Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26980834
PubMed Central
PMC4807368
DOI
10.1128/mbio.01985-15
PII: mBio.01985-15
Knihovny.cz E-zdroje
- MeSH
- Burkholderiaceae klasifikace cytologie izolace a purifikace fyziologie MeSH
- fylogeneze MeSH
- symbióza * MeSH
- Trypanosomatina klasifikace cytologie genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ekvádor MeSH
UNLABELLED: We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, "Candidatus Pandoraea novymonadis" sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. IMPORTANCE: The parasitic trypanosomatid protist Novymonas esmeraldas gen. nov., sp. nov. entered into endosymbiosis with the bacterium "Ca. Pandoraea novymonadis" sp. nov. This novel and rather unstable interaction shows several signs of relatively recent establishment, qualifying it as a potentially unique transient stage in the increasingly complex range of eukaryotic-prokaryotic relationships.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Department of Biology University of California at Riverside Riverside California USA
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Gray MW. 2012. Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403. doi:10.1101/cshperspect.a011403. PubMed DOI PMC
Keeling PJ. 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. doi:10.1146/annurev-arplant-050312-120144. PubMed DOI
Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, Bischofs IB, Kost C. 2015. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238. doi:10.1038/ncomms7238. PubMed DOI
Wernegreen JJ. 2015. Endosymbiont evolution: predictions from theory and surprises from genomes. Ann N Y Acad Sci 1360:16–35 doi:10.1111/nyas.12740. PubMed DOI PMC
Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, Buck GA, Vasconcelos AT, Sagot MF, Teixeira MM, Motta MC, Camargo EP. 2013. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13:190. doi:10.1186/1471-2148-13-190. PubMed DOI PMC
Moya A, Peretó J, Gil R, Latorre A. 2008. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9:218–229. doi:10.1038/nrg2319. PubMed DOI
Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119. PubMed DOI
Van Leuven JT, Meister RC, Simon C, McCutcheon JP. 2014. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–1280. doi:10.1016/j.cell.2014.07.047. PubMed DOI
Nowack EC, Melkonian M. 2010. Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712. doi:10.1098/rstb.2009.0188. PubMed DOI PMC
Ossipov DV, Karpov SA, Smirnov AV, Rautian MS. 1997. Peculiarities of the symbiotic systems of protists with diverse patterns of cellular organisation. Acta Protozool 36:3–21.
Mackenzie C, Walker MH. 1979. Bacteria-like structures in the endoplasm of Gregarina garnhami (Eugregarinida, Protozoa). Cell Tissue Res 202:33–39. doi:10.1007/BF00239219. PubMed DOI
Stentiford GD, Bateman KS, Small HJ, Pond M, Ungfors A. 2012. Hematodinium sp. and its bacteria-like endosymbiont in European brown shrimp (Crangon crangon). Aquat Biosyst 8:24. doi:10.1186/2046-9063-8-24. PubMed DOI PMC
Stenzel DJ, Boreham PF. 1994. Bacteria-like endosymbionts in Blastocystis sp. Int J Parasitol 24:147–149. doi:10.1016/0020-7519(94)90070-1. PubMed DOI
Grim JN. 1993. Endonuclear symbionts within a symbiont—the surgeonfish intestinal symbiont, Balantidium jocularum (Ciliophora) is host to a Gram-positive macronuclear inhabiting bacterium. Endocytobiosis Cell Res 9:209–214.
