes. We conducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene sequences, of which the third marker performed the best in terms of resolving phylogenetic relationships within the genus Phytomonas. Our inference demonstrated rather early origin of the lineage comprising the new species, right after that of P. oxycareni, which represents the earliest known branch within the Phytomonas clade. This allowed us to compare the development of P. lipae and three other Phytomonas spp. in their insect hosts and reconstruct the vectorial part of the life cycle of their common ancestor.
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V (2019) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology (in press). PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29: 43–52. 10.1016/j.pt.2012.11.001 PubMed DOI
Podlipaev SA (1990) [Catalogue of world fauna of Trypanosomatidae (Protozoa)]; Krylov MV, editor. Leningrad: Zoologicheskii Institut AN SSSR. 178 p. (in Russian).
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V (2018) Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34: 466–480. 10.1016/j.pt.2018.03.002 PubMed DOI
Hoare CA (1972) The trypanosomes of mammals Oxford: Blackwell Scientific Publications. 768 p.
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. (2016) A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLOS Negl Trop Dis 10: e0004349 10.1371/journal.pntd.0004349 PubMed DOI PMC
Stevens JR, Gibson WC (1999) The evolution of pathogenic trypanosomes. Cad Saude Publica 15: 673–684. PubMed
Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42: 29–112. PubMed
Dollet M (1984) Plant diseases caused by flagellate protozoa (Phytomonas). Annu Rev Phytopathol 22: 115–132.
Lafont A (1909) Sur la présence d'un parasite de la classe des flagellés dans Ie latex de I'Euphorbia pilulifera. CR Séances Soc Biol Ses Fil 66: 1011–1013.
Donovan C (1909) Kala-azar in Madras, especially with regard to its connexion with the dog and the bug (Conorrhinus). Lancet 174: 1495–1496.
Lafont A (1911) Sur la transmission du Leptomonas davidi des euphorbes par un hémiptère, Nysius euphorbiae. CR Séances Soc Biol Ses Fil 70: 58–59.
Camargo EP, Kastelein P, Roitman I (1990) Trypanosomatid parasites of plants (Phytomonas). Parasitol Today 6: 22–25. PubMed
Camargo EP, Wallace FG (1994) Vectors of plant parasites of the genus Phytomonas (Protozoa, Zoomastigophora, Kinetoplastida) In: Harris KF, editor. Advances in Disease Vector Research. New York, NY: Springer; pp. 333–359.
Jaskowska E, Butler C, Preston G, Kelly S (2015) Phytomonas: trypanosomatids adapted to plant environments. PLOS Pathog 11: e1004484 10.1371/journal.ppat.1004484 PubMed DOI PMC
Serrano MG, Nunes LR, Campaner M, Buck GA, Camargo EP, Teixeira MM (1999) Trypanosomatidae: Phytomonas detection in plants and phytophagous insects by PCR amplification of a genus-specific sequence of the spliced leader gene. Exp Parasitol 91: 268–279. 10.1006/expr.1998.4379 PubMed DOI
Sturm NR, Fernandes O, Campbell DA (1995) The mini-exon genes of three Phytomonas isolates that differ in plant tissue tropism. FEMS Microbiol Lett 130: 177–182. 10.1111/j.1574-6968.1995.tb07716.x PubMed DOI
Hollar L, Maslov DA (1997) A phylogenetic view on the genus Phytomonas. Mol Biochem Parasitol 89: 295–299. PubMed
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY (2016) Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol 52: 1–10. 10.1016/j.ejop.2015.08.002 PubMed DOI
Zanetti A, Ferreira RC, Serrano MG, Takata CS, Campaner M, Attias M, et al. (2016) Phytomonas (Euglenozoa: Trypanosomatidae): phylogenetic analyses support infrageneric lineages and a new species transmitted to Solanaceae fruits by a pentatomid hemipteran. Eur J Protistol 56: 232–249. 10.1016/j.ejop.2016.09.004 PubMed DOI
Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S (2017) Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist 168: 71–79. 10.1016/j.protis.2016.11.002 PubMed DOI
Kořený L, Sobotka R, Kovářová J, Gnipová A, Flegontov P, Horváth A, et al. (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 109: 3808–3813. 10.1073/pnas.1201089109 PubMed DOI PMC
Porcel BM, Denoeud F, Opperdoes FR, Noel B, Madoui M-A, Hammarton TC, et al. (2014) The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLOS Genet 10: e1004007 10.1371/journal.pgen.1004007 PubMed DOI PMC
Butler CE, Jaskowska E, Kelly S (2017) Genome sequence of Phytomonas françai, a cassava (Manihot esculenta) latex parasite. Genome Announc 5: e01266–01216. 10.1128/genomeA.01266-16 PubMed DOI PMC
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. (2016) Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol 63 198–209. 10.1111/jeu.12268 PubMed DOI
Dollet M, Sturm NR, Sanchez-Moreno M, Campbell DA (2000) 5S ribosomal RNA gene repeat sequences define at least eight groups of plant trypanosomatids (Phytomonas spp.): phloem-restricted pathogens form a distinct section. J Eukaryot Microbiol 47: 569–574. PubMed
Dollet M, Sturm NR, Campbell DA (2012) The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (Phytomonas spp.) resolves 10 groups. Infect Genet Evol 12: 299–308. 10.1016/j.meegid.2011.11.010 PubMed DOI
Frolov AO, Malysheva MN (1993) [Description of Phytomonas nordicus sp. n. (Trypanosomatidae) from the predatory bug Troilus luridus (Hemiptera, Pentatomidae)]. Parazitologiia 27: 227–232. (in Russian).