Dessì D, Rappelli P, Diaz N, Cappuccinelli P, Fiori PL. 2006. Mycoplasma hominis and Trichomonas vaginalis: a unique case of symbiotic relationship between two obligate human parasites. Front Biosci 11:2028–2034. doi:10.2741/1944. PubMed DOI
Hirt RP. 2013. Trichomonas vaginalis virulence factors: an integrative overview. Sex Transm Infect 89:439–443. doi:10.1136/sextrans-2013-051105. PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195:115–122. doi:10.1016/j.molbiopara.2014.05.007. PubMed DOI
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI
Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. 2015. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol 31:460–469. doi:10.1016/j.pt.2015.06.015. PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165:825–838. doi:10.1016/j.protis.2014.09.002. PubMed DOI
Alves JM, Serrano MG, Maia da Silva F, Voegtly LJ, Matveyev AV, Teixeira MM, Camargo EP, Buck GA. 2013. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol Evol 5:338–350. doi:10.1093/gbe/evt012. PubMed DOI PMC
Du Y, Maslov DA, Chang KP. 1994. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp. Proc Natl Acad Sci U S A 91:8437–8441. doi:10.1073/pnas.91.18.8437. PubMed DOI PMC
Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, Nunes VL, Milder RV, de Souza W, Camargo EP. 2011. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist 162:503–524. doi:10.1016/j.protis.2011.01.001. PubMed DOI
Motta MC, Catta-Preta CM, Schenkman S, de Azevedo Martins AC, Miranda K, de Souza W, Elias MC. 2010. The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus. PLoS One 5:e12415. doi:10.1371/journal.pone.0012415. PubMed DOI PMC
Catta-Preta CM, Nascimento MT, Garcia MC, Saraiva EM, Motta MC, Meyer-Fernandes JR. 2013. The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito-protozoa interaction. Int J Parasitol 43:571–577. doi:10.1016/j.ijpara.2013.02.005. PubMed DOI
Chang KP. 1974. Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti. J Protozool 21:699–707. doi:10.1111/j.1550-7408.1974.tb03733.x. PubMed DOI
Freymuller E, Camargo EP. 1981. Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool 28:175–182. doi:10.1111/j.1550-7408.1981.tb02829.x. PubMed DOI
Gadelha C, Wickstead B, de Souza W, Gull K, Cunha-e-Silva N. 2005. Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4:516–525. doi:10.1128/EC.4.3.516-525.2005. PubMed DOI PMC
Motta MC, Soares MJ, Attias M, Morgado J, Lemos AP, Saad-Nehme J, Meyer-Fernandes JR, De Souza W. 1997. Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur J Cell Biol 72:370–377. PubMed
de Azevedo-Martins AC, Frossard ML, de Souza W, Einicker-Lamas M, Motta MC. 2007. Phosphatidylcholine synthesis in Crithidia deanei: the influence of the endosymbiont. FEMS Microbiol Lett 275:229–236. doi:10.1111/j.1574-6968.2007.00892.x. PubMed DOI
Chang KP, Chang CS, Sassa S. 1975. Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc Natl Acad Sci U S A 72:2979–2983. doi:10.1073/pnas.72.8.2979. PubMed DOI PMC
Camargo EP, Freymuller E. 1977. Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid. Nature 270:52–53. doi:10.1038/270052a0. PubMed DOI
Galinari S, Camargo EP. 1978. Trypanosomatid protozoa: survey of acetylornithinase and ornithine acetyltransferase. Exp Parasitol 46:277–282. doi:10.1016/0014-4894(78)90141-8. PubMed DOI
Salzman TA, Batlle AM, Angluster J, de Souza W. 1985. Heme synthesis in Crithidia deanei: influence of the endosymbiote. Int J Biochem 17:1343–1347. doi:10.1016/0020-711X(85)90058-8. PubMed DOI
Faria e Silva PM, Fiorini JE, Soares MJ, Alviano CS, de Souza W, Angluster J. 1994. Membrane-associated polysaccharides composition, nutritional requirements and cell differentiation in herpetomonas roitmani: influence of the endosymbiont. J Eukaryot Microbiol 41:55–59. doi:10.1111/j.1550-7408.1994.tb05934.x. PubMed DOI
Frossard ML, Seabra SH, DaMatta RA, de Souza W, de Mello FG, Motta MC. 2006. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochem Biophys Res Commun 343:443–449. doi:10.1016/j.bbrc.2006.02.168. PubMed DOI
Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, de Almeida LG, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CB, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JL, Elias MC, Goldman MH, Sagot MF, Pereira M, Stoco PH, de Mendonca-Neto RP, Teixeira SM, Maciel TE, de Oliveira Mendes TA, Urmenyi TP, de Souza W, Schenkman S, de Vasconcelos AT. 2013. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the Trypanosomatidae family. PLoS One 8:e60209. doi:10.1371/journal.pone.0060209. PubMed DOI PMC
Fampa P, Corrêa-da-Silva MS, Lima DC, Oliveira SM, Motta MC, Saraiva EM. 2003. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026. doi:10.1016/S0020-7519(03)00124-3. PubMed DOI
d’Avila-Levy CM, Santos LO, Marinho FA, Matteoli FP, Lopes AH, Motta MC, Santos AL, Branquinha MH. 2008. Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 118:345–353. doi:10.1016/j.exppara.2007.09.007. PubMed DOI
d’Avila-Levy CM, Silva BA, Hayashi EA, Vermelho AB, Alviano CS, Saraiva EM, Branquinha MH, Santos AL. 2005. Influence of the endosymbiont of Blastocrithidia culicis and Crithidia deanei on the glycoconjugate expression and on Aedes aegypti interaction. FEMS Microbiol Lett 252:279–286. doi:10.1016/j.femsle.2005.09.012. PubMed DOI
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, Yurchenko V, Votýpka J, Maslov DA. 2015. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from neotropical Heteroptera. Protist 166:551–568. doi:10.1016/j.protis.2015.08.004. PubMed DOI
Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH. 1996. In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500. PubMed PMC
Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR. 2007. Discovery and bar coding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54:57–65. doi:10.1111/j.1550-7408.2006.00150.x. PubMed DOI
Novy FG, MacNeal WJ, Torrey HN. 1907. The trypanosomes of mosquitoes and other insects. J Infect Dis 4:223–276. doi:10.1093/infdis/4.2.223. DOI
Coenye T, Falsen E, Hoste B, Ohlén M, Goris J, Govan JR, Gillis M, Vandamme P. 2000. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50(Pt 2):887–899. doi:10.1099/00207713-50-2-887. PubMed DOI
Yurchenko VY, Lukeš J, Jirků M, Zeledón R, Maslov DA. 2006. Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania. Parasitology 133:537–546. doi:10.1017/S0031182006000746. PubMed DOI
Lukeš J, Mauricio IL, Schönian G, Dujardin JC, Soteriadou K, Dedet JP, Kuhls K, Tintaya KW, Jirků M, Chocholová E, Haralambous C, Pratlong F, Oborník M, Horák A, Ayala FJ, Miles MA. 2007. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A 104:9375–9380. doi:10.1073/pnas.0703678104. PubMed DOI PMC
de Souza W, Motta MC. 1999. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol Lett 173:1–8. doi:10.1016/S0378-1097(99)00005-1. PubMed DOI
Catta-Preta CM, Brum FL, da Silva CC, Zuma AA, Elias MC, de Souza W, Schenkman S, Motta MC. 2015. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle. Front Microbiol 6:520. doi:10.3389/fmicb.2015.00520. PubMed DOI PMC
Anandham R, Indiragandhi P, Kwon SW, Sa TM, Jeon CO, Kim YK, Jee HJ. 2010. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). Int J Syst Evol Microbiol 60:21–26. doi:10.1099/ijs.0.012823-0. PubMed DOI
Sahin N, Tani A, Kotan R, Sedlácek I, Kimbara K, Tamer AU. 2011. Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int J Syst Evol Microbiol 61:2247–2253. doi:10.1099/ijs.0.026138-0. PubMed DOI
Heckmann K, Schmidt HJ. 1987. Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 37:456–457. doi:10.1099/00207713-37-4-456. DOI
Fujishima M, Heckmann K. 1984. Intraspecies and interspecies transfer of endosymbionts in Euplotes. J Exp Zool 230:339–345. doi:10.1002/jez.1402300302. DOI
Jezbera J, Jezberová J, Brandt U, Hahn MW. 2011. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931. doi:10.1111/j.1462-2920.2010.02396.x. PubMed DOI PMC
Gunn A, Pitt SJ. 2012. Parasitology: an integrated approach. John Wiley & Sons, Chichester, United Kingdom.
Yurchenko VY, Lukeš J, Jirků M, Maslov DA. 2009. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from neotropical Heteroptera. Int J Syst Evol Microbiol 59:893–909. doi:10.1099/ijs.0.001149-0. PubMed DOI
Yurchenko VY, Lukeš J, Tesařová M, Jirků M, Maslov DA. 2008. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159:99–114. doi:10.1016/j.protis.2007.07.003. PubMed DOI
Hamilton PT, Votýpka J, Dostálová A, Yurchenko V, Bird NH, Lukeš J, Lemaitre B, Perlman SJ. 2015. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio 6:e01356-15. doi:10.1128/mBio.01356-15. PubMed DOI PMC
Maslov DA, Yurchenko VY, Jirků M, Lukeš J. 2010. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57:177–188. doi:10.1111/j.1550-7408.2009.00464.x. PubMed DOI
Jirků M, Yurchenko VY, Lukeš J, Maslov DA. 2012. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol 59:537–547. doi:10.1111/j.1550-7408.2012.00636.x. PubMed DOI
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol 61:97–112. doi:10.14411/fp.2014.023. PubMed DOI
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J 5 October 2015. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol doi:10.1111/jeu.12268. PubMed DOI
Amann RI, Krumholz L, Stahl DA. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770. PubMed PMC
Cottrell MT, Kirchman DL. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122. doi:10.1128/AEM.66.12.5116-5122.2000. PubMed DOI PMC
Fuchs BM, Pernthaler J, Amann R. 2007. Single cell identification by fluorescence in situ hybridization, p 886–896. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (ed), Methods for general and molecular microbiology, 3rd ed. ASM Press, Washington, DC.
Maslov DA, Lukeš J, Jirků M, Simpson L. 1996. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75:197–205. doi:10.1016/0166-6851(95)02526-X. PubMed DOI
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. 2014. Molecular revision of the genus Wallaceina. Protist 165:594–604. doi:10.1016/j.protis.2014.07.001. PubMed DOI
Simpson AG, Roger AJ. 2004. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 30:201–212. doi:10.1016/S1055-7903(03)00177-5. PubMed DOI
Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledón R, Campbell DA, Maslov DA. 2004. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129:537–547. doi:10.1017/S003118200400592X. PubMed DOI
Votýpka J, Maslov DA, Yurchenko V, Jirků M, Kment P, Lun ZR, Lukeš J. 2010. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol 54:243–253. doi:10.1016/j.ympev.2009.10.014. PubMed DOI
Yurchenko V, Lukeš J, Xu X, Maslov DA. 2006. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53:103–111. doi:10.1111/j.1550-7408.2005.00078.x. PubMed DOI
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340. PubMed DOI PMC
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi:10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Chistyakova LV, Kostygov AY, Kornilova OA, Yurchenko V. 2014. Reisolation and redescription of Balantidium duodeni Stein, 1867 (Litostomatea, Trichostomatia). Parasitol Res 113:4207–4215. doi:10.1007/s00436-014-4096-1. PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC
Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. 2012. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163:616–631. doi:10.1016/j.protis.2011.12.004. PubMed DOI
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109. PubMed DOI PMC
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Trypanosomatid parasites in Austrian mosquitoes
Life Cycle, Ultrastructure, and Phylogeny of New Diplonemids and Their Endosymbiotic Bacteria