Lipa JJ (1966) Blastocrithidia raabei sp. п., a flagellate parasite of Mesocerus marginatus L. (Hemiptera: Coreidae) Acta Protozool 4: 19–23.
Wallace FG (1966) The trypanosomatid parasites of insects and arachnids. Exp Parasitol 18: 124–193. PubMed
Schaub GA (1994) Pathogenicity of trypanosomatids on insects. Parasitol Today 10: 463–468. PubMed
Frolov AO, Skarlato SO (1995) [Fine structure and mechanisms of adaptation of lower trypanosomatids in Hemiptera]. Tsitologiia 37: 539–560. (in Russian).
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY (2017) Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol 57: 85–98. 10.1016/j.ejop.2016.10.007 PubMed DOI
Podlipaev SA, Frolov AO (1987) [Description and laboratory cultivation of Blastocrithidia miridarum sp. n. (Mastigophora, Trypanosomatidae)]. Parazitologiia 21: 545–552. (in Russian).
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. (2014) Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165: 825–838. 10.1016/j.protis.2014.09.002 PubMed DOI
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V (2014) Molecular revision of the genus Wallaceina. Protist 165: 594–604. 10.1016/j.protis.2014.07.001 PubMed DOI
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY (2018) Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLOS One 13: e0204467 10.1371/journal.pone.0204467 PubMed DOI PMC
Týč J, Votýpka J, Klepetková H, Šuláková H, Jirků M, Lukeš J (2013) Growing diversity of trypanosomatid parasites of flies (Diptera: Brachycera): frequent cosmopolitism and moderate host specificity. Mol Phylogenet Evol 69: 255–264. 10.1016/j.ympev.2013.05.024 PubMed DOI
Maslov DA, Lukeš J, Jirků M, Simpson L (1996) Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75: 197–205. PubMed
Maslov DA, Yurchenko VY, Jirků M, Lukeš J (2010) Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57: 177–188. 10.1111/j.1550-7408.2009.00464.x PubMed DOI
Simpson AG, Lukeš J, Roger AJ (2002) The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19: 2071–2083. 10.1093/oxfordjournals.molbev.a004032 PubMed DOI
Gerasimov ES, Kostygov AY, Yan S, Kolesnikov AA (2012) From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur J Protistol 48: 185–193. 10.1016/j.ejop.2011.09.002 PubMed DOI
Kostygov A, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. (2016) Novel trypanosomatid—bacterium association: evolution of endosymbiosis in action. mBio 7: e01985–01915. PubMed PMC
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. (2018) GenBank. Nucleic Acids Res 46: D41–D47. 10.1093/nar/gkx1094 PubMed DOI PMC
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger satasets. Mol Biol Evol 33: 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Chistyakova LV, Kostygov AY, Kornilova OA, Yurchenko V (2014) Reisolation and redescription of Balantidium duodeni Stein, 1867 (Litostomatea, Trichostomatia). Parasitol Res 113: 4207–4215. 10.1007/s00436-014-4096-1 PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Spodareva VV, Grybchuk-Ieremenko A, Losev A, Votýpka J, Lukeš J, Yurchenko V, et al. (2018) Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasit Vectors 11: 447 10.1186/s13071-018-3023-1 PubMed DOI PMC
Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V (2015) New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol 31: 460–469. 10.1016/j.pt.2015.06.015 PubMed DOI
Hrušková M, Honěk A, Pekár S (2005) Coreus marginatus (Heteroptera: Coreidae) as a natural enemy of Rumex obtusifolius (Polygonaceae). Acta Oecol 28: 281–287.
Kment P, Vahala O, Hradil K (2006) [First records of Oxycarenus lavaterae (Fabricius, 1787) (Heteroptera: Oxycarenidae) from the Czech Republic with review of its distribution and biology]. Klapalekiana 42: 97–127. (in Czech).
Nedvěd O, Chehlarov E, Kalushkov P (2014) Life history of the invasive bug Oxycarenus lavaterae (Heteroptera: Oxycarenidae) in Bulgaria. Acta Zool Bulg 66: 203–208.
Jankevicius JV, Jankevicius SI, Campaner M, Conchon I, Maeda LA, Teixeira MMG, et al. (1989) Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J Protozool 36: 265–271.
Freymuller E, Milder R, Jankevicius JV, Jankevicius SI, Camargo EP (1990) Ultrastructural studies on the trypanosomatid Phytomonas serpens in the salivary glands of a phytophagous hemipteran. J Protozool 37: 225–229.
Frolov AO, Malysheva MN, Kostygov AY (2015) [Transformations of Life Cycles in the Evolutionary History of Trypanosomatids. Macrotransformations]. Parazitologiia 49: 233–256. (in Russian). PubMed
Hecker H, Schwarzenbach M, Rudin W (1990) Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus. Parasitol Res 76: 311–318. PubMed
Multiple and frequent trypanosomatid co-infections of insects: the Cuban case study
Development of two species of the Trypanosoma theileri complex in tabanids
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Diverse telomeres in trypanosomatids
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses